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Abstract
The entire world has been affected by the outbreak of COVID-19 since early 2020. Human carriers are largely the spreaders of
this new disease, and it spreads much faster compared to previously identified coronaviruses and other flu viruses. Although
vaccines have been invented and released, it will still be a challenge to overcome this disease. To save lives, it is important to
better understand how the virus is transmitted from one host to another and how future areas of infection can be predicted.
Recently, the second wave of infection has hit multiple countries, and governments have implemented necessary measures to
tackle the spread of the virus. We investigated the three phases of COVID-19 research through a selected list of mathematical
modeling articles. To take the necessary measures, it is important to understand the transmission dynamics of the disease,
and mathematical modeling has been considered a proven technique in predicting such dynamics. To this end, this paper
summarizes all the available mathematical models that have been used in predicting the transmission of COVID-19. A total
of nine mathematical models have been thoroughly reviewed and characterized in this work, so as to understand the intrinsic
properties of each model in predicting disease transmission dynamics. The application of these nine models in predicting
COVID-19 transmission dynamics is presented with a case study, along with detailed comparisons of these models. Toward
the end of the paper, key behavioral properties of each model, relevant challenges and future directions are discussed.
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SEIHR Susceptible-Exposed-Symptomatic
infectious-Hospitalized-Removed

Theta-SEIHRD Susceptible-Exposed-Infectious-
Hospitalized-Recovered-Dead

SEIPAHRF Susceptible class-exposed class-
symptomatic and infectious class-super
spreaders class-infectious but asymp-
tomatic class - hospitalized class-
recovery class-fatality class

1 Introduction

A large family of viruses (Coronaviruses) that can be a
source of disease transmission starts with a typical cold
advances to Severe Acute Respiratory Syndrome (SARS).
The MERS-coronavirus (Middle East Respiratory Syn-
drome)was reported in 2012, in theKingdomofSaudiArabia
(KSA), which generally originated from camel flu and spread
as a severe respiratory disorder to humans through vari-
ous channels [1–3]. The symptoms of respiratory infections
lead to an acute form of pneumonia. The current ongoing
novel coronavirus disease (COVID-19) outbreaks originated
in December 2019 in Wuhan of the Hubei Province, China,
and have been linked to the HuananWholesale SeafoodMar-
ket [4–6]. Presently people and the community are suffering
due to the (COVID-19) epidemic. Despite the fact that the
World Health Organization (WHO) officially declared a pan-
demic, it spread not only in Asia, but also in Africa, South
America, the Middle East and Europe. The panic of the
people and their community about the virus (COVID-19)
outbreak recalls the London influenza pandemic of 1918. Its
mild symptoms inmost cases and in short sequential intervals
(4-5 days) are identical to those of the influenza pandemic,
rather than the severe acute respiratory syndromecoronavirus
(SARS-CoV) or the Middle East Respiratory Syndrome
coronavirus (MERS-CoV) [7]. As of June 22, 2021, there
have been 179,698,836 confirmed cases worldwide with
3,891,374 deaths and 164,394,324 recovered (https://www.
worldometers.info/coronavirus/). These numbers are expo-
nentially growing day by day.

At present, people and the community are under threat due
to the (COVID-19) disease. Though recently vaccines have
been rolled globally, due to the lack of treatment it is chal-
lenging for decision-makers to fight against this contagious
disease. It is therefore imperative to learn more about the
rapid transmission mechanism of the virus and how future
measures can be taken to control the spread of infection.
Several different epidemiological factors of Severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) includ-
ing the reproduction number, are still unknown, as this is a
contemporary infectious virus. The basic reproduction num-
ber/ratio is a crucial epidemiological factor that is needed to

identify the current status of disease outbreaks. Thus, a num-
ber of researchers are investigating the high infection rate
and transmission patterns following the different character-
istics of SARS-CoV-2. Scientists, Doctors and Researchers
are all working together to investigate and understand its high
infection rate and transmission process [8,9] along with pre-
vention [10–12] and support [13]. There have been several
work involving artificial intelligence and machine learning
methods to support COVID-19 [14] through analyzing lung
images acquired by means of computed tomography [15],
chest X-ray [16–18] and understanding and supporting men-
tal health [19–22]. However, mathematical model is one
possible way to understand the basic principle of COVID-19
transmission as well as transmission dynamics and to pro-
vide further necessary guidelines for the measures of disease
mitigation.

Mathematical modeling is useful and applicable to assess
the sizes, peak and transmission dynamics of a contagious
disease such as the novel SARS-CoV-2. For any pandemic
of a contagious disease, it is essential to run its affecting
parameters into a mathematical testing model to take fur-
ther measures. There are many mathematical models for
infectious diseases, including compartmental models, start-
ing from the classical SIR tomore sophisticatedmodels. Such
models play an important role in helping to quantify possi-
ble infectious disease control and mitigation strategies [23].
Mathematical modeling has been used to analyze multiple
characteristics of the disease and can provide the tools to
predict the trends of transmission dynamics of a contagious
disease such as COVID-19. Mathematical models estimate
disease progress that can be helpful for public healthcare
interventions and inspecting the momentum of disease out-
breaks.

Following studies reported in the literature that have been
made available via leading databases (e.g., PubMed (https://
pubmed.ncbi.nlm.nih.gov/), IEEEXplore (http://ieeexplore.
ieee.org/), Web of Science (https://apps.webofknowledge.
com/), Scopus (https://www.scopus.com/)) and Google
Scholar (https://scholar.google.com/)) our effort in this
review is to study the nine most commonly used models
(Fig. 1) based on mathematical implementations and criti-
cally review how they play a vital role in investigations of
transmission dynamics where the characteristics of conta-
gious diseases are analyzed. The purpose of this review is to
provide the following:

– a detailed account of all available mathematical models
used in pandemic modeling and prediction;

– a comprehensive survey of state-of-the-art applications
of available mathematical models in the modeling and
prediction of COVID-19 infection transmission;
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Fig. 1 Schematic diagram
which includes an illustration of
COVID-19 infection, data
sources for research, a
representative flowchart for each
model, the computational
mathematics behind it and the
main strengths of each model

– a comparative analysis of different mathematical mod-
els on the basis of their usage in COVID-19 infection
transmission modeling and prediction;

– an elaborate discussion of open challenges and required
future research to fight against the COVID-19 pandemic
using mathematical modeling.

First, we divided the total time frame (January 2020–
February 2021) of COVID-19 into three phases from the
published literature reported in Google Scholar. We run a
phase-specific analysis in Sect. 2. The rest of the paper is
organized as follows: Sect. 3 provides an account of the
available mathematical models, Sect. 4 contains the appli-
cation details of the mathematical models within the context
ofCOVID-19, including the advantages and disadvantages of
each model, Sect. 5 points out some key observable behavior
for each of the models within the context of other mod-
els, applied methods and result prediction, Sect. 6 provides
an overview of other available relevant mathematical mod-

els, Sect. 7 describes the upcoming challenges and future
research directions, and Sect. 8 presents the discussion and
conclusion.

2 A Phase-Specific COVID-19 Case Study

In the last year, thousands of articles on COVID-19 were
published. For this review, we selected articles that (1) were
published in a pure-reviewed journal, (2) performed mathe-
matical analysis, (3) used real data sets for the analysis, (4)
were country-specific comparative predictionmodels and (5)
had a high number of citations. We did not consider articles
that fell under five above-mentioned issues but were a con-
tinuations or extension of a previous similar work (e.g., in
terms of country and model).

After carefully investigating the published articles, we
divided the total time period of the pandemic into three
important phases: Phase #1: initial/rough prediction of dis-
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Fig. 2 Phase-wise distribution of papers

ease dynamics (January 1, 2020–March 31, 2020), Phase
#2: accurate model development (April 1, 2020–August 31,
2020) and Phase #3: data-driven applications (September 1,
2020–February 6, 2021). For each phase, we prepared a table
indicating the publications based onmathematical modeling.
The distribution of the selected papers is shown in Fig. 2.

According to our understanding, many simple mathemat-
ical models (e.g., SIR and SEIR) were applied with limited
datasets on various studies to understand the initial COVID-
19 transmission dynamics without proper parameters and
validation in Phase #1. Accordingly, many articles with new
and complex methods were published following simulation,
model development, stabilization and comparisons in Phase
#2. Since our focus was to investigate publications based
on mathematical models following real data, we list only
very few articles on fractional order for method develop-
ment and simulation studies. Finally, we gradually obtained
data-driven complex mathematical modeling to predict more
accurate and important information in Phase #3. Many com-
parative studies and individual complex model articles based
on real data were observed in this phase, including fractional
order (see Table 1 for more details).

3 Overview of Mathematical Models used in
Pandemic Modeling

To carefully evaluate the availablemathematicalmodels used
in pandemic modeling and prediction, we searched the lead-
ing databases of academic literature with specific search
strings containing the following keywords: ‘mathematical
modeling’, ‘COVID-19’, ‘coronavirus’, ‘corona’, ‘SARS-
CoV-2’, ‘transmission dynamics’ and ‘infection transmission
dynamics’. The databases used were PubMed, IEEEXplore,
Web of Science and Scopus. The search generated a total
of 193 articles (PubMed: 20; IEEEXplore: 35; Scopus: 34;
Web of Science: 104), which were then manually scrutinized

by removing duplicates, checking for relevance and remov-
ing papers published before the onset of the disease. This
resulted in 21 articles that used nine different mathematical
models to model and predict COVID-19 infection transmis-
sion dynamics.

This section focuses on the nine selected contagious dis-
ease models with mathematical analysis implementation and
model diagrams in the context of the infection transmission
dynamics of the novel SARS-CoV-2 disease. These nine
selected models are also used for further investigation in
Sects. 4 and 5.

3.1 Model 1: Susceptible-Infectious-Removed (SIR)

The simplest compartmental model is SIR (‘Susceptible-
Infectious-Removed’) where S, I and R are the susceptible,
infectious (can infect others) and removed (recovered or
dead) [76] populations, respectively. A flowchart of this
model is presented in Fig. 3. There are many models that
have been used to investigate the transmission dynamics
of viruses, and those models are in some way derivatives
of the basic SIR model. For the present pandemic cir-
cumstances, many researchers have developed SIR-based
mathematical models. The model is formulated by a set of
nonlinear ordinary differential equations (ODEs) and then
solved numerically. The simplest form of nonlinear ODEs
can be expressed as in Eq. 1.

d

dt
(S) = −βSI

d

dt
(I ) = βSI − α I

d

dt
(R) = α I (1)

(Parameters: α—removal rate, β—infection rate).
In this study [25], an age-structured SIR mathematical

model considering social connection matrices based on sur-
veys and Bayesian imputation is presented to inspect the
momentum of the SARS-CoV-2 pandemic in India. This
study accentuated the importance of both social contact and
age structures in appraising the country-specific impacts of
the widely used social distancing strategy for controlling and
mitigating the virus. In [24], the authors proposed a simplified
SIR mathematical model to predict the peak of the disease
infection and suggested that the healthcare system could sig-
nificantly shorten the outbreak period and reduce one-half
of the transmission. In another study, [41], an SIR model is
used to predict disease (COVID-19) trends and how quaran-
tine decreases infection.
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Table 1 Phase-wise publications related to mathematical modeling in detecting COVID-19 transmission dynamics

Phase Model Ref. Country/Region/area

Phase#1 SIR [24] Mainland China

[25] India

[26] India

SEIR [27] Wuhan, China

[28] Wuhan, China

[29] Wuhan, China

[30] India

[31] Wuhan, Hubei Province and nearby regions

[32] Korea

[33] Korea

[7] Wuhan, China

SUQC [34] Hubei, Wuhan, China

M-SDI [35] China, (data-Chinese Sina-microblog)

BHRP [36] Wuhan City, China

SEIHR [37] Daegu and North Gyeongsang Province, Korea

Theta-SEIHRD [38] Chinese Mainland, Macao, Hong-Kong and Taiwan

SEIPAHRF [23] Wuhan, China

SQIR [39] Pakistan

Offspring distribution [40] Data used from 46 countries reported by WHO

Phase#2 SIR [41] China

[42] Comparison(china, Italy)

[23] Wuhan, China

[43] Italy

SEIR [44] The Republic of Kazakhstan

[45] India

[46] Saudi Arabia

SEIRD [47] London and Wuhan

FO (DECS) [48] N/A (Simulation)

FO (CFFD) [49] N/A (Simulation)

FO (KTFD) [50] N/A (Simulation)

ASM [51] USA, UAE and Algeria

FO (CS) [52] N/A (Simulation)

Phase#3 Fractional order [53] Wuhan, China

[54] Simulation, Wuhan, China

[55] Saudi Arabia

[56] USA

[57] Nigeria

[58] Pakistan

SIR [59] Comparative study (China, South Korea, India, Australia, USA, Italy)

[60] WHO data

[61] Brazil

[62] Brazil

[63] Malaysia

SEIR [64] Pakistan

[65] USA

[66] Morocco
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Table 1 continued

Phase Model Ref. Country/Region/area

[67] Simulation, India

[68] Saudi Arabia

[69] Egypt & Oman

[70] Saudi Arabia

[71] India

[72] Comparative (China, South Korea, Italy and Iran)

[73] China

SEIAQRDT [74] India

SEIHQRD [75] Kenya

Ref : reference; FO (DECS): fractional order (differential equations in the Caputo sense); FO (CFFD): fractional order (Caputo-Fabrizio fractional
derivative); FO (KTFD): fractional order (kernel type of fractional derivative); FO (CS): Fractional Order in the Caputo sense; ASM: age-structured
model (based on differential equations)

Fig. 3 A flowchart representation of SIR model; [Susceptible (S)-
Infectious (I)-Removed (R)]

3.2 Model 2: Susceptible-Exposed-Infectious-
Removed (SEIR)

A compartmental model SEIR (‘Susceptible-Exposed-
Infectious-Removed’) with S, E, I and R represents the Sus-
ceptible, Exposed (infected, but not infectious), Infectious
(can infect others) and Removed (recovered or dead) popu-
lations. A flowchart of this model is presented in Fig. 4.This
model significantly simplifies the mathematical modeling of
different infectious diseases such as the novel SARS-CoV-2.
Thus, the model is formulated by a set of nonlinear ordinary
differential equations (ODEs) and therefore solved numeri-
cally. The simplest form of a set of ODEs for the SEIR-based
model is as follows:

d

dt
(S) = −β

I

N
S − βF (1 − e−τC )S

d

dt
(E) = β

I

N
S + δβ

I

N
S − κE

d

dt
(I ) = κE − α I

d

dt
(R) = γC (2)

Fig. 4 A flowchart representation of SEIR model; [Susceptible (S)-
Exposed (E)-Infectious (I)-Removed (R)]

(Parameters and Notations: βF—Behavior change trans-
mission rate, β—Transmission rate between two groups,
τ—Scaling factor, δ—Transmission reduction component,
κ—Progression rate, α—Confirmation rate, γ—removal
rate, C—Confirmed and isolated, N—Population)

In the current pandemic, many researchers are adopting
the SEIR model to determine the transmission dynamics
of COVID-19. Accordingly using the SEIR model, in [32],
the authors described transmission dynamics by quantify-
ing the school closure potential effect on the disease and
mainly investigated child-to-child infection transmission. In
their other work [33], they predicted the pattern of local
transmission dynamics based on changes in individuals’
behavior in Korea, and they found a per-capita infection
transmission rate that was 8.9 times higher in the local area
(Daegu/Gyeongbuk) than nationwide (average). Likewise,
the authors of [7,27–31,35,77–79] proposed and formulated
the model with a set of ODEs considering different transmis-
sion pathways and symptoms. They identified transmission
dynamics of the virus and suggested different control mea-
sures. Earlier, in [80], the authors formulated a SEIRSmodel
for avian influenza that includes bird human interaction by
investigating the essential transmission dynamics of the dis-
ease based on equilibrium analysis.
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Fig. 5 Flowchart representation of the M-SDI model; [multiple (M)-
information-susceptible (S)-discussing (D)-immune (I)]

3.3 Model 3: Multiple-Information
Susceptible-Discussing-Immune (M-SDI)

The M-SDI (multiple-information susceptible-discussing-
immune) dynamic model proposed in [35] was used to
understand the types of significant information propagation
on social media based on the amount of public discussion and
the frequent behavior change (searches/comments) of users.
A sample flowchart of thismodel is presented in Fig. 5. These
authors estimated reproduction ratio decreases from 1.7769
to approximately 0.97, which means that the public discus-
sion peak has passed, but it will still progress for a period of
time. The model is illustrated mathematically as follows:

d

dt
(S) = −βSD + (1 − p − q) βSD + θαD

d

dt
(D) = pβSD − αD

d

dt
(I ) = qβSD + (1 − θ)αD (3)

To explore some of the characteristics of the qualitative
nature of the prediction in the M-SDI model, authors have
used the LS method for estimating parameters and primary
susceptible population. Accordingly they estimated parame-
ters in their model with data of at least 3–4 days’ to predict
public discussion trends at different phases.

3.4 Model 4: Susceptible-Unquarantined
Infected-Quarantine Infected-Confirmed
Infected (SUQC)

SUQC (‘susceptible-unquarantined infected-quarantine
infected-confirmed infected’) is a compartmental model
where S, U, Q and C represent the susceptible (S is similar as
in the existing infectious virus transmission models SIR and
SEIR), un-quarantined infected (infected and un-quarantined

Fig. 6 Flowchart prepresentation of the SUQC model; [susceptible
(S)-unquarantined (U)-infected quarantine (Q)-infected-confirmed (C)-
infected]

cases different from E in the existing SEIR model), quar-
antine infected (quarantine infected cases) and confirmed
infected population. A flowchart of this model is presented in
Fig. 6. Essentially, in [34], the authors developed the SUQC
model to describe the transmission dynamics of the novel
SARS-CoV-2 and especially the interference effects of the
control measures by analyzing the disease outbreak. The
method is formulated with a set of ODEs as follows:

d

dt
(S) = −α

S

N
U

d

dt
(U ) = α

S

N
U −U (γ + (1 − γ )δ)

d

dt
(Q) = γU − βQ

d

dt
(C) = βQ + (1 − γ )δU (4)

(Parameters:α—Infection rate, γ—Quarantine rate, andβ—
Total confirmation rate.)

This model is adapted to the data of daily released con-
firmed cases to analyze the outbreaks of the diseases inHubei,
Wuhan, and four other first-tier cities in China. Authors
have demonstrated authentic predictions of the transmission
trends considering multiple characteristics, which include
high infectivity, time delay and intervention effects. How-
ever, SUQC can quantify ariables and parameters regarding
the intervention effects of the outbreaks. According to the
simulation results the method further provides guidance in
controlling disease spread.

3.5 Model 5: Bats-Hosts-Reservoir-People (BHRP)

BHRP (Bats-Hosts-Reservoir-People) is a network model
for simulating the transmission of the virus, where B, H, R
and P represent the bats (probable infection source), hosts
(unknown but probably wild animals), reservoir (seafood
market) and people (exposed population) developed in [36].
A flowchart of this model is presented in Fig. 7. In this
method, the authors ignored the Bats-Host transmission net-
work and presented the BHRP model in a simplified RP
(Reservoir-People) model. They divided people into five
different compartments: susceptible, exposed, symptomatic
infected, asymptomatic infected and removed. The simpli-
fied model is illustrated mathematically as follows:
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Fig. 7 Flowchart representation of the BHRP model; [Bats (B)-Hosts
(H)-Reservoir (R)-People (P); Susceptible (S)-Exposed (E)-Infectious
(I)-Removed (R)]

d

dt
(Sp) = μp − (Ip + σ Ap)ypSp − βpSpX

d

dt
(Sp) = (Ip + σ Ap)βpSp + βx SpX − (1 − Sp)ωpEp

− Spω
′
pEp − ypEp

d

dt
(Ip) = (1 − δp)ωpEp − (γp + yp)Ip

d

dt
(Ap) = Spω

′
pEp − (γ

′
p + yp)Rp

d

dt
(Rp) = γp Ip − γ

′
p Ap − yp Rp

d

dt
(X) = ρp Ip + ρ

′
p Ap − εX (5)

(yp—death rate (people), σ—multiple of transmissibility
(Ap to Ip), δp—infection rate (asymptomatic people), βp—
transmission rate (Ip to Sp))

They estimated the basic reproduction number according
to their numerical illustration by assessing the transmissibil-
ity of the virus based on a simplified RP model, and they
found values of 2.30 (reservoir-person) and 3.58 (person-
person). The results showed that the transmissibility of
SARS-CoV-2 is higher than that of the MERS in the Middle
East and is similar to that of serious respiratory syndrome.
They also found that the transmissibility is smaller than that
of MERS in Korea.

3.6 Model 6: Susceptible-Exposed-Symptomatic
infectious-Hospitalized-Removed (SEIHR)

SEIHR (Susceptible-Exposed-Symptomatic infectious-
Hospitalized-Removed) is a virus transmission determinis-
tic model where S, E, I, H and R represent the susceptible,

Fig. 8 Flowchart representation of the SEIHRmodel; [Susceptible (S)-
Exposed (E)-Symptomatic infectious (I)-Hospitalized (H)-Removed
(R)]

exposed, symptomatic infectious, hospitalized and removed
(recovered or death) populations. A flowchart of this model
is presented in Fig. 8. With this model, in [37], the authors
estimated the size of the outbreak and the reproduction num-
ber and found that, if the rate of transmission decreases, the
outbreak of the disease ends early and the virus infection
cases also decrease. The mathematical implementation of
the model is illustrated with a system of nonlinear ODEs as
follows:

d

dt
(S) = −β

SI

N
d

dt
(E) = β

SI

N
− σ E

d

dt
(I ) = σ E − α I

d

dt
(H) = α I − γ H

d

dt
(R) = γ H (6)

(β—Transmission rate, σ—Progression rate, α—Isolation
rate, γ—Removal rate).

In the study the authors did not consider natural deaths and
births, infections during latency, asymptomatic infections,
or re-infected cases. However, according to their simulation
results, they suggested different social awareness activities
such as wearing masks and social distancing, to reduce the
fast transmission of the virus.

3.7 Model 7:
Susceptible-Exposed-Infectious-Hospitalized-
Recovered-Dead (Theta-SEIHRD)

An extended compartmental model Theta-SEIHRD
(Susceptible-Exposed-Infectious-Hospitalized-Recovered-
Dead) where S, E, I, H, R and D represent the suscepti-
ble, exposed (incubation period), infectious (undetected but
still can infect others), hospitalized (recovered or dead),
recovered (previously detected and previously undetected but
infectious) and dead populations, was developed in [38]. A
flowchart of this model is presented in Fig. 9. The model
is illustrated mathematically as follows (presented concisely
here for simplicity):
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Fig. 9 Flowchart representation of the Theta-SEIHRD model; [Sus-
ceptible (S)-Exposed (E)-Symptomatic infectious (I)-Hospitalized (H)-
Removed (R)-Dead (D)]

d

dt
(S) = − S

N
(mεβεE + miβi I + miuβiuθ Iu)

− S

N
(mhrβhr Hr + mhdβhd)

d

dt
(E) = S

N
(mεβεE + miβi I + miuβiuθ Iu)

+ (mhrβhr Hr + mhdβhd) − γeE

d

dt
(I ) = γ E − γ I

d

dt
(H) = γ I − γ H

d

dt
(R) = γ H(infection detected & infection undetected)

d

dt
(D) = γ H(Dead Compartment) (7)

(Parameters: γ—Transition rate for different compartment,
β—disease contact rate for different compartment θ—
fraction of infected people).

This model investigates the transmission dynamics of the
disease considering the known major characteristics of the
disease as the presence of infectious undiscovered as well
as detected cases and the distinct sanitary and infectiousness
conditions of hospitalized individuals. This model is able to
estimate the required number of beds needed in hospitals,
and it can calculate the basic reproduction number.

3.8 Model 8: Susceptible class-Exposed
class-Symptomatic and Infectious class-Super
spreaders class-Infectious but Asymptomatic
class-Hospitalized class-Recovery class-Fatality
class(SEIPAHRF)

A compartmental model SEIPAHRF (susceptible class-
exposed class- symptomatic and infectious class-super
spreaders class-infectious but asymptomatic class-
hospitalized class-recovery class-fatality class) divided into

Fig. 10 Flowchart of the SEIPAHRF model; [susceptible(S)-
exposed(E)-symptomatic and infectious(I)-super spreaders(P)-
infectious but asymptomatic(A)-hospitalized(H)-recovery(R)-fatality
(F)]

eight epidemiological compartment where S, E, I, P, H,
R and F represent the susceptible individuals, exposed,
symptomatic and infectious, super-spreaders, infectious but
asymptomatic, hospitalized, recovered and dead populations,
was developed in [23]. A flowchart of this model is presented
in Fig. 10. The model is illustrated mathematically with a
system of nonlinear ODEs as follows:

d

dt
(S) = −β

SI

N
− mβ

SH

N
− β

′
P
S

N
d

dt
(E) = β

SI

N
+ mβ

SH

N
+ β

′
P
S

N
− σ E

d

dt
(I ) = σρ1E − (γa + γb)I − δb I

d

dt
(P) = σρ2E − (γa + γb)P − δp P

d

dt
(A) = σ(1 − ρ1 − ρ2)E

d

dt
(H) = γa(I + P) − γcH − δh H

d

dt
(R) = γb(I + P) + γcH

d

dt
(F) = δb I + δp P + δh H (8)

(β—transmission coefficient (infected individuals), β ′—
transmission coefficient (super-spreaders), m—Relative
transmissibility (hospitalized patients), σ—infectious rate
(from exposed people), ρ1—Rate (exposed individual
become infected I ) ρ2—Rate (exposed individual become
super-spreaders), γa—Rate (hospitalized), γb—Recovery
rate (without hospitalized), γc—Recovery rate (hospitalized
patients), δb—Death rate (infected class), δp—Death rate
(super-spreaders class), δh—Death rate (hospitalized class))

In [23], the authors (F Ndairou and colleagues) studied
the stability of the free equilibrium of the basic reproduction
number and investigated the sensitivity by considering the
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variation in its parameters. They analyzed and simulated the
current outbreak considering some important aspects of virus
transmission and gave an acceptable approximation based
on the data in Wuhan, China. They also fitted the model
with daily confirmed cases. According to their findings, the
numerical results reflect the real scenario of the Wuhan out-
break.

3.9 Model 9: Offspring Distribution

To quantify the individual human-to-human variation of
COVID-19 transmission and observe the outbreak sizes in
affected countries, in [40], the authors proposed an interest-
ing mathematical model applying a branching process model
where the number of secondary transmissions was assumed
to follow a negative binomial distribution.

By assuming that the secondary transmissions (offspring
distributions) of COVID-19 cases were independently and
identically distributed in a negative binomial distributions.
The authors calculated likelihood following a previous study
[81]. They computed the probability mass function for a final
cluster size resulting from s initial cases following the for-
mula below:

c(x; s) = P(X = x; s)

= ks

kx + x − s

(
kx + x − s

x − s

)
( R0
k )x−s

(1 + R0
k )kx+x−s

(9)

Adjusting the future growing issue for cluster size, the
research team introduced a corresponding likelihood func-
tions presented below:

c0(x; s) = P(X ≥ x; s) = 1 −
x−1∑
m=0

c(m; s) (10)

To compute the total likelihood, the research group applied
a final likelihood cluster size of certain countries with other
ongoing outbreak countries following the formula below:

L(R0, K ) =
∏
iεA

P(X = xi ; si )
∏
iεB

P(X ≥ xi ; si ) (11)

For statistical analysis, they used a Markov chain Monte
Carlo (MCMC) method with 95% credible intervals (CrIs).
To determine the best method, they compared negative-
binomial branching process model with a Poisson branching
process model. However, they used simulations to investi-
gate potential bias caused by under-reporting ( failure to fully
report), one of the major limitations of their study.

4 The State-of-the-Art Application of
Mathematical Modeling: A COVID-19 Case
Study

4.1 Model 1: Susceptible-Infectious-Removed (SIR)

To estimate the epidemic size, predict disease transmission
trends and forecast the advancement of the disease, the basic
SIR model (Fig. 3) was applied to the present COVID-19
pandemic to understand the effect of interventions such as
quarantine, social distancing on disease spread and to con-
trol and mitigate virus outbreaks. We found three different
studies [24,25,38] based on the basic SIR mathematical
model. In [38], the authors used an SIR model to predict
disease (COVID-19) trends and the extent to which quar-
antine decreased infection. In [24], the authors proposed
a simplified SIR mathematical model to predict the peak
of disease infection. In [25], an age-structured SIR mathe-
matical model considering social connection matrices based
on surveys and Bayesian imputation is presented to deter-
mine the momentum of the SARS-CoV-2 pandemic in India.
According to the simulation results these studies accentu-
ated the importance of the strategy of social distancing,
improvement of the healthcare system, age-structuring and
other intervention measures for controlling and mitigating
COVID-19 outbreaks. To prevent the rise of disease infection
they evaluated different policies in the well-defined contexts
of COVID-19. In the presented models some of the parame-
ters and variables were estimated, and some were composed
from other published articles. To formulate the models and
numerical illustrations they used a set of nonlinear ordinary
differential equations (ODEs) (formore details seeOverview
section). In mathematical simulation reasonable data avail-
ability for better estimation andpredictionwas a challenge. In
most cases, they used short and limited epidemiological data,
and in some cases, unreasonable released data. As their main
objectiveswere to identify the impacts of lockdowns/ quaran-
tines, infection rates and social distancing through parameter
estimation, these models were suggested for disease mitiga-
tion policies according to their numerical illustrations.

4.2 Model 2:
Susceptible-Exposed-Infectious-Removed (SEIR)

The SEIR is a simple compartmental model and different
from SIR; in the SEIR model (Fig. 4) the exposed com-
partment and a parameter (the movement from the exposed
compartment to the infected compartment) are added to
describe the transmission dynamics of exposed individu-
als. This framework significantly simplifies themathematical
modeling of the present novel SARS-CoV-2 pandemic.
Recently, several studies have focused onmathematicalmod-
eling and have adopted the SEIR model with a mathematical
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implementation (for more details see Overview section) to
estimate transmission and to predict the trends of COVID-
19 outbreaks. In their studies, they considered multiple
transmission pathway mechanisms, including environment-
to-human and human-to-human routes, in the infection
dynamics, emphasizing the role of the environmental source
in transmission and growth. These studies applied nonlinear
ODEs and MCMC methods to calculate the basic reproduc-
tion number. This parameter thus provides valuable data on
of the current COVID-19 outbreaks.

4.3 Model 3: Multiple-Information
Susceptible-Discussing-Immune (M-SDI)

The M-SDI (Fig. 5) was developed to understand the types
of significant information propagation on social media based
on the amount of public discussion and considering the fre-
quent behavior change (searches/comments) of users. In this
work, they focused on the characteristic of users who choose
to re-enter related information after they finish a discussion
about certain topics. Based on analysis of a model sim-
ulation of the multiple-information generation mechanism
regarding COVID-19, this model can distinctly predict the
evolution of public opinion. They estimated that the repro-
duction ratio decreases from 1.7769 to approximately 0.97,
which means that the public discussion peak was passed, but
it will still progress for a period of time. To explore the quali-
tative nature of prediction in theM-SDImodel (Figure 5), the
authors used theLSmethod for estimating parameters and the
primary susceptible population. Accordingly, they also esti-
mated parameters in theirmodelwith the data of at least 3 to 4
days to predict public discussion trends at earlier phases. The
M-SDImodel can predict multiple-information development
trend during a large-scale community health emergency. The
authors used limited data for the estimation of parameters
from the most popular Chinese Sina-microblog.

4.4 Model 4: Susceptible-Unquarantined
Infected-Quarantine Infected-Confirmed
Infected (SUQC)

The SUQC model (Fig. 6) was developed to characterize
the transmission dynamics of the novel SARS-CoV-2 and
especially parameterize the effects of interventions mea-
sures. SUQC is not the same as SEIR, as infected people are
classified into confirmed, quarantined and un-quarantined in
SUQC. Moreover, in this case, un-quarantined people are
able to infect susceptible people only, but in SEIR, infected
individuals are infectious. Additionally, the quarantine rate
in SUQC is used especially to model the influence of quar-
antine and other control measures. According to the author’s
explanation, the model is more effective than other avail-
able epidemic models for analyzing the dynamics of the

disease. This model was fitted with daily released confirmed
cases data to analyze the outbreaks patterns of the diseases
in Hubei, Wuhan, and four other first-tier cities in China.
This model employs deterministic ODEs and it was needed
to interpret certain uncertainties in this case. The authors
demonstrated an authentic prediction of transmission trends
considering multiple characteristics including high infectiv-
ity, time delay and interventions effects. However, SUQCcan
quantify variables and parameters regarding the intervention
effects of the outbreaks. According to the simulation results,
they found a reproduction of number greater than 1 before
Jan 30, 2020, in Hubei, Wuhan, and other first-tier cities in
China except Beijing, and after Jan 30, 2020, they found a
reproduction of number less than 1, in all regions, indicating
the effectiveness of the control measures. Subsequently the
method further provides guidance controlling disease spread.

4.5 Model 5: Bats-Hosts-Reservoir-People (BHRP)

The Reservoir-People (RP) transmission model (Fig. 7) was
developed in [36], considering the routes from reservoir
(market) to person and from person to person for severe
acute respiratory syndrome SARS-CoV-2. Published data
of Wuhan City, China, were used to fit the model. The
simulation results found basic reproduction numbers for
SARS-CoV-2 of 3.58 from person to person and of 2.30
from reservoir to person. This model might predict inter-
esting transmission chains applying limited data involving a
number of important parameters. However, these predictions
might not reflect the actual situation of the early stage virus
transmission because some parameters were not taken from
the accurate database or were applied through assumption.

Overall, the objective of this studywas to provide an effec-
tive mathematical model to estimate virus transmission as
accurately as possible with limited data using more parame-
ters.

4.6 Model 6: Susceptible-Exposed-Symptomatic
infectious-Hospitalized-Removed (SEIHR)

The SEIHR (Fig. 8) is a deterministic ODEmodel developed
in [37] and was used to estimate the size of the outbreak and
the reproduction number. They also evaluated the effects of
different preventive measures. They used the daily data of
confirmed cases in Daegu and North Gyeongsang (NGP),
the main outbreak regions in Korea. According to the mathe-
matical illustrations they found that if the rate of transmission
decreases, the outbreak of the disease ends early; virus infec-
tion cases also decrease. They also suggested different social
awareness activities such aswearingmasks, social distancing
and other intervention measures to reduce the fast transmis-
sion of the virus. They did not consider natural deaths and
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births, infections during latency and asymptomatic infec-
tions, or re-infected cases.

4.7 Model 7: Susceptible-Exposed-Infectious-
Hospitalized-Recovered-Dead
(Theta-SEIHRD)

In [38], the authors proposed an extended compartmental
model Theta-SEIHRD (Fig. 9) to investigate transmission
dynamics of COVID-19 considering the known major char-
acteristics of the virus. They studied the specific case of
China including Hong-Kong, Macao, Taiwan and Mainland
China and considered reported data that fit the parameters
of the model that can be also useful to estimate the spread
of COVID-19 in other countries. The presented model was
adapted to the disease and is capable of estimating the pro-
gression of undetected and detected cases, deaths and the
required number of beds needed in hospitals where the health
problem is severe due to the outbreaks in territories, consider-
ing several different scenarios. In addition they calculated the
basic reproduction number of COVID-19, whichwas 4.2250,
but it fell to less than 1 after Feb 1, 2020, due to control mea-
sures. They also included in their model a new approach
taking into account ‘Theta’, the fraction of total detected
cases (infected), to study the importance of this fraction on
the influence of COVID-19.

4.8 Model 8: Susceptible Class-Exposed
Class-Symptomatic and Infectious Class-Super
Spreaders Class-Infectious but Asymptomatic
Class-Hospitalized Class-Recovery Class-Fatality
Class (SEIPAHRF)

The SEIPAHRF model (Fig. 10), developed in [23], gives a
feasible approximation based on data in Wuhan, China, by
studying some important aspects of COVID-19 transmission.
They divided their model into eight important epidemiolog-
ical compartments and illustrated the model mathematically
with nonlinear ODEs. They investigated the sensitivity by
considering the variations in its parameters. They also fitted
the model with real data of daily confirmed cases and found
the actual scenarios of theWuhanoutbreak. Interestingly they
considered many parameters to quantify transmissibility and
computed the basic reproduction number, a measure of virus
spread based on Jacobianmatrices. Limited data accessibility
was one of the major limitations of this study.

4.9 Model 9: Offspring Distribution

To estimate the level of over-dispersion in COVID-19 trans-
mission and characterize the sustained transmission chains of
human-to-human transmission, this model was introduced.
Although only one research publication [40] was found,

the mathematical implementation (see Overview section for
more details) and statistical analysis of Offspring distribution
looks powerful and should have the computational abil-
ity needed for a better estimation of moderate uncertainty
levels with limited data resources. This was proven by a
widely applicable Bayesian information criterion (WBIC).
This model produced more accurate estimations than the
Poisson branching process model. However, this model
can only provide information about the lower boundary of
the basic reproduction number RO(95% CrIs: R0 1.4–12)
because of themarginal negative binomial distribution.Over-
all, the majority of model consistency and certainty relies
on available homogeneous real data resources and imputed
parameters by avoiding stochastic simulation.

5 Observable Behavior of the Different
Models

Next, we address some key observable behaviors of differ-
ent models within the context of COVID-19 mathematical
modeling, data sources, applied methods, used parameters
and result prediction. The base principle of this subsection
is to give the overall effectiveness of the specific model in
the context of the COVID-19 pandemic. We also describe
these behaviors in Table 2. In addition, Table 3 highlights the
important comparisons between the models.

5.1 Model 1: Susceptible-Infectious-Removed (SIR)

• SIR is the basic compartmental model used to assess the
pandemic size, and transmission peak and to predict the
trends of the current COVID-19.

• Identified effectiveness of lockdowns/quarantines and
different social distancing measures through parameter
estimation.

• This model can be used for disease mitigation policies
according to numerical illustrations in the context of
COVID-19.

5.2 Model 2:
Susceptible-Exposed-Infectious-Removed (SEIR)

• The SEIRmodel is also applicable to assess the transmis-
sion dynamics of contagious disease such as COVID-19.

• In SEIR the exposed compartment as well as an addition-
ally adopted parameter (the movement from the exposed
compartment to the infected compartment) were used to
describe the transmission dynamics of exposed individ-
uals in the context of COVID-19.
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Table 2 Mathematical models and their details

Basic model Reference Main findings Strengths Limitations

SIR Vega 2020 Provides an overview to enhance
awareness of COVID-19 disease
trends

Investigated the
effectiveness of social
distancing considering
both social contact and
age structuring

Emphasizes quarantines
only

Effect of the quarantine in
decreasing infection

Proposed extended lockdown

Zhong et al. 2020 Healthcaresystem could
significantly shorten the outbreak
period

Good ability to predict
by historical datasuch
as of the SARS 2003

Usedshort period data
(two weeks)

It could reduce one-half of the
disease transmission.

It can also give a
goodprediction of the
limited COVID-19
data

Singh & Adhikari 2020 Accentuates the importance of both
social contact and age structures

Estimates the contact
structures

Insufficient data used in
the asymptomatic case

Social distancing is effective for
controlling andmitigating the
virus

Large-scale
socialdistancing is
effective

Themodel is not
resolved spatially

SEIR Kim et al. 2020a Quantifying the school closure
potential effect on the disease

Found schoolopening
delay is effective

They did not
considercross-
population infection
rise

Considered isolation and
behavior-changed
susceptibleindividuals

The rate of child-to-
childtransmission
decreases

Lin et al. 2020 Captured thecourse of COVID-19
outbreaks

Considered: government
actions

Considers small number
ofconfirmed
asymptotically
infected transmission
cases

Computed the reportedratio and
future trends

Individual behavioral
responses

The method is applicable toother
cities or other countries

Emigration oflarge
portion of the people

Zoonotictransmission

Chang et al. 2020 Estimatedepidemic peak: In
Wuhan and Hubei Province in
the end of February2020

To estimate the
epidemic trend,
theyapplied
phase-adjusted and
region-adjusted
mathematical model

Assumed diseases
transmission
evenlyacross
homogeneous
population

Other regions in China on
February 13, 2020

Total cases might
beunderestimated as
the existence of
asymptomatic and
super-
spreadersinfectors

Outbreaks would decrease in
March and April inChina

Data lag might exist

5.3 Model 3: Multiple-Information
Susceptible-Discussing-Immune (M-SDI)

• This approach is different from the studied models in this
research as the model is developed based on information
propagation on social media especially on the topic of
public discussions in the context of COVID-19.

• In this study, the authors focused on the characteris-
tics of users choosing to discuss certain topics related
to COVID-19.

• To predict public discussion trends they approximated
parameters using the LSmethod and estimated the public
discussion peak by calculating the reproduction ratio.
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Table 2 continued

Basic model Reference Main findings Strengths Limitations

Kim et al. 2020b Investigatedpattern of local
transmission dynamics

Predicted the time of
end of the corona
outbreaks

Mortality rate was not
included

Found aper-capita infection
transmissions rate 8.9 times
higher in thelocal area
(Daegu/Gyeongbuk) than
nationwide (average).

Modnak & Wang 2019 The effects of infection latency and
humanvaccination

Virus can spread from
birdsto humans

Considerbi-linear
incidence

Human hosts

Tang et al. 2020a Reproduction ratequantification for
the evolution of interventions

Time-dependent contact
and diagnose rates

Highlysensitive &
depend upon available
period data

Prem et al. 2020 Physical distancing canreduce and
delay the peak of the disease

Changes intransmission
patterns decreased the
number of cases in
Wuhan

Individuals’ level
heterogeneity is
notcaptured in
contacts

Climatic factor is not
included

Large uncertainties over
the estimation of
reproductionand
infectiousness
duration

Mandal et al. 2020 Found abasic reproduction rate of
1.5 the best case, and it reduces
62%cumulative incidence

Described
rationalinterference to
control the outbreaks

Used dataonly of airport
entry individuals from
China

In worst case, basic
reproductionrate is 4

Found potentialimpact
of port entry screening

Ignoredtravelers from
other countries

A mitigation strategy
ofsymptomatic cases

It may affectinfection
duration; period of
incubation and
fatalityrate

Kucharski et al. 2020 Estimated day-to-day reproduction
number

Dynamics of
transmission in
Wuhan& risk of
infections

Simple model

Reproductionnumber declined
from 2· 35 (95% CI 1 ·15-4· 77)
to 1· 05(0·41-2·39) within one
week

Transmission more
homogeneous

Found SARS-likevariations

Tang et al. 2020b Calculatedthe effective daily ratio
of reproduction

Used current revised
data and information
to estimatesoutbreaks
trend

Needed to update
parameters

Re-estimated disease transmission
risk

Evaluated theoutbreaks trend

Estimated disease peak phase
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Table 2 continued

Basic model Reference Main findings Strengths Limitations

Yang and Wang 2020 Foundinfection transmission
remain endemic

The reproduction rate
was 4.25

Ecological, pathological
andepidemiological
aspects not clearly
considered

Long-term diseaseprevention and
intervention programs are needed

Predicted the epidemic
peak of the
virusinfection

M-SDI Yin et al. 2020 Reproductionratio decreased from
1.7769 to approximately 0.97

Predictedthe
multiple-information
propagation trend

Used limiteddata for the
estimation of
parametersPublic discussion peak was passed

SUQC Zhao & Chen 2020 Predictedtrends of transmission
dynamics

Quantifying variables
and parameters

Did not consider
demographicfactors
such as deathEffects of quarantineor

confirmation procedures on the
disease

Able to provide
guidance for other
countries to controlthe
outbreaks

BHRP Chen et al. 2020 Reproduction estimated
fromreservoir to person and it is
lower than from person to person

Used many parameters
to quantify
transmissibility

Used limited data

Parameterassumptions

Does not reflect the
realresults

SEIHR Choi & Ki et al. 2020

Estimated the size of theoutbreak
and the reproduction number

Evaluated theeffects of
different preventive
measures

Did not consider natural
deaths and births

Latency
andasymptomatic
infections, and
re-infected cases were
notconsidered

SEIHRD Ivorra et al. 2020 Calculatedbasic reproduction
number

Estimated basic
reproduction rate and
percentage
ofundetected cases

Spatial
distributionwithin the
territory is omitted

The effective
reproductiondecreases due to the
different control measures taken

Between-
countrytransmission
was not considered

Officially releaseddata
was not of high quality
due to
severaluncertainties.

SEIPAHRF Ndairou et al. 2020 Investigated thesensitivity by
considering the variations of its
parameters

Considered many
parameters to quantify
transmissibilityand
computed the basic
reproduction number

Limited datawere
studied

Offspring distributions Endo et al. 2020 Better estimation of moderate
uncertaintylevels with limited
data resources

Moderate uncertainty
levels

Highly over dispersed
due toa very small
fraction of individuals

Provided a lowerboundary of the
basic reproduction number
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5.4 Model 4: Susceptible-Unquarantined
Infected-Quarantine Infected-Confirmed
Infected (SUQC)

• Thismodelwas developed in [34] to describe theCOVID-
19 transmission dynamics.

• The interference effects of control measures are espe-
cially parameterized by analyzing the disease outbreak.

• This model was adapted to daily released confirmed case
data to analyze the outbreaks in Hubei, Wuhan, and four
other first-tier cities in China.

• They considered multiple characteristics to predict the
transmission trends.

5.5 Model 5: Bats-Hosts-Reservoir-People (BHRP)

• The BHRP model might be an advanced version of both
the SIR and SEIR models.

• The BHRP mathematical computational part involves
many differential equations.

• The most challenging part is the estimation of many
parameters.

• More data are needed to better understand the transmis-
sion dynamics in the context of COVID-19.

5.6 Model 6: Susceptible-Exposed-Symptomatic
Infectious-Hospitalized-Removed (SEIHR)

• The SEIHR model estimates the size of the outbreak and
the reproduction number, and they evaluate the effects of
different preventive measures.

• Results demonstrated that wearing masks, maintain-
ing social distance and other intervention measures can
reduce the fast transmission of the COVID-19 virus.

• In this study, they did not consider natural deaths and
births, infections during latency and asymptomatic infec-
tions, and re-infected cases.

5.7 Model 7: Susceptible-Exposed-Infectious-
Hospitalized-Recovered-Dead
(Theta-SEIHRD)

• Theta-SEIHRD was developed to assess the dynamics of
COVID-19 by considering its major known characteris-
tics.
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• In this method, the authors added ‘Theta’, the fraction of
total detected cases (infected) to study the importance of
this fraction on the influence of COVID-19.

• They fitted and estimated many parameters with reported
data in the model which could be useful to estimate the
spread of COVID-19 in some other countries.

• The reported data that used was homogeneously dis-
tributed and weak in quality (uncertainty in both unde-
tected infections and a number of characteristics of the
virus).

5.8 Model 8: Susceptible Class-Exposed
Class-Symptomatic and Infectious Class-Super
Spreaders Class-Infectious but Asymptomatic
Class-Hospitalized Class-Recovery Class-Fatality
class (SEIPAHRF)

• The SEIPAHRFmodel gives a feasible approximation by
studying different important aspects of COVID-19 trans-
mission.

• Themodel was illustratedmathematically with nonlinear
ODEs, and sensitivity was investigated by considering
the variations of its parameters.

• They also fitted the model with real, daily confirmed case
data and considered many parameters to quantify trans-
missibility.

• According to the theoretical findings and numerical illus-
trations, themodelwaswell adapted to the actual data and
it reflected the real scenarios in Wuhan, China.

Model 9: Offspring Distribution

• Offspring Distribution performs better for uniform and
homogeneous data.

• Computationally, this model is powerful.
• It might be challenging to include additional parameters
and distinguish stages that are quite easily applicable and
identifiable in other mentioned models mentioned above.

Most of these studies did not consider natural deaths and
births although demographic factors (birth, death, emigration
and immigration) need to be added to the compartmental
models for more realistic outcomes. Moreover, for the M-
SDI model, the authors used public opinion data, which
is different from other models. The Theta-SEIHRD model
used ‘Theta’ the fraction of total detected cases (infected)
to assess the significance of this fraction on the influence of

COVID-19. In the SUQC model, the authors parameterized
the interference effects of control measures by characterizing
multiple aspects to predict transmission trends. In addition,
the SEIHR model demonstrated that wearing masks, main-
taining social distances and other intervention measures can
reduce the fast transmission of the virus by calculating the
effects of different preventive measures. Furthermore, it was
found that the offspring distribution model performed well
with uniform and homogeneous data. The SEIPAHRFmodel
was fitted by considering many parameters to quantify trans-
missibility. Subsequently, more data are needed for a better
understanding of the transmission dynamics in the context of
COVID-19 in the BHRP model.

Accordingly, using more parameters and adding more
stages make a model more complex and computationally
challenging. Using original values and data collected from
the field work certainly moves a model toward an accurate
prediction of the near future. More complex models and
methods in the future might handle these upcoming chal-
lenges.

6 Other Relative Mathematical Models and
Studies

Our review was prepared by following the most commonly
used mathematical models based on original data collected
from reliable resources. However, there are a few other math-
ematical models available for data analysis of COVID-19
transmission dynamics analysis. Here, we present a short
overview of some recent work.

6.1 Fractional Order and Relative Studies

Very recently, a few other interesting mathematical mod-
els have been proposed such as fractional-order models
[82,83], which are used for simulation dynamics [83], qual-
itative analysis [53] and numerical analysis [82]. A new
Caputo-Fabrizio fractional order was also proposed for the
SEIASqEqHR model for COVID-19 transmission with a
genetic-algorithm-based control strategy [49]. Similar stud-
ies were done by a Nigerian research group [82] and a Saudi
Arabian group [83]. Computational and theoretical model-
ing of the transmission dynamics of COVID-19 was also
proposed under the Mittag-Leffler power law considering
a fractional-order epidemic model [50]. In another study, a
fractional order epidemic model with numerical simulation
was proposed for global stability analysis using theLyapunov
candidate function [48]. Another study introduced a Haar
wavelet collocation approach for a solution to the fractional-
order COVID-19 model using the Caputo derivative [52]. A
numeric simulation of fractional order was performed on the
basis of the Wuhan COVID-19 case study [54]. However,
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fractional-order model has also been applied using the real
cases reported in Saudi Arabia [55], USA [56], Pakistan [58]
and Nigeria [57].

6.2 Simulation-Based Studies

A simulation-based study proposed the dispersal effect [84]
to understand the dynamics of the disease by boundedness
and non-negativity of solutions. Another simulation-based
SQIR-type model under the nonlinear saturated incidence
rate was also proposed [39]. Another simulation-based study
was used for the age-structuredmodeling ofCOVID-19 in the
USA, UAE and Algeria [51]. Another study provided guide-
lines on how to run the analysis for COVID-19 with optimal
control, stability and simulations [85]. Another simulation-
based study presented a global stability analysis [86].

7 Challenges and Future Research Directions

Symptoms of COVID-19 can vary by area, age group and
even individual because of its mutations. Therefore, it will be
extremely challenging to predict future research directions.
Here,wepresent a list of challenges to be facedby the existing
models and possible ways mitigating them.

7.1 Data Size

COVID-19 data are increasing day-by-day and the data stor-
age system is becoming rich. This increases the possibility
of finding the most accurate model in the near future. In
addition, these data encourage researchers to consider even
more complex models by mining the available information.
However, it is extremely challenging to handle such a high
amount of data and to select the right model for accurate
future prediction regarding COVID-19 transmission. More
computational power (e.g., supercomputers) will be required
for analysis.

7.2 Parameter Estimation

How good a model is depends on the model parameters used.
Since a large dataset invites researchers to implement more
complexmodels, there is always an important issue regarding
parameter estimation. Complex models often use simulated
data for unknown parameter estimation and become less
accurate. In other words, it is always expected to use real
data for parameter estimation to predict the real virus trans-
mission rate. Less complex models should be chosen in the
case of limited data.

7.3 Survival & Lost Dynamics

Most COVID-19 studies compute transmission of COVID-
19 following only the nature of survival dynamics. However,
lost dynamics (where, when and how people die) might also
be valuable information for future prediction. Just computing
the results of COVID-19 death might not help us to under-
stand its true dynamics. Combination of survival and lost
dynamics might provide us a true picture of the reality.

7.4 Undetected Cases/Self-quarantine

Although the COVID-19 data storage/backup system is
becoming richer by the day, people worldwide, with or with-
out symptoms, are afraid of being tested for COVID-19 and
having to self-quarantine with [38,87]. The actual number of
people who need to quarantine might never be known unless
a safe and remote personal testing kit is developed and peo-
ple testing positive are encouraged people not to hide that
information from the proper authorities. For mathematical
modeling, a quarantine might be a challenging stage regard-
ing parameter estimation, which might impact in the final
transmission rate of COVID-19.

7.5 Reinfection

Scientists cannot guarantee that one person cannot catch
COVID-19 twice even though increased immunity was
observed in a patient after recovery. An online news por-
tal reported that a Chinese group found evidence of it being
caught twice in a monkey study. Thus, the possibility of rein-
fection might not be precluded. The model researchers might
not be able to separate the already infected from upcom-
ing analyses. Most recently, several types of vaccines (e.g.,
mRNA) have been introduced and priority has been given to
medical workers and the elderly. However, it has been heard
that very few people are getting infected after vaccination.
It is predicted that COVID-19 might continue flu like virus
and people might need to be vaccinated after a certain period
each year.

7.6 Mutations

Human civilization may face enormous challenge near new
future mutations, specifically in glycoproteins [88]. Sci-
entists have already spotted thousands of generic material
changes in the coronavirus and its mutations worldwide.
However, not all of themutations infect all parts of the world.
For country- or region-specific mathematical modeling, it is
also important to include the number of mutations of the
virus (if possible). This information can be investigated for
weather/area/temperature-based virus transmission. A new
strain called SARS-CoV-2 VUI 202012/01 or “B.1.1.7.” has
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caught attention which was first discovered in the southeast
UK in September 2020. It might be more contagious than
other available strains (approximately 70% faster than the
usual one) and is gradually spreading other countries. This
strain of virusmight infect any age people including children.

7.7 Multiple Model Implementation

Which model fits well depends on the available data and the
goal of the analysis. The researchers’ main goal is to imple-
ment a specific model or an improved version of the model to
investigate virus transmission. However, applying different
models (e.g., SIR and SEIR) in the same study might provide
the range and center of true expected virus transmissions. In
addition, limitations on parameters between different models
might be overcome or minimized.

7.8 UpcomingWaves

Human civilization has learned about COVID-19 and passed
the second attack (often called second wave) almost all
around the world [89]. Almost every countries have made
wearing a mask mandatory in all indoor public areas. Cur-
rently, 3rdwave is running following newvariants and people
might still be infected and the data will be stored. We are not
sure about how many waves will come in future. For mathe-
matical modeling, researchers should consider this issue and
add few new stage ( following the number of waves) of the
COVID-19 transmission with new parameters based on the
data information. This model might help us to predict the
timing and strength of upcoming waves.

Next, we identify some of the possible future directions
of mathematical modeling.

7.9 Decision Support System (DSS)

So far, no guaranteed antiviral treatment has been recom-
mended regarding COVID-19 [90]. The only way to fight
against this contagious disease is to emphasize preven-
tive healthcare systems and implement necessary rules and
regulations that depend on the spreading nature of virus trans-
mission. Here, a decision support system (DSS) [91] can play
a very important role by having priority guidelines (e.g.,
social distancing/lockdown) administered by national and
international authorities in an effective and efficient way. The
outcome of mathematical modeling can be plugged into this
DSS system. However, the necessary supporting information
can be collected from the corresponding authority.

7.10 Artificial Intelligence (AI)

Most AI implementations for COVID-19 analysis rely on
a convolutional neural network following X-ray and CT

images. However datasets are also available for aggre-
gated case reports, management strategies, the healthcare
workforce, the demography and the mobility during the out-
break. Interestingly, both mathematical modeling and AI
have shown their ability as reliable tools to fight against the
COVID-19 pandemic [92]. These tools altogether might lead
to the new insights on this pandemic. Very recently, a deep
learning algorithmwas introduced for themodeling and fore-
casting of COVID-19 in the five worst affected states of India
[93].

7.11 Other Implementable Mathematical Methods

The field of mathematics has been expanding over time
with new methods and implementations. Most COVID-19
studies have applied ordinary differential equations (ODEs)
by adding suitable parameters. However, partial differen-
tial equations (PDEs) can also be useful in similar studies
when other parameters do not change with respect to a spe-
cific parameter. To solve the equations (e.g., ODEs) with
higher numbers of unknown variables (known as parameters
in COVID-19 studies), Galois theory [94] can be used. How-
ever, to investigate the specific effects of similarities between
different areas or countries of COVID-19, Polya’s theorem
[95] can be applied. Fuzzy logic can also be used as it is able
to handle uncertainties by considering several membership
functions based on the transmission dynamics trends data of
COVID-19.

8 Discussion and Conclusion

To identify and investigate the spread of COVID-19 and to
save human civilization, mathematical modeling might play
an important role. In this review, we addressed a number
of mathematical models and how different methods can be
applied to understand the comprehensive behavior involved
in COVID-19 transmission dynamics. We also considered
several other key issues such as applied parameters, different
data sources and predicted results. Applying differentmodels
and methods under the same investigation might reflect the
model variability and provide a boundary signature about the
future situation.

Besides our findings, continuing research on COVID-
19 might not be able to save human civilization unless
proposed rules and regulations are strictly implemented con-
sidering the stage of the pandemic of that area/region. A
DSS might help the local authority by providing necessary
guidelines following themathematicalmodeling of transmis-
sion dynamics [91]. Everyone in the locality must follow the
directions as well as they can. However, some people are
already at a high risk due to job condition (e.g., nurses and
doctors), medical condition (e.g., heart disease, lung disease,
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diabetes, or cancer) and age [96] (e.g., high risk for persons
aged (65+)). Special monitoring systems and better facili-
ties are in demand to protect them. In the bigger context, the
world is united against COVID-19 to stop its transmission.

How useful a model/method is depends mostly on the
availability of a sufficient amount of real data and the usage
of specific parameters reflecting the real value. Importantly,
a more elaborate dataset (containing more information)
might provide valuable information for model prediction.
So far, a text-based spreadsheet and medical imaging data
[97] are available. Surprisingly, a COVID-19 mouse is also
already available for research [98]. New insights on COVID-
19 might be found through rodent behavioral experiment
[99–103], brain imaging [99–104], advanced computational
image analysis [100,103,105] and cellular level gene expres-
sion [106]. Such imaging and gene data can be helpful for
mathematical modeling and data analysis as to investigate
long-term future effects, to make predictions and prevent
COVID-19 transmission.

The number of daily new cases is gradually going
down, and a number of vaccines (e.g., Pfizer-BioNTech,
Astrazeneca, Moderna and J & J) are already administered.
People are more aware than they were in the first wave and
all around the world are receiving vaccines with the priority
being on the elderly and medical workers. However, several
new variants (e.g., the UK/Kent variant: B.1.1.7, the Indian
Variant (B.1.617.2), the South African variant (B.1.351) and
the Brazilian variant (P.1)) have emerged. The current chal-
lenges for these new variants are to determine how fast they
spread. Mathematical modeling can again be used to identify
the transmission behavior of these new variants.
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65. Rǎdulescu, A.; Williams, C.; Cavanagh, K.: Management strate-
gies in a SEIR-type model of COVID 19 community spread. Sci.
Rep. 10(1), 1–6 (2020)

66. Mouvoh, AC.; Bouchnita, A.; Jebrane, A.: A contact-structured
SEIR model to assess the impact of lockdown measures on the

spread of COVID-19 in Morocco’s population. In2020 IEEE 2nd
International Conference on Electronics, Control, Optimization
and Computer Science (ICECOCS) (pp. 1-4). IEEE. (2020)

67. Modi, K.; Umate, L.; Makade, K.; Dubey, R.S.; Agarwal, P.: Sim-
ulation based study for estimation of COVID-19 spread in India
using SEIR model. J. Interdiscip. Math. 26, 1–4 (2020)

68. Yousif, A.; Ali, A.: The impact of intervention strategies and
prevention measurements for controlling COVID-19 outbreak in
Saudi Arabia. Math. Biosci. Eng. MBE 17(6), 8123–8137 (2020)

69. Mahmoud, TM.; Abu-Tafesh,MS.; ElOcla, NM.;Mohamed, AS.:
Forecasting of COVID-19 in Egypt and Oman using Modified
SEIR and Logistic Growth Models. In2020 2nd Novel Intelligent
and Leading Emerging Sciences Conference (NILES) (pp. 606-
611). IEEE. (2020)

70. Youssef, H.M.; Alghamdi, N.A.; Ezzat, M.A.; El-Bary, A.A.;
Shawky, A.M.: A new dynamical modeling SEIR with global
analysis applied to the real data of spreading COVID-19 in Saudi
Arabia. Math. Biosci. Eng. 17(6), 7018–44 (2020)

71. Bherwani, H.; Gupta, A.; Anjum, S.; Anshul, A.; Kumar, R.:
Exploring dependence of COVID-19 on environmental factors
and spread prediction in India. Npj Clim. Atmos. Sci. 3(1), 1–3
(2020)

72. He, J.; Chen, G.; Jiang, Y.; Jin, R.; Shortridge, A.; Agusti, S.;
He, M.; Wu, J.; Duarte, C.M.; Christakos, G.: Comparative infec-
tion modeling and control of COVID-19 transmission patterns in
China, South Korea, Italy and Iran. Sci. Total Environ. 10(747),
141447 (2020)

73. Sun, D.; Duan, L.; Xiong, J.; Wang, D.: Modeling and forecasting
the spread tendency of the COVID-19 in China. Adv. Diff. Equ.
2020(1), 1–6 (2020)

74. Kumari, P.; Singh, H.P.; Singh, S.: SEIAQRDT model for the
spread of novel coronavirus (COVID-19): a case study in India.
Appl. Intell. 13, 1–20 (2020)

75. Mbogo, R.W.; Odhiambo, J.W.: COVID-19 outbreak, social dis-
tancing and mass testing in Kenya-insights from a mathematical
model. Afrika Matematika 5, 1–6 (2021)

76. Anderson, R.M.:Discussion: theKermack-McKendrick epidemic
threshold theorem. Bull. Math. Biol. 53(1–2), 1 (1991)

77. Aragón-Caqueo, D.; Fernández-Salinas, J.; Laroze, D.: Optimiza-
tion of group size in pool testing strategy for SARS-CoV-2: a
simple mathematical model. J. Med. Virol. (2020). https://doi.
org/10.1002/jmv.25929

78. Cakir, Z.; Savas, H.: A mathematical modelling approach in the
spread of the novel 2019 coronavirus SARS-CoV-2 (COVID-19)
pandemic. Electron. J. Gen. Med. 17(4), em205 (2020)

79. Maji, A.; Choudhari, T.; Sushma, M.: Implication of repatriating
migrant workers on COVID-19 spread and transportation require-
ments. Transp. Res. Interdiscip. Perspect. 7, 100187 (2020)

80. Modnak, C.; Wang, J.: An avian influenza model with latency and
vaccination. Dyn. Syst. 34(2), 195–217 (2019)

81. Blumberg, S.; Funk, S.; Pulliam, J.R.: Detecting differential trans-
missibilities that affect the size of self-limited outbreaks. PLoS
Pathog 10(10), e1004452 (2014)

82. Owoyemi, AE.; Sulaiman, IM.; Mamat, M.; Olowo, SE.; Ade-
biyi, OA.; Zakaria, ZA.: Analytic numeric solution of coronavirus
(COVID-19) pandemic model in fractional-order. CommunMath
Biol Neurosci. 2020:Article–ID (2020)

83. Bahloul, M.; Chahid, A.; Laleg-Kirati, TM.: Fractional-order
SEIQRDP model for simulating the dynamics of COVID-19 epi-
demic. arXiv preprint arXiv:200501820 (2020)

84. Kabir, M.H.; Gani, M.O.; Mandal, S.; Biswas, M.H.A.: Model-
ing the dispersal effect to reduce the infection of COVID-19 in
Bangladesh. Sens. Int. 1, 100043 (2020)
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