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APPLICATION OF MCMC TO CHANGE POINT DETECTION*
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Abstract. A nonstandard approach to change point estimation is presented in this paper.
Three models with random coefficients and Bayesian approach are used for modelling the
year average temperatures measured in Prague Klementinum. The posterior distribution of
the change point and other parameters are estimated from the random samples generated
by the combination of the Metropolis-Hastings algorithm and the Gibbs sampler.
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1. Introduction

Change point detection is a topic of interest of many applied and theoretical statis-

ticians since the seventies. This paper presents a less usual approach to the change

point estimation, i.e., we use Bayesian statistics and MCMC approach assuming

statistical models with random parameters for modelling the data. Construction

of the models is illustrated on the analysis of well known temperature series from

Klementinum. Markov chains are generated from the posterior distribution of these

parameters using MCMC and desired results are derived from the chains obtained.

MCMC simulation methods cover several powerful algorithms for generation of

Markov chains with desired stationary distribution. Metropolis-Hastings algorithm

and Gibbs sampler belong among the best known and most often used methods for

this purpose. Statistical background of these two methods is presented in the mono-

graph [14], while the monograph [6] emphasizes the practice and MCMC applications.

*The work is a part of the research project MSM 0021620839 financed by MŠMT. It
was partially supported by grant GAČR 201/06/0186 (for the first author) and grant
GAUK 135007-B (for the second author).
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Concerning the monographs and survey papers on the change point problem, we refer

to [1]–[5] among others.

2. Analyzed data

Klementinum is a historical building in the central part of Prague. Meteorological

station, where the temperature has been measured since 1775, is placed in one of its

towers. For our analysis we had available year averages of these measurements during

Astronomical tower of Klementinum (P. Příhoda, pen-and-ink drawing, 2008).

the period from 1775 till 1992. This sequence, consisting of N = 218 observations,

is analyzed with the goal to detect a possible change in the model, e.g. shift in the

mean etc. Members of the analyzed sequence, which are displayed in Fig. 1, will be

denoted by Z1, . . . , ZN in the sequel.
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Figure 1. Klementinum mean year temperatures.
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Klementinum data were analyzed by many authors. Relevant to our work are,

among others, the papers [9] and [10].

3. Models

Throughout the paper we consider three models with random parameters suitable

for description of our observations. Moreover, we assume for simplicity that there

is only one change in each of them. These models differ in the shape of expected

value of the sequence Z1, . . . , ZN . In the first model the mean is constant both

before and after the change point. In the second and third models the form is linear,

the difference being that the second model allows for a jump in the change point

while in the third model we consider a gradual change. Moreover, in all models we

assume that Z1, . . . , ZN are independent normally distributed random variables with

a constant variance σ2.

In our application to the Klementinum data the assumption about the normal

distribution of Zi’s is not violated, which, unfortunately, is not the case concerning

the independence of the observations. This dependence is mainly caused by the trend

which is inherited in the nature of the data, not so much by the dependence between

the consecutive years as can be seen when the data are detrended and only then the

autocorrelation function is calculated.

3.1. Model 1: Piecewise constant expected value

In this model we suppose that the expected value of Zi is constant, being the same

for the first r observations but different for the last N − r observations. Exact form

of the model is

(3.1) Zi ∼

{

N(µ1, σ
2), 1 6 i 6 r,

N(µ2, σ
2), r < i 6 N,

where r, µ1, µ2 and σ2 are unknown random parameters to be estimated. As said

above, Bayesian approach and MCMC are used to estimate them. Notice that the

parametrization γ = 1/σ2 simplifies the form of the results. Therefore, instead

of (3.1) we will use the notation Zi ∼ N(µi, 1/γ), i = 1, 2.

The first problem is to choose a prior distribution for the vector of unknown pa-

rameters. It is supposed that r, µ1, µ2 and γ are independent random variables.

To increase the chance of finding more change points and not to roam over a single

possibility, as often happens when random walk algorithm is used, we used for the pa-

rameter r a discrete uniform distribution on the set {1, . . . , 217}, denoted throughout

by R{1, . . . , 217}, and

L(µ1) ∼ N(ν1, ξ
2
1), L(µ2) ∼ N(ν2, ξ

2
2) and L(γ) ∼ Ga(1, 1).
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Concerning the parameters µ1 and µ2, in simulations we put ν1 = ν2 = 9.5 and ξ2
1 =

ξ2
2 = 1, i.e. we used the values corresponding to the data under the (null) hypothesis

of no change. As concerns the distribution of γ, it is usual to use gamma distribution,

for details see [13]. Then the density of the prior distribution is f(µ1, µ2, γ, r) ∝

exp
{

− 1
2 (µ1−ν1)

2/ξ2
1−

1
2 (µ2−ν2)

2/ξ2
2−γ

}

, where the notation f(x) ∝ g(x) expresses

the fact that there exists a constant K such that f(x) = Kg(x). Such choice of the

prior distribution is common for linear models with normal residuals and leads to

a “nice” form of the posterior distribution in this case. The meaning of the word

“nice” is explained in Section 4. The likelihood function of the sequence Z1, . . . , ZN

for given values of parameters is

f(z1, . . . , zN |µ1, µ2, γ, r) ∝ γN/2 exp

(

−
γ

2

[ r
∑

i=1

(zi − µ1)
2 +

N
∑

i=r+1

(zi − µ2)
2

])

,

and finally, the Bayes theorem provides us with the posterior distribution

fµ1,µ2,γ,r | z

∝ γN/2 exp

(

−
(µ1 − ν1)

2

2ξ2
1

−
(µ2 − ν2)

2

2ξ2
2

− γ −
γ

2

[ r
∑

i=1

(zi − µ1)
2 +

N
∑

i=r+1

(zi − µ2)
2

])

,

where z stands for z1, . . . , zN . Notice that we use this shorthand throughout the rest

of the paper.

3.2. Model 2: Two-phase linear model with a jump

The second model is a natural generalization of the first, i.e., linear trend of the

expected value is allowed in both parts of the sequence of observations, leading to

(3.2) Zi ∼

{

N(α1 + β1i, 1/γ), 1 6 i 6 r,

N(α2 + β2(i − r), 1/γ), r < i 6 N,

where α1, α2, β1, β2, γ and r are unknown random parameters to be estimated. We

fix the prior distribution analogously to the first model, i.e.

L(α1) ∼ N(ν1, ξ
2
1), L(α2) ∼ N(ν2, ξ

2
2), L(r) ∼ R{1, . . . , 217},

L(β1) ∼ N(η1, ζ
2
1 ), L(β2) ∼ N(η2, ζ

2
2 ), L(γ) ∼ Ga(1, 1).

Concerning the parameters α1, α2, β1 and β2, in simulations we put ν1 = ν2 = 9.5,

ξ2
1 = ξ2

2 = 1, η1 = η2 = 0 and ζ2
1 = ζ2

2 = 0.1, i.e. we used the values corresponding

to the data under the (null) hypothesis of no change.
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Analogously as in Model 1 we can derive the density of the posterior distribution,

which has the form

fα1,α2,β1,β2,γ,r | z

∝ γN/2 exp
(

−
[ (α1 − ν1)

2

2ξ2
1

+
(α2 − ν2)

2

2ξ2
2

+
(β1 − η1)

2

2ζ2
1

+
(β2 − η2)

2

2ζ2
2

+ γ
])

× exp

(

−
γ

2

[ r
∑

i=1

(zi − α1 − β1i)
2 +

N
∑

i=r+1

(zi − α2 − β2(i − r))2
])

.

3.3. Model 3: Two-phase linear model with a gradual change

The third model is similar to the second. We just replace the parameter α2 by

α1 + β1r. This constraint ensures that the assumed evolution of expected values is

“continuous” at the change point r. This model has the form

(3.3) Zi ∼

{

N(α1 + β1i, 1/γ), 1 6 i 6 r,

N(α1 + β1r + β2(i − r), 1/γ), r < i 6 N.

Very interesting parametric approach concerning the estimation of the change point

in this model is described in [8].

The prior distributions for the parameters α1, β1, β2, γ and r are the same as

in Model 2, parameter α2 has been “cancelled”. Analogously as in Model 1 we can

derive the density of the posterior distribution, which has the form

fα1,β1,β2,γ,r | z

∝ γN/2 exp
(

−
[(α1 − ν1)

2

2ξ2
1

+
(β1 − η1)

2

2ζ2
1

+
(β2 − η2)

2

2ζ2
2

+ γ
])

× exp

(

−
γ

2

[ r
∑

i=1

(zi − α1 − β1i)
2 +

N
∑

i=r+1

(zi − α1 − β1r − β2(i − r))2
])

.

4. MCMC simulations

In the previous sections we outlined three models, fixed the prior distribution for

their parameters and derived the density of the appropriate posterior distribution

for each of them. These posterior distributions are examined closely in this section.

The goal is to retrieve answers to the following questions:

• What is the shape of the marginal density of the change point r?

• Is it unimodal or multimodal?
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• Where are local maxima of this density located?

• What is the conditional distribution of other parameters when the change

point r is expected to fall between some prescribed values r1 and r2?

As mentioned above, MCMC simulation methods belong to possible approaches

enabling us to solve these tasks. They are based on generation of random samples

from a posterior distribution and estimation of desired probabilities and character-

istics from these samples.

Each of the following subsections is dedicated to one model. Readers will find

a description of the Gibbs sampler combined with Metropolis-Hastings algorithm,

which were used to generate the samples. Aside from that, we summarize forms of

necessary conditional distributions and acceptance probabilities as well.

4.1. Model with a piecewise constant expected value

The MCMC algorithm for the first model generates each observation of the de-

sired random sample in four steps. Suppose we have already generated the sam-

ple x
(1), . . . , x(n), where x

(i) denotes the vector (µ
(i)
1 , µ

(i)
2 , γ(i), r(i)). Then the vec-

tor x
(n+1) is generated as follows:

(1) Generate a candidate r′ for new value of the parameter r from R{1, . . . , 217}.

(2) Accept the candidate r′ from step 1 with an appropriate probability, which will

be specified later; i.e. r(n+1) = r′ if accepted else r(n+1) = r(n).

(3) Generate new values µ
(n+1)
1 and µ

(n+1)
2 from the conditional distribution

fµ1,µ2 | γ,r,z, where the values γ = γ(n) and r = r(n+1) are given.

(4) Generate a new value γ(n+1) from the conditional distribution fγ |µ1,µ2,r,z,

where the values µ1 = µ
(n+1)
1 , µ2 = µ

(n+1)
2 and r = r(n+1) are given.

Several computations have to be carried out before launching this algorithm. First,

we must derive the conditional distributions for steps 3 and 4. Second, we must

determine an appropriate acceptance probability in step 2. The density fµ1,µ2 | γ,r,z

has the form

fµ1,µ2 | γ,r,z ∝ exp

(

−

[

(µ1 − ν1)
2

2ξ2
1

+
γ

2

r
∑

i=1

(zi − µ1)
2

])

× exp

(

−

[

(µ2 − ν2)
2

2ξ2
2

+
γ

2

N
∑

i=r+1

(zi − µ2)
2

])

.

Elementary calculations and substitutions M1(r) =
r

∑

i=1

zi and M2(r) =
N
∑

i=r+1

zi

show that fµ1,µ2 | γ,r,z is the density of a two-dimensional normal distribution with
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the mean µ and the variance matrix Σ, where

µ =









ν1 + γξ2
1M1(r)

1 + γξ2
1r

ν2 + γξ2
2M2(r)

1 + γξ2
2(N − r)









and Σ =







ξ2
1

1 + γξ2
1r

0

0
ξ2
2

1 + γξ2
2(N − r)






.

The density fγ |µ1,µ2,r,z can be calculated analogously as above and we get

fγ |µ1,µ2,r,z ∝ γN/2 exp

(

−γ

[

1 +
1

2

r
∑

i=1

(zi − µ1)
2 +

1

2

N
∑

i=r+1

(zi − µ2)
2

])

,

i.e. fγ | µ1,µ2,r,z is the density of a gamma distribution with the shape parameter

1
2N + 1 and the scale parameter

(

1 + 1
2

[ r
∑

i=1

(zi − µ1)
2 +

N
∑

i=r+1

(zi − µ2)
2
])−1

.

The only parameter which we generate using the Metropolis-Hastings algorithm

is the change point r. Notice that we do not use the Gibbs sampler due to the

fact that the conditional distribution fr | µ1,µ2,γ,z is too complex and none of the

software available to us provides sampling from such a distribution. Therefore, we

always generate a candidate for r and this is accepted with some probability in

the next step. The formal way how to fix this acceptance probability has been

derived in [7], so that we just state the right form of it. More precisely, we use

α(x(n), x′) = min(1, β(x(n), x′)), where

(4.1) β(x(n), x′) =
fµ1,µ2,γ,r | z(x′)

fµ1,µ2,γ,r | z(x(n))
,

x
(n) = (µ

(n)
1 , µ

(n)
2 , γ(n), r(n)) denotes the previous solution and x

′ = (µ
(n)
1 , µ

(n)
2 ,

γ(n), r′) denotes the new candidate solution. It means that the vectors x
(n) and x

′

differ in the last component only, where the new candidate r′ replaced the change

point r(n) from the last iteration.

Substituting the posterior density to the equation (4.1), we obtain the final form

of the acceptance probability β(x(n), x′) equal to

exp

(

γ(n)

2

[r(n)
∑

i=1

(zi − µ
(n)
1 )2 +

N
∑

i=r(n)+1

(zi − µ
(n)
2 )2 −

r′

∑

i=1

(zi − µ
(n)
1 )2

−

N
∑

i=r′+1

(zi − µ
(n)
2 )2

])

,
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which can be equivalently written in the form

β(x(n), x′) =



















































exp

(

γ(n)

2

[ r′

∑

i=r(n)+1

(zi − µ
(n)
2 )2 −

r′

∑

i=r(n)+1

(zi − µ
(n)
1 )2

])

,

r′ > r(n),

exp

(

γ(n)

2

[ r(n)
∑

i=r′+1

(zi − µ
(n)
1 )2 −

r(n)
∑

i=r′+1

(zi − µ
(n)
2 )2

])

,

r′ 6 r(n).

4.2. Two-phase linear model with a jump

The second model is characterized by six parameters, which results in a bit more

complicated MCMC algorithm. Each new observation is generated in five steps:

(1) Generate a candidate r′ for the new value of the parameter r fromR{1, . . . , 217}.

(2) Accept the candidate r′ from step 1 with a probability α(x(n), x′) that will be

specified later; i.e. r(n+1) = r′ if accepted else r(n+1) = r(n).

(3) Generate α
(n+1)
1 and α

(n+1)
2 from the conditional distribution fα1,α2 | β1,β2,γ,r,z,

where the values β1 = β
(n)
1 , β2 = β

(n)
2 , γ = γ(n) and r = r(n+1) are given.

(4) Generate β
(n+1)
1 and β

(n+1)
2 from the conditional distribution fβ1,β2 |α1,α2,γ,r,z,

where the values α1 = α
(n+1)
1 , α2 = α

(n+1)
2 , γ = γ(n) and r = r(n+1) are given.

(5) Generate γ(n+1) from the conditional distribution fγ |α1,α2,β1,β2,r,z, where the

values α1 = α
(n+1)
1 , α2 = α

(n+1)
2 , β1 = β

(n+1)
1 , β2 = β

(n+1)
2 and r = r(n+1) are

given.

It is clear that we must calculate the conditional densities

fα1,α2 | β1,β2,γ,r,z, fβ1,β2 |α1,α2,γ,r,z, fγ |α1,α2,β1,β2,r,z,

and the acceptance probability α(x(n), x′) for step 2. As the calculations are sim-

ilar to those presented in Subsection 4.1, we present only the results. For better

transparency of the resulting formulas, the following notation is used:

M1α(r, β1) =

r
∑

i=1

(zi − β1i), M1β(r, α1) =

r
∑

i=1

i(zi − α1),

M2α(r, β2) =
N

∑

i=r+1

(zi − β2(i − r)), M2β(r, α2) =
N

∑

i=r+1

(i − r)(zi − α2).
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The function fα1,α2 | β1,β2,γ,r,z is the density of a two-dimensional normal distri-

bution with the mean µα and the variance matrix Σα, where

µα =









ν1 + γξ2
1M1α(r, β1)

1 + γξ2
1r

ν2 + γξ2
2M2α(r, β1)

1 + γξ2
2(N − r)









and Σα =







ξ2
1

1 + γξ2
1r

0

0
ξ2
2

1 + γξ2
2(N − r)






.

The function fβ1,β2 |α1,α2,γ,r,z is the density of a two-dimensional normal distri-

bution with the mean µβ and the variance matrix Σβ , where

µβ =









η1 + γζ2
1M1β(r, α1)

1 + γζ2
1G(r)

η2 + γζ2
2M2β(r, α2)

1 + γζ2
2G(N − r)









and Σβ =







ζ2
1

1 + γζ2
1G(r)

0

0
ζ2
2

1 + γζ2
2G(N − r)






,

where G(k) =
k
∑

i=1

i2.

Finally, the function fγ |α1,α2,β1,β2,r,z is the density of a Gamma distribution with

the shape parameter 1
2N + 1 and the scale parameter

(

1 +
1

2

[ r
∑

i=1

(zi − α1 − β1i)
2 +

N
∑

i=r+1

(zi − α2 − β2(i − r))2
])−1

.

The acceptance probability for a new candidate change point r′, or x
′, is

α(x(n), x′) = min(1, β(x(n), x′)), where

β(x(n), x′) =











































































exp

(

γ

2

[ r′

∑

i=r(n)+1

(zi − α2 − β2(i − r(n)))2

−

r′

∑

i=r(n)+1

(zi − α1 − β1i)
2

])

, r′ > r(n),

exp

(

γ

2

[ r(n)
∑

i=r′+1

(zi − α1 − β1i)
2

−

r(n)
∑

i=r′+1

(zi − α2 − β2(i − r(n)))2
])

, r′ 6 r(n).

4.3. Two-phase linear model with gradual change

The third model involves parameters α1, β1, β2, γ and r. The MCMC algorithm,

which generates a random sample from the posterior distribution in this model,

repeats the following six steps:
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(1) Generate a candidate r′ for the new value of the parameter r fromR{1, . . . , 217}.

(2) Accept a candidate r′ from step 1 with probability α(x(n), x′), that will be

specified later; i.e. r(n+1) = r′ if accepted else r(n+1) = r(n).

(3) Generate a new value α
(n+1)
1 from the conditional distribution fα1 | β1,β2,γ,r,z,

where the values β1 = β
(n)
1 , β2 = β

(n)
2 , γ = γ(n) and r = r(n+1) are given.

(4) Generate a new value β
(n+1)
1 from the conditional distribution fβ1 |α1,β2,γ,r,z,

where the values α1 = α
(n+1)
1 , β2 = β

(n)
2 , γ = γ(n) and r = r(n+1) are given.

(5) Generate a new value β
(n+1)
2 from the conditional distribution fβ2 |α1,β1,γ,r,z,

where the values α1 = α
(n+1)
1 , β1 = β

(n+1)
1 , γ = γ(n) and r = r(n+1) are given.

(6) Generate a new value γ(n+1) from the conditional distribution fγ |α1,β1,β2,r,z,

where the values α1 = α
(n+1)
1 , β1 = β

(n+1)
1 , β2 = β

(n+1)
2 and r = r(n+1) are

given.

The function fα1 | β1,β2,γ,r,z is the density of a normal distribution with the

mean µα and the variance σ2
α, where

µα =

ν1 + γξ2
1

[ r
∑

i=1

(zi − β1i) +
N
∑

i=r+1

(

zi − β1r − β2(i − r))
]

1 + γξ2
1N

, σ2
α =

ξ2
1

1 + γξ2
1N

.

The function fβ1 |α1,β2,γ,r,z is the density of a normal distribution with the

mean µβ1 and the variance σ2
β1
, where

µβ1 =

η1 + γζ2
1

[ r
∑

i=1

i(zi − α1) + r
N
∑

i=r+1

(zi − α1 − β2(i − r))
]

1 + γζ2
1G(r) + γζ2

1r2(N − r)
,

σ2
β1

=
ζ2
1

1 + γζ2
1G(r) + γζ2

1r2(N − r)
, where again G(k) =

k
∑

i=1

i2.

The function fβ2 |α1,β1,γ,r,z is the density of a normal distribution with the

mean µβ2 and the variance σ2
β2
, where

µβ2 =

η2 + γζ2
2

N
∑

i=r+1

(i − r)(zi − α1 − β1r)

1 + γζ2
2G(N − r)

and σ2
β2

=
ζ2
2

1 + γζ2
2G(N − r)

.

Finally, the function fγ |α1,β1,β2,r,z is the density of a Gamma distribution with

the shape parameter 1
2N + 1 and the scale parameter

(

1 +
1

2

[ r
∑

i=1

(zi − α1 − β1i)
2 +

N
∑

i=r+1

(zi − α1 − β1r − β2(i − r))2
])−1

.
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The acceptance probability for a new candidate change point r′, or x
′, is

α(x(n), x′) = min(1, β(x(n), x′)), where

β(x(n), x′) =











































































exp

(

γ(n)

2

[ r′

∑

i=r(n)+1

(zi − α1 − β1r
(n) − β2(i − r(n)))2

−
r′

∑

i=r(n)+1

(zi − α1 − β1i)
2

])

, r′ > r(n),

exp

(

γ(n)

2

[ r(n)
∑

i=r′+1

(zi − α1 − β1i)
2

−
r(n)
∑

i=r′+1

(zi − α1 − β1r
(n) − β2(i − r(n)))2

])

, r′ 6 r(n).

5. Results

All algorithms described in Section 4 were implemented using the system Mathe-

matica and Matlab. For each algorithm we generated several Markov chains, starting

points being chosen from an over-dispersed distribution on the set of possible values

of parameters. All these chains seemed to be stationary from their 500th member.

Therefore, for each model a Markov chain with 104 members has been generated

with the starting point in the expected value of the parameters (under the prior).

Desired characteristics of a posterior distribution were estimated from the last 9000

members of such a chain. Cutting off the first 1000 members ensures that we are

using the chain which is close to the stationary process. This ensures that our esti-

mates are independent of the starting point. The proportion of the accepted changes

of the parameter r is 11.5% in Model 1, 2% in Model 2 and 17.5% in Model 3. Con-

cerning Model 2, it is necessary to take into account that the new r selected from

R{1, . . . , 217} is most typically rejected. Notice that the increase of the number of

members of the MCMC chain did not change the results. Conclusions derived from

the generated chains are presented in the following subsections.

5.1. Model with a piecewise constant expected value

First of all, we were interested in the posterior distribution of the parameter r.

You can find the kernel estimates of its density in Fig. 2. It is evident that the

mass of this density is concentrated between the years 1915 and 1992. The most

probable year for a change point in this model is 1943. The probability that the
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 Figure 2. Kernel density estimator of the parameter r + 1774.

change point lies between 1939 and 1948 is approximately 0.36. Another important

period is 1961–1973 with the probability approximately 0.27.

Suppose, moreover, that the change occurred within the period 1939–1948, which

corresponds to 165 6 r 6 174. We were interested in the values of other parameters,

especially µ1 and µ2. If we estimate the conditional expected value E[µ1|165 6 r 6

174] by the average
∑

i∈C

µ
(i)
1 /#C, E[µ2|165 6 r 6 174] by

∑

i∈C

µ
(i)
2 /#C, where C is a

set of the indexes 1000 < i 6 10000 such that 165 6 r(i) 6 174, then the estimated

values are µ̂1 = 9.36 and µ̂2 = 9.98. Corresponding model is displayed in Fig. 3.
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Figure 3. Data and estimated Model 1.

5.2. Two-phase linear model with a jump

The posterior distribution of the parameter r in the second model is concentrated

close to the value 62. The frequencies of some particular values in the sequence

{r(i), 1000 < i 6 10000} are shown in Tab. 1.

r 60 61 62 63 64 65 else
year 1834 1835 1836 1837 1838 1839

frequency 566 2868 4870 338 0 75 283
relative frequency 0.0629 0.319 0.541 0.038 0 0.008 0.031

Table 1. Frequency table of sequence r(i).
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Contrary to Model 1, MCMC was used to estimate the change point r only, leading

to r̂ = 62 that corresponds to the year 1836. Parameters α1, α2, β1, β2 and γ were

estimated after splitting the data in two parts, i.e. Z1, . . . , Zr̂ and Zr̂+1, . . . , ZN ,

separately in each part by the linear regression, giving

α̂1 = 9.717, α̂2 = 8.58, β̂1 = 0.0022, β̂2 = 0.0102 and γ̂ = 1.539.

Corresponding model, i.e. the regression lines corresponding to these estimators,

are displayed in Fig. 4.
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Figure 4. Data and estimated Model 2.

We obtained the model in which the first part is practically constant, the growth

in the first 61 years is only 0.15 ◦C which corresponds to the increase 0.0022 ◦C per

year. After a dramatic decrease of temperature in the year 1836 we observe a steady

growth of temperature from 8.7 ◦C to 10.2 ◦C in the second part of our model, which

corresponds to the increase 0.01 ◦C per year.

This model seems to be, at least by naked eyes, more appropriate than the first

model. Indeed, notice that there exist several periods in Model 1, e.g. 1840–1860,

where almost all observations lie below (or above) the fitted curve, being not the case

when fitting Model 2. The change point r seems to be located more reasonably than

in Model 1. Notice, moreover, that we have obtained practically the same result,

i.e. the same placement of the change point r, as if we would use classical approach

of minimizing the residual sum of squares (RSS).

5.3. Two-phase linear model with gradual change

The distribution of the change point r in Model 3 is displayed in Fig. 5. We see

the maximum between the years 1850–1860. Assuming that r = 1855 is the true

change point, the estimated parameters of the model (3.3) and RSS values are given

in Tab. 2 and the fitted model is plotted in Fig. 7.

Aside that, we assumed that the true change point r is located in any of the

years 1780–1990. For each of these locations of r we estimated parameters of the
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Figure 5. Kernel density estimator of the parameter r + 1774.

year α̂1 β̂1 β̂2 RSS

1855 10.15 −0.016 0.009 151.96

1882 9.97 −0.010 0.012 150.99

Table 2. Estimates of α1, β1, β2 and corresponding RSS.

model (3.3) and calculated corresponding RSS. Plot of the values of RSS in Fig. 6

shows that the models for the years 1850–1890 are practically equivalent and that

our Bayesian solution coincides with the beginning of this period. Finally, we calcu-

lated the “best model” minimizing RSS for r ∈ (1780, 1990) according to [8]. This

“optimal” model corresponds to the year 1882. The estimated parameters and the

corresponding RSS value are given in Tab. 2, the fitted model is plotted in Fig. 7.
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Figure 6. RSS for all possible changes and its detail for the years 1850–1895.
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Figure 7. Data and estimated Model 3 for r = 1855 (left) and r = 1882 (right).
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6. Conclusions

The sequence of average year temperatures measured in Klementinum has already

been analyzed by many other statisticians, see [2], [9] or [10] among others for dif-

ferent approaches. It is evident that different authors used different methods. We

can say that we obtained similar results as the authors of these papers, of course,

using different methodology. Personally, from the models described in this paper we

prefer Model 2.

The MCMC simulation methodology, which was used here, is a quite general tool.

On the other hand, one disadvantage, which was revealed in our (simple) models,

should be mentioned, namely, it is necessary to carry out many (routine on one hand

but often tedious and not necessarily simple on the other one) computations before

MCMC algorithms can be applied.

Notice, finally, that we have developed also the MCMC algorithms comprising

more than one change. Evidently, the algorithms are more complicated and the

resulting densities are more “ugly”. However, they were developed along the same

lines as the algorithms presented in this paper, so that from the methodological point

of view they do not bring something surprisingly new.

References

[1] J. Antoch, M. Hušková, D. Jarušková: Off-line statistical process control. In: Multi-
variate Total Quality Control, Chapter 1. Physica-Verlag/Springer, Heidelberg, 2002,
pp. 1–86.

[2] J. Antoch, M. Hušková: Estimators of changes. Asymptotics, Nonparametrics, and Time
Series. Marcel Dekker, Basel, 1999, pp. 533–577.

[3] D. Barry, J. Hartigan: A Bayesian analysis for change-point problems. J. Am. Stat.
Assoc. 88 (1993), 309–319.

[4] B.P. Carlin, A. E. Gelfand, A.F.M. Smith: Hierarchical Bayesian analysis of change
point problems. Appl. Stat. 41 (1992), 389–405.
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