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A method is presented to enhance the efficiency of simulations of lipid vesicles. The method increases
computational speed by eliminating water molecules that either surround the vesicle or reside in the interior
of the vesicle, without altering the properties of the water at the membrane interface. Specifically, mean field
force approximation (MFFA) boundary potentials are used to replace both the internal and external excess
bulk solvent. In addition to reducing the cost of simulating preformed vesicles, the molding effect of the
boundary potentials also enhances the formation and equilibration of vesicles from random solutions of lipid
in water. Vesicles with diameters in the range from 20 to 60 nm were obtained on a nanosecond time scale,
without any noticeable effect of the boundary potentials on their structure.

1. Introduction

Lipids are small amphiphatic molecules that can adopt a wide
variety of aggregation states including micelles, lamellae, and
vesicles. In the vesicular state, the lipids form a spherically
closed bilayer. Such vesicles, or liposomes, play an important
biological role in processes such as endo- and exocytosis and
intracellular transport as well as in providing nanoscale reaction
vessels. Lipid vesicles are also used in drug delivery applica-
tions, and serve as model systems for experimental studies of
cell processes. The length scales of vesicular systems in vivo
range from nanometers to micrometers (whole cells). In model
systems, a similar range in size can be achieved, depending on
the type of experimental techniques used. The smallest vesicles
are referred to as small unilamellar vesicles (SUVs), whereas
the largest, approaching the size of whole cells, are termed giant
unilamellar vesicles (GUVs).

A wide variety of computational studies have been performed
to understand the behavior of lipid vesicles at the molecular
level.1–12 These studies have been typically based on simplified,
coarse grained, lipid models, although processes such as
spontaneous vesicle formation and vesicle fusion have even been
simulated in full atomistic detail.13,14 However, due to the
computational cost of such calculations, the size of the vesicles
that can be considered using present methods is limited to around
20 nm in diameter, close to the minimum size of a vesicle that
can be formed experimentally by sonication.15 Such small
vesicles are only marginally stable due the large curvature
stresses involved, and simulation studies of fusion between
vesicles on this length scale indeed show extremely fast kinetics,
with fusion completed on a nano- to microsecond time
scale.5–7,11,16 The effect of curvature is also evident in other
measures, such as the melting temperature of the lipids. For
pure dipalmitoylphosphatidylcholine (DPPC) vesicles, it is found
experimentally that the phase transition temperature decreases
with a decrease in the diameter of the vesicle below a threshold
of =70 nm.17,18 Such behavior as a function of temperature is

also observed for small vesicles in simulations.19 Although
increases in computational power will make it possible to
gradually increase the size of vesicles that can be studied in
molecular or atomic detail, in order to reach more realistic sizes
(exceeding 100 nm), alternative approaches to describe the
system are required.

Several methods have been proposed to bridge the gap
between detailed atomistic molecular dynamics (MD) simula-
tions and the micrometer lipid vesicles of experimental interest.
All methods rely on reducing the number of degrees of freedom
and replacing them with mean field descriptors. In the work of
Ayton et al.,20 the physical properties from an atomistic MD
study of a PC bilayer were used together with other microscopi-
cally determined parameters, to obtain a continuum-level model
operating in time and length scales orders of magnitude beyond
that which is accessible by atomistic-level simulation. In the
work of Sevink et al.,21 the full kinetic pathways of self-
assembly of polymeric amphiphiles into a rich variety of
complex vesicles was demonstrated by large-scale computer
simulations based on dynamic self-consistent-field theory.
Although these methods succeed in describing the system on a
micrometer length scale, the approximations made result in the
loss of the nanoscopic details of interest. Another solution is to
resort to a complete solvent free model. Several groups have
successfully demonstrated the formation of vesicles using this
approach.2,3,8–10,22 In principle, such methods allow one to
maintain detailed models for the lipid molecules; however, the
drawback is that many processes depend directly or indirectly
on the explicit presence of water, for example, processes such
as pore formation, vesicle deformations, and osmotic swelling.
In addition, hydrodynamic interactions are absent in a solvent
free approach.

The aim of the method presented in this paper is to bridge
toward larger time and length scales, preserving the nanoscopic
details, including those of the solvent. We propose the use of a
boundary potential which includes explicitly a shell of water
around the vesicles but excludes the bulk water present in the
vesicle interior or surrounding the vesicle. As most of the
computational time of a vesicular system is spent on simulating
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the surrounding and interior water, reducing the water in the
system in this way achieves a significant increase in computa-
tional efficiency, without losing bulk properties at the membrane
interface. The ratio of the accessible volume of the interior water
Vint inside a vesicle versus the total volume of vesicle Vtot scales
as

Vint

Vtot

∝ (r- d)3

r
3

(1)

where r is the radius of a vesicle and d the thickness of the
membrane. Equation 1 shows that if the vesicle size is increased,
r . d, the interior water dominates the volume fraction inside
the system. As one is interested in processes that occur primarily
at or near the vesicular membrane, simulating the bulk water
in the interior of the vesicle is unnecessary, as is simulating
the excess solvent outside of the vesicle. Given that vesicles
are spherical objects, the use of periodic boundary conditions
is inefficient, as it requires a simulation box with a space filling
geometry. Even in the most efficient unit cell for such a system,
the dodecahedron, the solvent is not distributed evenly around
the vesicle.23 Ideally, from a computational point of view, a
vesicle could be surrounded by a small water shell on both the
inside and the outside of the vesicle, just sufficient to maintain
its bulk properties close to the membrane interface.

One method to obtain this is by introducing a solvent
boundary potential, which gives a finite representation of an

infinite bulk system.24–26 In the work of Brooks and Karplus,25

a soft mean field force approximation (MFFA) potential was
introduced to represent the interactions of a solvent in the
reservoir region on the reaction region. This method did not
include the long-range electrostatic corrections due to the polar
nature of the surrounding bulk water. Later methods included
these electrostatic effects by various approaches.27–30 However,
in all studies cited, it has proved difficult to obtain the isotropic
behavior of a solvent near the boundary interface. Especially
when electrostatic interactions were involved, like in water, a
more anisotropic behavior in both angular and radial distribution
functions was observed.

A concern of simulating vesicles within a (spherical) con-
strained solvent shell is the bias in possible shape undulations
c.q. deformations of the vesicle. However, these artifacts are
similar to the bias which is introduced by simulating vesicles
in a periodic system of similar length scale, where the vesicle
feels, either directly or through the solvent, its periodic image.
Boundary methods dealing with flexible boundaries have also
been introduced. Li et al.31 presented a fluctuating elastic
boundary model which encloses the simulated system in an
elastic bag that mimics the effects of the bulk solvent. This
boundary bag was modeled as a mesh of quasi-particles
connected by elastic bonds, its motions governed by a diffusion
equation. Although all shape deformations of the vesicles are
possible with such an approach, they are highly affected by the

Figure 1. Conceptual picture of the MFFA boundary potential. Shown in part A is the integration scheme for the case where the virtual region is
outside the spherical simulation zone. Shown in part B is the case were an internal cavity is present inside the simulation zone. A particle lies within
position r0 from the center of the simulation zone. The particle interacts with a virtual particle outside the simulation at distance r. lcut is the distance
between the particle at position r0 and the point where r intersects with the simulation sphere R. The red sphere depicts the interaction cutoff Rcut.

Figure 2. Cartoon depicting the overall simulation setup. The left cartoon shows the cross section of a detailed fragment of the system. The picture
on the right shows an overview of the cross section of the entire system, a vesicle under spherical MFFA boundary conditions. The reaction zone
contains the membrane and CG water under conventional Newtonian dynamics. In the yellow region, the CG water is subjected to the MFFA
boundary potential. The solid red line depicts the MFFA boundary potential. The dashed red line represents the additional harmonic potential which
compensates the finite nature of the tabulated MFFA boundary potential beyond the boundaries.
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choise of the elastic bond constants and the diffusion equation
which are a priori not known. In practice, the computational
expense of solving the equations of motion of these quasi-
particle approaches as well as the memory needed for storing
the mesh connections scales quadratically with the system size,
whereas the computational effort to apply a mean field potential
representing the boundary of the system is cheap and indepen-
dent of the system size.

Here, we apply the MFFA approach of Brooks et al.25 to
minimize the amount of water in both the interior and exterior
of the vesicle. This approach has already been successfully used
by others in the simulation of small membrane patches.32,33 The
application of this approach in vesicle simulations has never
been studied. Our approach has especially been developed for
use in conjunction with the coarse grained lipid model of
Marrink et al.34,35 The water in this model is represented simply
by Lennard-Jones interactions, lacking any electrostatic interac-
tions or rotational axis. In this case, the boundary potential only
represents the mean effect of a pure Lennard-Jones fluid.
Complications arising from the integration of long-range
electrostatic forces, as with all-atom force fields using Ewald-
based summation methods in conjunction with the boundary
method, are therefore not present in our model. Likewise,
artifacts in the isotropic behavior of the solvent (e.g., rotational
ordering at the boundary interface resulting in a net dipole
moment27–30) do not play a role in the current application.

The aim of the current work is to demonstrate that lipid
vesicles can be efficiently simulated using the MFFA boundary
approach. The largest vesicle studied here is 60 nm in diameter,
triple the size simulated previously in near-atomic detail.4

Moreover, we show that due to the molding effect of the
boundary potentials the process of formation of equilibrated
vesicles from initially random lipid solutions is extremely fast
(nanosecond time scale). The remainder of the paper is organized
as follows. In the next section, the implementation of the
boundary potential for vesicular systems is explained along with
measures taken to control the temperature and pressure of the
system. The methodology is then tested on two systems, namely,
a shell of bulk water and a planar lipid membrane. We finally
show that the methodology can be applied very efficiently to
simulate the formation and subsequent equilibration of a range
of vesicles of increasing size.

2. Methods

2.1. The Spherical MFFA Boundary Potential. The ap-
proach that is used in this work is analogous to that of Brooks
et al.25 The coordinate system chosen in the original integration
scheme presented by Brooks et al, suffers problems with
numerical precision when the ratio between the radius of the
boundary cutoff Rcut and the radius of the spherical boundary
R becomes large, which is the case for the systems of interest
in this study. Moreover, it should be noted that in the original
integration scheme an additional factor of 2 was erroneously
introduced, leading to an overestimation of the magnitude of
the MFFA potential also by a factor of 2. Here, we present a
more robust, alternative way of solving the MFFA potential for
any particular water shell of interest.

Consider a spherical system of radius R embedded in an
implicit solvent continuum (see Figure 1). The total force on a
particle at a distance r0 from the center of the sphere is due to
interactions with all particles within the cutoff sphere Rcut. When
r0 + Rcut > R, part of the volume fraction of the cutoff sphere
Rcut will be located within the continuum. In this case, the total
force on the particle at r0 is due to the interactions with the

explicit particles as well as the interactions with the continuum.
The contribution to the total force from the explicit particles
within the solvent shell is just the normal sum over pair
interactions employed in molecular dynamics. The contribution
of the continuum to the total force on the particle at r0 is given
by summing all interactions from all possible positions within
the continuum weighted by the probability Fg(r) of finding an
implicit particle at distance r from r0. Here, F is the mean density
and g(r) the normalized radial distribution function of the
reference solvent. The mean field boundary force from the
implicit solvent acting on a particle at r0 is given by (see Figure
1A)

Fw(r0)) 2π∫0

θmax
sin(θ) dθ ∫

R

lcut(θ)
dr r

2
Fg(r) F(r) (2)

By applying the cosine theorem on the projections in Figure
1, the boundary condition of this convolution integral is solved.
The angle θmax is determined from r0, R, and Rcut and gives

θmax ) arccos(R
2
- r0

2
-Rcut

2

2r0Rcut
) (3)

The distance lcut is given by

lcut(θ))-r0 cos(θ)+ √r0
2 cos2(θ)- r0

2
+R

2 (4)

The quantity F(r) is the radial component of the force along
the direction r0, where r0 ) (ix0, iz0, iy0) is the vector connecting
the particle at r0 and the center of the reaction zone.

F(r)) r cos(θ)(dV

dr ) (5)

with dV/dr denoting the derivative of the pairwise potential
interaction function with respect to r. Hence, only its radial
component is required due to the azimuthal symmetry around
r0. The overall boundary force Fw(r0) can be decomposed into
its x, y, z components in the reference frame by

FB(r̂0)) r̂0Fw(r0) (6)

where r̂0 ) r0/r0 represents the unit normal vector along r0.
According to the same procedure, the boundary force from the
inverted case, where a cavity is surrounded by the simulation
zone, can also be obtained (see Figure 1B). In this case, θmax in
eq 3 is given by

θmax ) arccos(Rcut
2
+ r0

2
-R

2

2r0Rcut
) (7)

and lcut(θ) in eq 4 as

lcut(θ)) r0 cos(θ)- √r0
2cos2(θ)- r0

2
+R

2 (8)

A schematic picture of the MFFA boundary potential is given
in Figure 2. Particles moving toward the boundary first
experience a net attractive force. When particles approach the
boundary more closely, they will experience a repulsive force.
The strength of this repulsive force is soft in comparison to the
normal Lennard-Jones interactions of the solvent. The nature
of the mean field force potential is to compensate the surface
tension at the boundaries which would otherwise occur in a
system having a finite size.

By combining both approaches, any solvent shell of interest,
with inner radius Rin and outer radius Rout, can be obtained. As
the MFFA boundary potential is numerically solved and
therefore, in practice, a tabulated force potential, it has a finite
range. To prevent particles from overcoming the repulsive
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barrier of the boundary, an additional repulsive harmonic

potential is applied to the particle in the region r0 e Rin and r0

g Rout. The force constant of this harmonic potential is obtained

from a linear fit of the repulsive tail region of the tabulated

force potential. The MFFA boundary potential method was

implemented in the GROMACS-3.3 simulation package.36

2.2. Temperature Control. Commonly, when using a MFFA-

like boundary, stochastic coupling of the boundaries is used as

an external heat bath to maintain constant temperature, e.g., in

the EGO simulation software package.37 However, for the large

systems considered in this study, the ratio of surface area to

volume meant that the implementation of a stable algorithm

for a stochastic boundary zone required either a strong reduction

of the integration time step or a much more frequent update of

the neighbor pair list to improve energy conservation, compared

to the values usually achievable in standard membrane simula-

tions using the CG model.34 Both of these requirements would

render the overall aim of the boundary potential approach, i.e.,

to improve the computational efficiency of the simulations,

ineffective. For this reason, in the applications described in this

paper, we use the Berendsen thermostat method,38 although it

should be noted that, strictly speaking, the Berendsen thermostat

does not generate a proper NVT/NPT ensemble. In contrast with

the Berendsen thermostat, stochastic boundaries include both

thermal and density relaxations simultaneously, compensating

the sparse nature at the boundaries. As this stochastic effect is

missing in the Berendsen thermostat method, there is increased

local order near the boundaries, effectively lowering the kinetic

barrier of freezing for the solvent near the boundaries. In order

to prevent freezing of the CG water near the boundaries in

studies where the temperature is close or even lower than the

melting temperature of the solvent, a simple solution was

adopted. To prevent the development of long-range order and

the appearance of a crystal lattice at the boundary interface,

so-called antifreeze (AF) particles were introduced.35 These AF

particles interact differently with different particles. For all

particles other than the CG water, their interaction is the same

as that for CG water. For the interaction between the AF and

the CG water, the Lennard-Jones (LJ) parameter σ is changed

from 0.47 to 0.57 nm, making the AF particles effectively larger.

The optimal packing of the CG water at the boundaries is thus

disrupted. A concentration of ≈5% of AF particles in the shell

is sufficient to prevent the freezing near the boundaries down

to temperatures tens of degrees below the freezing point of pure

CG water (around 290 K35). In section 3.2, we describe results

from test runs on bilayers, which showed that the properties of

the bilayer were unaffected by the introduction of AF particles.

2.3. Pressure Control. The MFFA boundary potential

method provides a system in the NVT ensemble, although the

nature of the potential is soft and the effective volume might

show small fluctuations. If the method is to be applied to study

processes such as vesicle formation or phase transitions where

changes in density can occur, the NPT ensemble is more

appropriate. In addition, the NPT ensemble allows a better

comparison with experiments often performed under atmo-

spheric pressure. There are two basic ways to define pressure

in a nonperiodic MFFA boundary system: The most straight-

forward way to define pressure in a nonperiodic system is by

summing the external boundary contributions Fb over all

particles N and dividing it by the total boundary surface A. The

external pressure Pext is thus given by

Pext )-
1

A
∑
i)1

N

Fb,i (9)

Assuming that the internal mean pressure Pint is uniformly
distributed throughout the system, Pint ) Pext, and the internal
pressure can be obtained using eq 9. However, when there is a
net surface tension at the boundary, Pint * Pext, due to the
induced Laplace pressure contribution. As the coupling to an
external pressure bath will give rise to volume fluctuations, the
boundary curvature will also show fluctuations, as Fb(r0) in eq
2 is dependent on the boundary curvature. Therefore, although
the mean field force potential is designed to minimize the net
mean surface tension, due to fluctuations in curvature and the
(numerical) precision of the MFFA-potential fit itself, a small
net surface tension might still occur. For this reason, a more
robust way to define the internal pressure based on the work of
Schofield and Henderson39 was used:

[p]
Ω,int )

2([K]
Ω
- [Θ]

Ω,int)

3V
Ω

(10)

In this approach, the internal pressure is given by

Pint ) [p]
Ω,int
Tr (11)

Equation 10 gives the pressure tensor within every macro-
scopic subregion Ω. Here, [K]Ω is the kinetic energy tensor of
the atoms within Ω and [Θ]Ω,int is the internal virial tensor.
The quantity VΩ denotes the volume of Ω. For the entire system,

V)
4

3
π(Rout

3
-Rin

3) (12)

with Rout being the radius of the outer boundary potential and
Rin being the radius of the inner boundary potential.

Due to the particle interactions with the boundary, the internal
virial tensor [Θ]Ω,int can be decomposed into two parts:

[Θ]
Ω,int ) [Θ]

Ω,int,pairs + [Θ]
Ω,int,wall (13)

The first part, [Θ]Ω,int,pairs, results from the direct pair interactions
between all particles in the system. The second part, [Θ]Ω,int,wall,
results from the interactions of particles with the boundary.

To obtain the virial contribution coming from the direct pair
interactions, [Θ]Ω,int,pairs, all boundary force contributions acting
on atom i are neglected. Therefore, the single sum internal virial
tensor [Θ]Ω,int,pairs in this nonperiodic system is given by

[Θ]
Ω,int,pairs )-

1

2∑
i)1

N

(F̂i - F̂b,i) X r̂i (14)

where Fi is the total force and Fb,i the boundary force acting on
atom i.

The virial contribution coming from the interactions of
particles with the boundary [Θ]Ω,int,wall is given by

[Θ]
Ω,int,wall ) k∑

i)1

N

Fb,i X r̂center,id(i) (15)

where r̂center,i is the unit normal factor connecting the center of
the spherical system with the particle i and d(i) is the distance
to the boundary along r̂center,i. It should be noted that d(i) > 0
when the particle is located in the region within the boundaries
and d(i) < 0 when the particle resides outside of the boundaries.
The latter is possible due to the soft nature of the boundary
potential. The prefactor k has a value of -1 when summing
the contributions coming from the outer boundary and 1 when
summing the contributions coming from the inner boundary.
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In practice, the calculation of the boundary virial contribution

[Θ]Ω,int,wall is done within the same single loop as the calculation

of the boundary force on each particle.

A convenient and simple way to control the pressure in the

system is by coupling to a Berendsen barostat.38 To maintain

the system uniformity and to prevent the buildup of additional

pressure inside, for example, a vesicle, the whole system is

subjected to isotropic scaling, i.e., scaling both inner and outer

radius as well as all atomic coordinates with the same scaling

matrix µ. The form of the boundary potentials remains fixed,

however. The effect of scaling R on the MFFA potential is

negligible for the size of system of interest in this work. For

instance, the standard deviation in the effective radius of a pure

water system at T ) 323 K is only about 2% for R ) 10 nm.

2.4. Simulation Setup. CG Model. All simulations were

performed using the coarse grained (CG) model of Marrink et

al.34 In this model, which is based on the work of Smit et al.,40

small groups of atoms (four to six heavy atoms) are united into

a single interaction center. Water was also modeled as a

combined particle representing four real water molecules. In

addition to the LJ interactions, a Coulombic potential with a

relative dielectric constant of 20 describes the electrostatic

interactions between the positively charged choline and the

negatively charged phospate beads of the zwitterionic PC head

groups. Both the LJ and Coulomb interactions are restricted to

short-range interactions only using a shift-based cutoff of 1.2

nm. The lateral density profiles of the membranes obtained using

the CG model correspond closely with those obtained from

atomistic simulations. For details of the method and its

applications, we refer to the original publications.34,35 On the

basis of a comparison of diffusion rates of real water and the

CG water, the CG water is found to diffuse 4 times faster. A

similar factor was found for lipid systems, suggesting that the

relative dynamics using the CG model are well preserved. When

comparing the actual simulation time with real times, the

simulation time should be scaled by a factor of 4. All timescales

presented in this manuscript are still the actual CG timescales.

Pure Water. To test the method and its implementation, a

system of pure CG water in a spherical shell with Rin ) 10 nm

and Rout ) 22 nm was simulated at a temperature of 323 K and

a pressure of 1 bar using the MFFA boundary conditions. The

MFFA potentials were calculated using eq 2. The radial

distribution function in eq 2 was obtained from an NPT

simulation of 1500 CG-water beads under periodic boundary

conditions at 323 K and 1 bar. For the cutoff of the MFFA

potential, the same values were chosen as those for the normal

cutoff of the pairwise interactions, 1.2 nm. Pressure and

temperature were coupled to an external bath using the Ber-

endsen coupling method (τP ) τT ) 1.0 ps-1, � ) 5 × 10-5

bar-1).38 Both rigid body linear and angular momentum were

removed every time step.

Lipid Bilayer. To test any possible effect of the MFFA

boundary approach on the bilayer structure, the periodicity along

the Z-axis of a periodic bilayer system was removed and

replaced by two MFFA boundary potentials. The MFFA

boundary potentials were derived for a planar system in a similar

way as in eqs 2–6. An equilibrated DPPC bilayer patch

consisting of 128 lipids, taken from a conventional simulation

under periodic boundary conditions, was placed within the

reaction zone of the MFFA boundary system. A CG solvent

layer of 2.5 nm thickness was placed between the membrane

patch and the MFFA boundaries. Additionally, to test any

possible effects on the membrane properties of the antifreeze

particles in conjunction with the MFFA method, a solvent
consisting of 5% antifreeze particles was used.

Vesicles. In order to study the formation of vesicles of
increasing size, five different systems corresponding to vesicles
with diameters of 20, 30, 40, 50, and 60 nm were prepared.
The number of lipids required to form the desired vesicle size
was estimated from the area per lipid of a CG simulation of a
DPPC membrane at 323 K. From the area per lipid (0.64 nm2)
and the lateral phosphate-phosphate distance (4 nm), the
required numbers were calculated assuming that the total average
area per lipid of both of the monolayers of the vesicle is close
to this value; see Table 1. Control simulations in which a greater
or lesser number of lipids were used were also performed. The
starting configurations were obtained by copying a small cubic
periodic box, containing a randomly mixed DPPC/water system,
multiple times into a simulation box which embeds the spherical
shell of interest. The spherical shell was then cut from the
simulation box. To obtain a smooth starting configuration, a
maximum of one DPPC tail bead per lipid was allowed to be
out of the spherical shell. If this criterion was not fulfilled, then
the excess DPPC beads were removed and the remaining beads
were converted into CG-water beads. Alternative starting
configurations were prepared by removing all lipids within a
distance of 2-2.5 nm from the boundary so that a layer of pure
solvent surrounded the lipid solution. During the simulations,
the lipids were subjected to either the same MFFA boundary
potential as the water (nonselective) or to a purely repulsive
potential (selective). This repulsive potential was harmonic in
nature and was intended to bias the diffusion of the lipids toward
the central zone, thus enhancing the rate of vesicle formation.

Spontaneous Aggregation. As a control, the structural
properties of the vesicles formed using the MFFA boundary
approach were compared to the structure of vesicles formed by
using the spontaneous aggregation of lipids in a fully periodic
system. To this end, the simulation of the 20 nm vesicle (Table
1) was also performed in a 28 nm cubic periodic box at the
same state point but with 2528 DPPC lipids randomly distributed
within a sphere of 13 nm radius. The remaining volume in the
box was filled with CG water. This simulation was performed
in duplicate starting from different lipid distributions.

Artificial Pores. In a similar fashion to the spherical MFFA
approach, cylindrical shaped boundaries were also implemented.
By restraining the carbon tails in the lipids, these boundaries
were used to induce pores inside the membrane of any chosen
size.41 When the restraining force has both repulsive and
attractive contributions, a pore is formed in which the carbon
tails are forced to form the interface of the pore (hydrophobic
pore). Due to its hydrophobic nature, such a pore is energetically
unfavorable; however, the edge tension induced at the pore
interface is compensated by the attractive contribution from the
potential. When only repulsive contributions are present, the
membrane is free to choose its most favorable pore structure.

TABLE 1: System Setup for Vesicle Simulations

vesicle diameter (nm) Rin (nm) Rout (nm) # DPPC # W (CG)

20 2.5 12.5 2528 43303
30 6.0 18.0 5915 140811
40 10.0 22.0 10529 242720
a 5915 298088
b 11354 232820
50 15.5 27.5 18271 374408
60 20.0 32.5 27384 639722

a System containing an insufficient number of lipids to form a
vesicle. b System containing a number of lipids in excess of that
required to form a vesicle.
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In the case of DPPC (CG model), when the restraining radius
on the tails is greater than 1.2 nm, the interface of a pore is
completely formed by the lipid head groups (hydrophilic pore).
In such a pore, the lipids can freely exchange (flip-flop) between
the two monolayers, allowing the membrane to equilibrate.
Using this approach, several pores can be induced in the
liposome while still conserving its curvature and shape. In this
way, a metastable liposome is able to relax to its lowest
thermodynamical state. Moreover, the ratio in flip-flops between
the two monolayers provides a useful criterion to determine the
state of equilibrium of a given vesicle.

3. Results

3.1. Test Case: Pure Water. Figure 3 shows the density
and temperature profile for a 10 ns simulation of pure CG water
at 323 K in the NPT ensemble using MFFA boundary potentials
at Rin ) 10 and Rout ) 22 nm. While some ordering in the
density profile is evident near the boundary, this fades within 2
nm of the boundary, giving the normal isotropic bulk properties.
Therefore, to diminish artifacts at the edges of the reaction zone
of interest, the width of the buffer zone is ideally >2 nm. The
density in the reaction zone is in good agreement with
conventional MD simulation of CG water.

3.2. Test Case: Lipid Bilayer. Figure 4 shows the compari-
son of the lateral density and pressure profile for a 128-lipid
DPPC bilayer under periodic boundary conditions with “pure”
CG water (conventional setup) or under MFFA boundary
conditions with the addition of 5% antifreeze particles (boundary
setup). Figure 4 demonstrates that, apart from some minor
differences, both the pressure and density profiles obtained with
the boundary setup are in good agreement with the results
obtained with the conventional setup. The minor differences
are related to the presence of the antifreeze particles rather than
the presence of the MFFA boundaries. The bilayer profiles
obtained without the antifreeze particles are almost indistin-
guishable between the boundary and conventional setup (data
not shown). Comparison of the distribution of the relative
densities for normal and antifreeze water reveals that the
antifreeze particles are somewhat repelled from the interface.
Although one could, in principle, further fine-tune the interac-
tions between antifreeze particles and the particle types con-
stituting the bilayer in order to obtain a more homogeneous

distribution, this is not desirable. The main purpose of the
antifreeze particles is to prevent freezing of the water phase
which is nucleated by the ordering effect of the boundary
(compare to Figure 3). The increased relative density of the
antifreeze particles in the bulk water slab is therefore only
advantageous. The pressure profile shows a remarkable feature,
namely, the appearance of two small shoulders (z ) (1 nm) to
the big positive peak arising from the carbon tails. Interestingly,
similar shoulder peaks are also more pronounced in the pressure
profiles of atomistic DPPC bilayers.42 Although we do not
understand the origin of this effect, the addition of antifreeze
particles appears to result in a more realistic stress distribution
across the bilayer. We also evaluated the effect of the system
setup on the lateral diffusion rates of the lipids, and found it to
be very small. In the boundary setup, the lateral diffusion
constant increases 3 ( 1% compared to the conventional
simulation setup. In conclusion, within the resolution obtained
by our coarse grained model, these small changes in structural
and dynamic properties when using the boundary setup are
negligible.

3.3. Application: Vesicle Formation. The ability to form
vesicles using the MFFA boundary approach was tested using
different approaches to generate the starting structure and to
accelerate the demixing of lipids and water. In the simulations
where only the MFFA boundary potential of the CG water was
used, the lipids condensed into patches on the boundary surface
within a few nanoseconds. Depending on the concentration, the
lipids either formed interpenetrating networks between the
boundaries (high or desired concentration regime (Table 1)) or

Figure 3. A plot of the temperature and density distribution throughout
the simulation shell for a pure CG-water system at 323 K in the NPT
ensemble. Relative values are given with respect to the reference values
of conventional MD in the same ensemble.

Figure 4. Plot of the lateral density and pressure profile in the bilayer
simulated under periodic boundary conditions (conventional setup) or
MFFA boundary potentials in addition to antifreeze particles (boundary
setup). Thick lines represent the boundary setup, and thin lines, the
conventional setup. The peaks of water (W) and antifreeze (AF) particles
in the boundary setup are scaled with respect to their relative density.
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condensed as a monolayer on one of the boundaries in the lower
concentration regime. None of the attempts resulted in the
formation of a complete vesicle within 50 ns (Figure 5). The
failure of vesicles to form could be due to a number of reasons.
One possibility is that the width of the region in which lipids
and water were randomly mixed initially was too wide. This,
especially in the case of larger systems, could lead the lipids to
become trapped in kinetic intermediates, such as those shown
in Figure 5. In this case, the “molding” effect of the repulsive
potential was insufficient, resulting in widespread lipid patch
formation and double lamellar vesicles full of pores and
interlamellar stalks. An excessive or insufficient number of lipids
also resulted in the formation of irregularly shaped aggregates
(Figure 5). In cases where there were an excessive number of
lipids, very floppy, irregular-shaped vesicles were formed.
Where the amount of lipid was insufficient, nearly perfect
spherical vesicles containing one or more pores were obtained.
In this case, pore closure was not possible, as the inner boundary
potential prevented further shrinkage.

Spherical and sealed vesicles could however be formed by
either excluding lipids in the starting structure from a solvent
shell of 2-2.5 nm thick or applying a repulsive boundary
potential to the lipids with a force constant exceeding 10 kJ
mol-1 nm-2 and a width of 1.5-2.0 nm. Using this approach,

vesicles form quickly (Figure 6). The time scales required ranged
from 6 ns for a 20 nm vesicle to 10-20 ns for the largest
vesicles of 60 nm diameter. Figure 7 shows the five DPPC
vesicles formed using this method. The largest of these vesicles
was 60 nm in diameter and was composed of 27384 lipids,
approximately 3 times the smallest size observed experimentally.

3.4. Application: Vesicle Equilibration. In order to compare
the structure of the vesicles formed under MFFA boundary
conditions to a vesicle formed under standard periodic boundary
conditions (Marrink et al.4), the lateral density profiles with
respect to the center of the vesicle were compared (see Figure
8). The lateral density profiles seem similar for the vesicles
obtained using the two methods. The maximum deviation
between the profiles is in the order of 0.3 nm. Such deviations
can both be due to shape fluctuations and to variations within
the spontaneously formed vesicles arising from a difference in
the distribution of lipids between the two leaflets. Although the
comparison is not statistically rigorous, Table 2 suggests that
the variation in the lipid distribution over the membrane leaflets
from the vesicles obtained with the MFFA boundary approach
is similar to the distribution within vesicles formed under
periodic boundary conditions. However, based on these results,
it is not possible to say what would be the true equilibrium
distribution. Once sealed, lipid flip-flops are not observed even

Figure 5. Examples of cases in which DPPC vesicles failed to form under various conditions. The head groups are colored cyan, the tail groups
are grey, and the water is blue. (upper left) Top view of a 40 nm system simulated under MFFA boundary conditions without either a selective
repellent potential or an additional water layer. Clear patch formation is observed at the surface of the boundaries, and the configuration becomes
kinetically trapped. (upper right) Cross section of the formation of a 40-nm-diameter vesicle. An additional harmonic potential of 0.3 nm width and
a force constant of 50 kJ mol-1 nm-2 was used to enhance demixing of the lipids at the boundary interface. The width of the repellent potential was
insufficient to cause a “molding” effect. The snapshot reveals widespread lipid patch formation through the system after 50 ns of simulated time.
(lower left) Cross section of a 40-nm-diameter vesicle formed from an excessive lipid amount. The simulation was started with an additional
CG-water layer at the boundary of 2.0 nm thickness to prevent condensation of lipids at the boundaries. The snapshot shows a floppy irregular
shaped vesicle sealed after 8 ns of simulated time. (lower right) Cross section of a 30-nm-diameter vesicle formed from an insufficient amount of
lipids. A snapshot after 14 ns of simulation reveals the presence of a large pore (around 6 nm in diameter).
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on a microsecond time scale, preventing further equilibration
of the vesicles. In order to resolve this issue, artificial pores
were introduced into the vesicle. To achieve this, a purely
repellent cylindrical potential with a force constant of 50 kJ
mol-1 nm-2 and a radius of R ) 1.8 nm diameter was used.
This potential was only felt by the carbon tails of the lipids
and was present from the start of the simulation. A vesicle
formed within 10 ns, similar to the previous results, but which

contained two hydrophilic pores. This simulation was continued

for 120 ns to allow for the equilibration between the two leaflets.

The results are shown in Figure 9. Figure 9A shows the

fluctuation in the number of lipids in the inner monolayer

resulting from flip-flops between the inner and outer monolayer.

Figure 9B reveals the time averaged distribution in the mono-

layer population. On the basis of this distribution, we estimated

that there would be around 935 lipids in the inner monolayer

and 1593 lipids in the outer monolayer at equilibrium. These

results suggest that the values obtained with the “stand-alone”

MFFA boundary method presented in Table 2 are within the

tails of the expected distribution. From Figure 9A, it appears

that the number of flip-flop events between the two monolayers

stabilizes after approximately 30 ns. Therefore, the mismatch

between the values obtained by the “stand-alone” MFFA

boundary method is most likely related to an insufficient

relaxation time during the formation of the vesicle. However,

the introduction of artificial pores is a simple and powerful

method to obtain equilibrated vesicles.

Figure 6. Vesicle formation of a 20-nm-diameter pure DPPC vesicle. An additional repulsive harmonic potential of 0.3 nm width and a force
constant of 50 kJ mol-1 nm-2 was used to enhance demixing of the lipids at the boundary interface. Snapshots are shown at t ) 0, 1, 5, and 8 ns.
The head groups are colored cyan, and the tail groups, grey. A contour of the 2.5-nm-radius internal cavity is visible.

Figure 7. Overview of the five different vesicles formed by the presented MFFA boundary method. Shown from front to back are 20-, 30-, 40-,
50-, and 60-nm-diameter pure DPPC vesicles.

Figure 8. The radial number density in the membrane with respect to
the center of the vesicle. The red lines represent the vesicle obtained
by Marrink et al.4 Black and blue lines represent two vesicles formed
under MFFA boundary conditions. Solid lines represent the head group
region. Dotted lines represent the tail regions of the inner monolayer,
and dashed lines, the tail region of the outer monolayer.

TABLE 2: Comparison of Boundary Approach with
Conventional Spontaneous Aggregation (Shown Is the
Number of DPPC Molecules in the Inner and Outer Leaflet
of the Membrane)

# DPPCin # DPPCout

Marrink et al.:4 940 1588
conventional aggregation (I): 940 1588
conventional aggregation (II): 912 1616
MFFA boundary (I): 921 1607
MFFA boundary (II): 923 1605
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4. Discussion

Our aim was to develop an approach that allows large-scale
simulations of vesicular systems, without compromising on the
relevant near-atomic details of the underlying coarse grained
model. The results show that the use of a boundary potential to
replace bulk solvent, both inside and outside the vesicle, is
reasonable. Comparison of the structure of both lamellar bilayers
and of vesicles obtained with the boundary method to those
obtained using full solvation revealed no significant artifacts
as long as the solvent shell was sufficiently large. A solvent
shell of 2.5 nm was found to be sufficient for the effect of the
boundary potential to be negligible.

As expected from a model based on a cutoff scheme to evaluate
the pair interactions, the gain in computational efficiency is found
to be approximately linear with respect to the relative decrease in
solvent particles. This in turn depended on vesicle size, eq 1. For
the vesicle of 60 nm in diameter, the gain in computational
efficiency was considerable, around 60% in comparison with the
same vesicles under normal cubic periodic boundary conditions.
For more complex periodic boxes such as the rhombic dodecahe-
dron, the gain in efficiency was approximately 45%. The boundary
method will become progressively more effective for larger
vesicles. Considering, for instance, a vesicle of 100 nm, the gain
in computational efficiency is estimated as 72% compared to a
cubic box and 60% for a rhombic dodecahedron. In practice, the
estimated efficiency gain will be even higher as perfect linear
scaling of computational speed with the number of solvent particles
was assumed, which is never achieved in practice. The additional

computational costs due to the implementation of the MFFA
boundary are small. This is because the boundary force can be
tabulated as a set of cubic splines which are only dependent on
the position of the particles within the system. In GROMACS-
3.3, the additional costs due to the implementation of the MFFA
boundary method were less than 1% of the total computational
cost.

Further speed-up is obtained for the formation of the vesicles,
due to the molding effect of the boundary potentials. While one
could start from preassembled vesicles, it should be noted that
for a vesicle of a given radius neither the total number of lipids
nor the ratio between the lipids in the inner and outer monolayer
are known precisely. As a result, preassembled vesicles are likely
to be in a state of stress. Using the self-assembly approach, stress
can be released through the optimization of the vesicle size and
the exchange of lipids between the monolayers during the
process of vesicle formation. Moreover, we have demonstrated
that artificial pores can be used to allow further equilibration
even after the vesicles have sealed. This method seems essential
to obtain and to ensure fully equilibrated vesicles.

Our results indicate that the best method for vesicle formation
is obtained if a layer of water surrounds the lipid solution in the
starting configuration. This approach appears preferable to the
method where a selective repulsive potential is used for the lipids.
First, the solvent shell is easier to implement; second, the formation
of vesicles is faster, especially for larger vesicles (>30 nm
diameter). The reason for this is that, in the case of the selective
repulsive potential method, the diffusion toward the reaction zone
becomes the rate determining step in the vesicle formation. A
prerequisite of the method presented is that the total number of
lipids required is approximately known. An over- or underestima-
tion of the number of lipids required may lead to the formation of
stressed vesicles, as shown in Figure 5. The appropiate number of
lipids can be estimated from the following equation:

f(r))
4π

A
((r- d)2

+ r
2) (16)

Here, f(r) is the total amount of lipids in the vesicle as function
of its radius r, A is the area per lipid, and d is the characteristic
thickness of the bilayer. A fit of our results to eq 16 is given in
Figure 10. From Figure 10, it should be noted that a simple
prediction based on a fixed average area per lipid (A ) 0.654

Figure 9. (A) Number of lipid molecules in the inner monolayer as a
function of time in a DPPC vesicle (2528 lipids, 323 K). (B) Distribution
of lipids in the inner monolayer averaged over time (120 ns).

Figure 10. Total number of DPPC lipids versus vesicle radius for
vesicles obtained from the simulations (black squares). The radius was
calculated from the average distance of the phosphate groups in the
outer monolayer to the center of the vesicle. The dashed line is a fit of
eq 16. Here, A ) 0.654 nm and d ) 4.061 nm.
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nm2) and thickness (d ) 4.06 nm) from a bilayer patch closely
reproduces the data obtained for vesicles over the whole size
range. This result might be surprising given that the difference
in area per lipid between the two monolayers is relatively large
((30%) in the lower regions of the fitted curve.

Potential applications of the boundary potential method are
diverse. We have shown that the method is a fast way to efficiently
generate equilibrated vesicles. In addition, for a given minimum
width of the solvent layer, the use of a spherical boundary is
recommended to avoid artifacts caused by an otherwise inhomo-
geneous solvent distribution around the vesicle when simulated
under periodic boundary conditions. Due to the reduction in solvent
degrees of freedom, the boundary approach in general allows the
study of extended length and time scales for vesicular membranes.
Especially for large vesicles, the gain in computational speed is
very substantial. Formation of nanodomains, for instance, is
currently being simulated in our group for systems of comparable
size to those used in experimental studies. The MFFA approach is
also flexible; increasing the volume enclosed by the boundary
potentials allows one to include peptides or proteins. Membrane
poration by antimicrobial peptides is an example of a process which
would highly benefit from using our spherical boundary method,
taking place in a small solvent shell surrounding the bilayer. For
the size of the vesicles formed in this paper, thermal deformations
are expected to be very small.43 For larger or softer vesicles, these
modes will become more important. In such a case, an increase in
the width of the solvent shell may be required to prevent
suppression of such undulations. In the case of mixed systems,
where the effective area per molecule is not known, an increase in
the width of the solvent layers might also be required to guarantee
a greater flexibility for the preferred size of self-assembling vesicles.
Furthermore, one could study fusion of two vesicles by removing
the outer boundary potential (although for the complete fusion
pathway also the inner boundary potentials would have to be
removed). Another advantage of the method is its possibility to
increase the internal pressure inside the vesicle, by separate scaling
of the inner and outer boundaries. Osmotic shock experiments could
thus be simulated. Finally, spherical boundary potentials could be
applied to reduce the solvent layer around other molecules or
molecular assemblies with (quasi-)spherical geometry, such as
proteins, polymer chains, and micelles.

5. Conclusions

A method has been presented to efficiently simulate the
properties of self-assembled vesicles at near-atomic detail. The
method involves the application of boundary potentials to
replace both the internal and external excess bulk solvent.
Vesicles with diameters in the range from 20 to 60 nm were
obtained on a nanosecond time scale, without any noticeable
effect of the boundary potentials on their structure. Moreover,
a powerful method for equilibration of vesicles by introducing
artificial pores was demonstrated. These detailed vesicles may
be subjected to further studies including phase separations and
osmotic shock simulations.
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