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Abstract

Cyclic loadings produce progressive damage that
can ultimately result in wind turbine structural failure.
There are many issues that must be dealt with in
turning load measurements into estimates of
compenent fatigue life. This paper deals with how the
measured loads can be analyzed and processed to mect
the needs of both fatigue life calculations and
reliability estimates. It is recommended that moments
of the distribution of rainflow-range load amplitudes be
calculated and used to characterize the fatigue loading.
These moments reflect successively more detailed
physical characteristics of the loading (mmean, spread,
tail behavior). Moments can be calculated from data
samples and functional forms can be fitted to wind
conditions, such as wind speed and turbulence
intensity, with standard regression techniques.
Distributions of load amplitudes that accurately reflect
the damaging potential of the loadings can be
estimated from the moments at any wind condition of
interest. Fafigue life can then be calculated from the
estimated load distributions, and the overall, long-
term, or design spectrum can be generated for any
particular wind-speed distribution. Characterizing the
uncertainty in the distribution of cyclic leads is
facilitated by using a small set of descriptive statistics
for which uncertainties can be estimated. The effects of
loading parameter uncertainty can then be transferred
to the fatigue life estimate and compared with other
uncertainties, such as material durability.

Background

Fatigne loadings on wind turbines are fairly
difficult to characterize because they are of variable
amplitude with the intensity of the variations
depending on the wind environment of the turbine.
The loadings must be comprehensively described to
conduct fatigue analyses for various components.
Therefore, the loads at many locations on a turbine
must be determined (either from analysis or test) and
archived for future use in the fatigue analysis. ‘There is
a need for a procedure that describes loads simply,
while relying on a fairly small set of parameters
described over all wind conditions {wind speed and
turbulence). This procedure should be capable of
including information on how well the loads have been
determined, i.e., the uncertainty in the knowledge of
the loads.

There are 2 few universally applied procedures
currently in practice for describing fatigue loads on
wind turbines. Firsi, the loading time series is
obtained either from prototype measurements or
computer simulation. The time series is then rainflow
counted to identify significant cycles that produce
fatigue damage. Rainflow counting is a procedure for
determining the damaging loading cycles {mean and
amplitude) in an irregular time series.” Cycles are
usually summed into bins referenced to the mean and
amplitude of the cycle, The end result is a histogram
of the number of occurrences of cycles in each load

“This work is supported by the U.S. Department of Energy under contract DE-AC04-94A1.85000.

American Institute of Aeronautics and Astronantics

 DISTRIBUTION OF THIS DOCUMENT 15, Lt e
| UNLRTED
L

h




mean and amplitude bin, which condenses the data in
the original time series - by factors of thousands. The
cost of the condensation is that the resolution of the
data is reduced to the bin size of the histoprams. IEA
fatigue recommendations suggest 2 minimum of 50
bins.® However, any particular sample might use only
a fraction of the 50 available bins and resolution can be
reduced beyond what is necessary for future analysis.
‘When the nnmber of bins actually filled with data dips
below 16, the data are effectively reduced to four-bit
accuracy (something that would never be allowed in
the original data acquisition and should never be
permitied for fiture fatigue analysis). Finally, the
distributions are described as a function of average
wind conditions determined over 2 short interval,
typically ten minutes.

Figure 1 shows a typical description of the cycle
amplitudes and means in a particular wind speed
interval. The plot was produced using the rainflow
analysis features of the LIFE2 code.” LIFE2 does
fatigue analysis based on these histogram-type
descriptions of loadings, one loading description for
¢ach wind speed interval covering the entire operating
range. Separate distributions cover start-stop
transients and buffeting while parked in high winds.
Because the variation in the mean of each range is
often a minor factor in the damaging potential of the
loadings, this paper assumes the mean can be treated
as a constant, and focuses on the distribution of
amplitudes only. Figure 2 shows the same data plotted
as a function of amplitude only. If the mean values are
close to the ultimate strength, this simplification will
lead to siguificant errors, but that situation should be
faitly rare for well designed components.
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Figure 1: Typical Load Histogram for a HAWT
Flatwise Bending Moment over Cycle Mean and
Amplitude,
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The measured histogram is often taken to be the
characteristic distribution of loading cycles at the wind
conditions of the measurément (or simulation). This is
an approach that could be called “data based” or “non-
parametric” in that the definition of the distribution of
load amplitudes is based on the measured (or
synthesized) data. Then the histograms are commonly
used directly to calculate the fatigue lifetimes of
components, Sutherland, for example, applies this
approach directly in the LIFE2 fatigue and fracture
analysis code.* This approach has the advantage of
simplicity; there is no need for distribution modeling,
However, it depends on a rather large set of data to
describe each loading environment and does not lend
itself readily to illustrating systematic trends across
wind conditions. We also seek to understand the
importance of loads beyond the measured range and
include them in the analysis when found important.
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Figure 2: Typical Load Amplitude Histogram for a
HAWT Flatwise Bending Moment.

An alternate approach which could be called
“statistical” or “parametric” is to calculate a few
statistics of the loading and use those statistics to
describe the loading distribution. Strictly speaking, a
histogram is a collection of statistics, where the relative
frequency of each histogram cell is a parameter, or
statistic, of the distribution. This leads to a set of about
50 separate statistics to describe the complete
discretized distribution, Statistical approaches usually
seek to condense the description by calculating a very
small set of descriptive statistics, They have the
drawback of only being as good as the assamed
parameiric form and can be overly restrictive as a
result. On the good side, by condensing the number of
descriptive parameters, they promote understanding,
illustrate systematic variations and trends, and permit
smooth extrapolation where data are missing.
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Highly condensed statistical approaches are not new.
Veers® proposed the use of Rayleigh distributions of
stress amplitedes, which rely on only the RMS of the
stress histories to describe the entire distribution. The
problem is that the Rayleigh distribution appears to be
appropriate only for a single focation on a single type
of wind turbine (flatwise loads on vertical axis wind
turbines). Jackson proposed a scheme based on an
exponential fit to loading amplitudes from relatively
short data sets from horizontal axis wind turbines.®
Kelley’ continues in this vein emphasizing the
exponential natore of the low cycle, high stress {LCHS)
tail of the distribution. In this approach, only the slope
of an exponential fit to the highest of the cycle
amplitudes is nsed to describe the entire distribution.

It is not yet clear just where the fit shonld start, nor
that the exponential distribution is always the
appropriate choice.

Recently, Ronold, et al ¥ and Lange and Winterstein®
used a method for organizing loads based on the
moments of the measured load amplitudes. Successive
moments are particularly descriptive of the load
distribution: the first moment is the mean, the second
moement describes the spread about the mean, and the
higher moments reflect more detail in the tail behavior
of the distribution, The moments are then functionally
fitted to both wind speed and turbulence intensity. The
actual distribution of stress amplitudes at any given
wind condition can be estimated from the moments as
described in Winterstein and Lange.'® (This method of

calculating moments and estimating stress distributions

has now been included in LIFE2.')

The main purpose of the Ronold et al. and Lange and
Winterstein papers, however, was to show how to
evaluate safety factors needed to produce a

- predetermined level of risk of fatigue failure.
Explanations were aimed at illustrating the uncertainty
in the stress distributions due to limited data. So, the
details of calculating the statistical quantities and using
them to describe the load distributions over all climate
conditions was given secondary importance in the
presentations. Therefore, the advantages of this
approach may not be clearly evident from the existing
literature. The purpose of this paper is to illustrate the
methods developed previcusly and to show why this
statistical approach is likely to accomplish the needs of
fatigue-life prediction, Ioadmg-Spectra definition, and

uncertainty analysis.

3

Usfngﬂloments of Load Amplitudes to
Describe Fatique Loading

The statistical moments of random quantities are
characteristic values that can be used to approximate
their distribution fimctions. The first three moments,
t4;, of the rainflow-range amplitudes, S, are defined
here as:
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where E].] is the expectation {or average) operator. The
first moment is the mean or average amplitude, a
measure of central tendency. The second moment is
the Coefficient of Variation (COV), which is the
standard deviation divided by the mean, 2 measure of

 the distribution spread. The first two moments can be

exactly matched by any two parameter distribution, and
are often fitted with the Weibull (of which the
exponential and Rayleigh are special cases with COV
of 1.0 and 0.523, respectively). The third moment is
the skewness, which provides more detailed
information on the tail behavior of the distribution.
Since load amplitude data are often well fit by a
Weibull distribution, a slight distortion of the Weibull
distribution is used to exactly match the first three
statistical moments.!? The three-moment match
produces a distortion of the standard Weibull
distribution function so that it plofs as a quadratic
rather than linearly on a Weibull plot.

An example data set will be used here to illustrate the
procedure for analyzing fatigue loading data to produce
a comprehensive load definition over all wind
conditions. The data displayed here were collected
from the Advanced Wind Turbines” AWT-26 P2
prototype in Tehachapi, California in 1994. They are
perhaps a typical example of data collected on
prototype turbines during development efforts around
the world. These data are from a single location on the
turbine - the blade root flatwise bending - but conld be
from any component of loading with fatigue damaging
potential. The data consist of over thirty hours of
turbine operation collected in {en minute segments.
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Figure 3 shows the number of ten minute samples that
fall into each wind bin divided over both wind speed -
and turbulence intensity, defined as standard deviation
of wind speed divided by mean wind speed. Wind
speed runs from about 5 to 20 m/s and turbulence
intensity ranges from about 8 to 30%, although most of
the samples fall on the lower half of that range. Figure
3 illustrates one of the difficulties of determining the
long-term loading spectrum directly from measured
data even with a large sample. The measurements are
rarely indicative of the test-site distribution of climate
conditions, much less of any particular site for which
the turbine is likely to be installed. Like most
measurement campaigns, the data are sampled more
heavily in high wind conditions where the turbine
response is more interesting and provides information
on high wind response. Simply including all the
measurements into a global distribution would not
produce a loading spectrum indicative of any site. The
data shonld be used to determine how the turbine
responds as a function of wind conditions and then it
can be applied to any site for which it might be
intended, including standard type-classification sites in
certification standards.
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Figure 3: Number of 10 minute samples in each wind
condition bin for the AWT-26 prototype measurements
used as an example,

Within each wind bin, histograms of rainflow
amplitudes have been combined from all the ten-
minute samples that share the bin characteristics for
average wind speed and turbulence intensity. Figure 4
shows the load amplitude data at one particular wind
cendition, 11,5 m/s wind speed and €.155 turbulence
intensity, on a Weiball probability scale. This scale
enhances the tail of the distribution where much of the
fatigue damage is caused. A quadratic Weibull fit
created to match the first three moments of the load
amplitude data is superimposed on the plot,

Distribution shapes can be similarly approximated at
any wind speed bin from the moments of the
amplitndes in that bin,
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Fignre 4: Distribution of amplitudes in the V= 11.5,
I =0.155 bin, along with various fits to the data, The
quadratic Weiball is based on three moments.

Fitting Moments of the Rainflow Amplitudes to
Wind Conditions

The moments of the rainflow-range amplitudes were
calenlated for all the 30-plus hours of data. Figures 5,
6, and 7 show the results for the mean, COV, and
skewness, respectively, There appears to be an
upward, approximately linear trend of the mean with
wind speed, a mild tendency for COV to decrease with
wind speed, and no particular trend of skewness with
wind speed.
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Figure 5: First moment (mean load amplitude) from

“the AWT data set.

‘Moment behavior as a function of wind conditions is
illustrated by a standard regression fit of the moment

4
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data over the two dimensional space of wind speed, 7,
and turbulence intensity, J, with the following
functional form.

b <
14 I |
E[ﬂf]—af(%f] (‘g} )

V,r and Ir are the reference vatues of the independent
variables ¥ and 7. (Ronold® used a polynomial
regression over I and 7 rather than the power law
shown here.)
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Figure 6: Second moment (load amplitude COV})

measurement from the AWT data set.
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Figure 7; Third moment (load amplitude skewness)
measarement from the AWT data set.

‘We choose Vs and I,y values as the geometric mean
values found from the data; for example,

Vvgf = 03 V)/™
in terms of the individual mean wind speéds, Vi,

observed in each 10-minute segment. In this example
Ver=11.41m/s, and the analogous geometric mean of

the turbulence intensity is 7,,,=.157. By using these
geometric means to normalize our fit, we achieve
uncorrelated estimates of the parameters a;, b;, and ¢,
herein denoted by &, &, and & to distinguish them
from the true (but unknown) values.

In addition to the estimates a;, E, . and &, a standard
regression analysis provides several other useful pieces
of information. These include the corresponding
standard deviations of the estimates, O'af, > Ob, > and

ac, which reflect the effect of limited data. These are

conunonly reported in normalized form by associated
“s-gtatistics,” which are the inverse of the COV
definition;

la

and stmilarly for 7 and l'c.‘ . Large ¢ values indicate

relatively important parameters; i.¢., parameter
estimates that are “significantly” different from zero,
as compared with their statistical uncertainty. One
may, for example, regard variables with [ = 2 as
statistically significant, since if the true g; = 0, the
observation 7, =2 corresponds to the improbable

event that the estimate &; happens to fall 2 standard
deviations away from its mean,

Finally, regression also supplies a gross measure of the
adequacy of the fit in Eq. 4. This is commonly
reported as the unitless quantity R, the fraction of the
variability “explained” by the predictive equation. In
this case, becanse linear regression is applied to the
logarithm of Eq. 4, R is computed as

N
Zﬂnﬂs—mﬁf)z
2 _ i=
R*=1-El- 2 . )
> Qng;)

i=1

Here 1; is the observed moment value computed

- directly from the data, while fi; is the corresponding

estimate obtained from Eq. 4 with its estimated
parameters a; , 5, ,and &. R*= 1 implies perfect
prediction; i.e., )t; = Ji; for all observations, Tabie 1

- 5
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Table I: Load-Amplitude Moments vs. Wind Condition -
Regression Results
Moment | Parameter | Parameter | = ¢ B
Symbols Estimates

ar 0.254 117.

Mean b; 1.003 21.7 0.77
(1) cr 0.380 7.14
a; 1.125 417.

cov bs -0.139 -14.6 0.86
() cz 0.160 10.7
Skew- a3 1.822 192,

Bl b3 £.167 -5.90 0.26
(1) c3 -0.008 025
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Figure 8; Functional fits of the first three moments

over all wind speeds at the reference turbulence

intensity, 7 = 0.16.

Reasons Why the Definition of 7 Used Here May
Not Be Best It would seem from Tabie 1 that 7 as

summarizes all the mean parameter values, { values,'
and R values of each parameter for each moment.

By examining the values of the parameters and of f and
R?, substantial information on the character of the
loading can be obtained. For example, a small
exponent (either &, or ¢;) reflects minimal dependence
of the i* moment on ¥ or J respectively. The only
strong dependence reflected by a high exponent in this
example is that the mean of the load amplitudes
depends strongly on wind speed, V, (b, =1.0 implies a
linear relationship) and weakly on I (about / to the one-
third power). The second and third moments , COV
and skewness, depend even more weakly on both
independent variables and might be taken to be
approximately independent of wind conditions in this

example, Figure 8 shows the functional fits to all three

moments versus wind speed at the characteristic
turbulence intensity, J,.x

The ¢ values of the parameters reflect how confident
you can be in a nonzero value of the coefficient. Since
the «; reflect the regression fit at the reference
conditions, there should be high confidence in their
values. For the exponents, a zero value means no
dependence of the moment on the particular variable,
either For . All of the coefficients in this example
exhibit high levels of significance, except for a clear
lack of dependence of skewness on /. Most of the
variability in the mean and COV is explained by the
regression, as indicated by relatively high R values of
0.77 and 0.86, but the regression explains very little of
the skewness variations (R® = 0.26), which indicates
that there is a lot of sample to sample varation that is
uncorrelated with either Vor 7.

calculated here is not necessarily the best defining
factor in segregating stress responses at the same
average wind speed. From a physical point of view, one
would expect that some measure of the roughness in
the inflow must affect the stress amplitude
distributions. There are many reasons why J may not
be adequate to describe it. The greatest deficiency is
probably that it does not reflect any of the spatial
variations in the flow. Several researchers have
reached that conclusion and are proposing better
measures of inflow damaging potential. Kelly has
suggested measures of atmospheric stability and shear
stress, which should have substantiat influence on the
spatial distribution of wind speed fluctuations.”
Barnard and Wendell suggest using two point
measurements to directly measure the spatial variations

" in the wind."” Both require additional measurements

of either temperature, all three wind components, or
wind speed at additional locations, which is an
impediment to casy implementation. However, the
additional measurements may ultimately be required.
Here, [ was estimated from the standard deviation of
the wind speed over each ten minute interval with no
additional processing, Connell et al."* have noted that
calculations of / should be done with some sort of “de-
trending,” or high-pass filtering that will remove the
long term fluctuations while preserving the variations

" likely to drive rotor dynamics, It may also be that such

6

a filtered J will better correlate to turbine response.
This is a topic for which future study is planned.

Loading Cycle Rate The rate at which cycles are
accumutlated is also an important quantity in
conducting a fatigue analysis. The cycle rate can be
treated just like the moments of the load amplitudes in
the previous section. Figure 9 shows the AWT cycle
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rate data plotted versus wind speed. Again, for this
example, there is minimal dependence on 7, and
significant dependence on V. However, the relative
size of the change in cycle rate with wind speed is
small enough (+15%) that variations in the rate will
have a minimal effect on lifetime estimates.
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Figure 9: Cycle rates in each of the wind condition
bins from the AWT data set.

Using the Loading Model in Fatique and
Reliability Analysis

Because the trends with turbulence intensity are small
in this data set, we will restrict the rest of the loading
descriptions in this example to wind speed dependence
only. Analysis including the two dimensional
regression has been published by Lange and
Winterstein® and by Ronold et al.* The plotting is
simplified and perhaps the approach may be more
clearly demonstrated by restricting the example to one
dimension, ¥,

Once the moments have been described over all wind
speeds by Eq. 4, the loading distributions can be
estimated using the procedures described in detail Refs.
8 and 9. Figure 10 shows the resulting load amplitude
distributions, plotted as exceedence diagrams, for
several wind speeds. These wind speeds reflect the
short term (10 minute) average typically used in data
gathering. The shapes are quite similar especially due
to the fact that the COV and skewness (second and
third moments) depend only weakly on wind speed (see
Figure 8).
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Figure 10; Load distributions at various wind speeds
estimated from the functional fiis to the moments over
wind speed.

With the load distributions defined conditionally on the
wind speed, it is a fairly simple matter to detcrmine the
long-term load distribution, which is sometimes called

the design spectrum. It is calculated by integrating the
conditional distributions over all wind speeds.

F($)= [ FSINS@)av ©)
0

where £1) is the wind speed probability density
function and F(S]V} is the distribution of load
conditional on wind speed. F{(.) could be either the
density fimction, the cumulative distribution function,
or the inverse cumulative distribution function (which
is the same as the exceedence diagrams shown in
Figure 10). Cut-in and cut-out conditions can also be
applied by integrating between the limits. Figure 11
shows design spectra in terms of exceedence diagrams
calcutated from Eq. 6 for Rayleigh distributed wind
speeds with two different long-term averages, 6 and 7
m/s. The two spectra are quite different in shape from
any of the short term distributions in Figure 10. The
effect of different sites is readily seen as about a factor
of three difference in the probability (frequency of
occurrence) for a given load amplitude in the high
amplitude end of the plot in Figure 11. The fatigue
damage is then calculated directly from the long-term
distribution and the loading frequency.
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Figure 11: Overall load distribution summing all the
lead distributions at different wind speeds weighted by
Rayleigh wind-speed distributions with 6 and 7 m/s
average wind speeds.

The advantages of describing the loading first
conditionally on wind conditions and then applying the
conditional definition to specific, site-specific wind
distributions is firstly that the significance of climatic
conditions can be determined. Parametric studies are
casily accomplished by varying the wind speed
distributions (or, if included in the analysis, the
turbulence parameters). Secondly, fatigue analyses can
be easily adapted to the wind conditions of different
sites or certification class designators with this loads
model. Recall that wind turbine certification standards
are usually tied fo a prescribed site characterization or
“class.”

FORM-Based Uncertainty Analysis and Design
Load Specira

Finally, we show how the foregoing results (e.g., the
long-term load distribution in Fig. 11) can be
conveniently adjusted to reflect uncertainty in both
loading and material behavior. We rely here on _
concepts from first-order reliability methods (FORM).
These provide not only an efficient method to estimate
the fatigue reliability of a wind turbine component, but
also the particular combination of uncertain factors
most likely to cause such failure (the FORM design
point).

The program FAROW'?® uses FORM methods to
propagate uncertainty in 15 different factors; here for
simplicity we consider the two (net) uncertain factors,
£c and gg, to reflect uncertainty in $-¥ curve and
long-term loads distribution, respectively, The
resulting number of cycles to failure, Ay is

C - Cmm ‘E¢
E[Sm] E[Snom]m ';ESm

Npot = )

Here N = C/§" is the companent’s S-N carve,
parameterized by a slope m (fixed) and intercept C
(uncertain). Sy and C,.,, include all the factors that
influence loading and material resistance, respectively.
Ref. 8 includes a proposed definition of these nominal
factors, which will not be repeated here. (Suffice it to
say here, £greflects uncertainty in S, due to lmited
knowledge both of the wind ¢limate distribution - i.c.,
JV) is the probability density of mean wind speed - and
of the loads due to limited data at various wind speeds.

£ reflects uncertainty in material strength and
fatigue modeling.)

Numerical routines like FAROW' could be used here
to continue with the uncertainty analysis including the
detail needed to accurately reflect the physical
situation, To include an analytical solution more
fitting for a short example, we here let £~ and £g be
assumed to be independent and lognormally
distributed. FORM estimates the most likely values to
cause failure as

S* = SuomY s> ¥Ys = exp(+0y, strs )
C'=Coom¥es Vi =eXp(—Opc0cp)

which are equal to the nominal loading and strength
times the safety factors, 1 and .. Here = @"'(1-p)
is the “reliability index” associated with a target failure
probability py per service life (@ is the inverse
Gaussian distribution function). o= m Oy, and
O = Oge/Oy , in terms of the net standard deviation
of the safety margin M.

2 2
O =m0, 5)° +Opc

With the lognormal model, we also have that

s = 1}.1nu+_1:0\r§); and
Ome = 1/m(1+cov§)-.

As a numerical example we consider a blade material,
with §-¥ curve characterized by exponent & = 6, and
coefficients of variation COV;s = 0.10 and COV =
0.50, respectively. The above results then yield m O
=0.60, o, =0.76, and ag = 0.78. This gives a load
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factor ys = 1.2 to achieve p; =107 (§=2), and ys= 1.3
to achieve pr~ 107 (8 =3), per service life. These
factors can then be applied to a nominal, best-
estimated fatigue load spectrum; e.g., by rescaling the
long-term distribution in Fig. 11. In Figure 12, 2
safety factor of 1.3 is applied o the 7 m/s data. Notice
that the effect is much smatler than the change in
average wind speed of 1 m/s. This implies that a
loading uncertainty (which includes wncertainty in the
wind speed distribution) with COV = 0,10, as assumed
in this exampie, may be a relatively small uncertainty
on loading parameters.

Note that this simple, 2-variable formulation was
chosen in this example to permit anaivtical expressions
for S and C; however, more general FORM codes
(c.g., FAROW) provide analogous resuits, in more
complex random variable problems, through numerical
optimization routines.
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Figure 12: Overall load amplitude distribution ata 7
nm/s Rayleigh site compared fo the increased
distribution with a safety factor of 1.3 applied.

Conclusiens

Rainflow-counted cyclic-loading amplitudes are
described by the first three statistical moments of the
amplitudes. Functional forms of these moments are
fitted to wind conditions (wind speed and turbulence
intensity) by standard regression techniques on the
parameters of the functions. The statistics of the
regression provide useful information on the nature of
the behavior of the loads as a function of wind _
condition. Plus, the unexplained variation remaining
after the regression reflects the degree of uncertainty in
the data. The distribution of load amplitudes can then
be estimated at any wind speed and used for both
fatigue life estimation and overall load spectrum

generation. The overall spectrum reflects the wind
conditions at a given site or as described in a
certification requirement. The uncertainty in the
loadings can then be fed into a probabilistic analysis to
determine the safety factor required to achieve the
desired level of reliability, which is related to the
probability of premature failure, All of these features
of the moment-based approach to load modeling were
illustrated with a specific example.
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