
Mohiuddine et al. Advances in Difference Equations  ( 2016)  2016:317 

DOI 10.1186/s13662-016-1016-y

RESEARCH Open Access

Application of measures of
noncompactness to the infinite system of
second-order differential equations in
ℓp spaces
Syed Abdul Mohiuddine1* , Hari M Srivastava2,3 and Abdullah Alotaibi1

*Correspondence:

mohiuddine@gmail.com
1Operator Theory and Applications

Research Group, Department of

Mathematics, Faculty of Science,

King Abdulaziz University, P.O. Box

80203, Jeddah, 21589, Kingdom of

Saudi Arabia

Full list of author information is

available at the end of the article

Abstract

In this article, we use the technique based upon measures of noncompactness in

conjunction with a Darbo-type fixed point theorem with a view to studying the

existence of solutions of infinite systems of second-order differential equations in the

Banach sequence space ℓp. An illustrative example is also given in support of our

existence result.
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1 Introduction

Measures of noncompactness endow helpful information, which is extensively used in

the theory of integral and integro-differential equations. Besides, it is very helpful in the

study of optimization, differential equations, functional equations, fixed point theory, etc.

Some of the well-known measures of noncompactness are the Kuratowski measure (α),

the Hausdorff measure (χ ), and the Istrăţescu measure (β), which were introduced by

Kuratowski [], Goldenštein et al. [] (also studied by Goldenštein and Markus []), and

Istrăţescu [], respectively. Darbo [] was the first who presented a fixed point theorem by

using the idea of Kuratowski measures of noncompactness, the function α, which is popu-

larly called the Darbo fixed point theorem. This fixed point theorem generalized two very

important and famous fixed point theorems, namely, (i) the classical Schauder fixed point

theorem and (ii) special variant of the Banach fixed point theorem. The Darbo fixed point

theorem has been generalized in many different directions. In fact, there is a vast amount

of literature dealing with extensions and/or generalizations of this remarkable theorem.

Recently, Aghajani et al. [] presented a generalization of the Darbo fixed point theorem

and used it to investigate the existence result concerning a general system of nonlinear

integral equations. For some other recent works related to these concepts, we refer the

interested reader to (for example) [–], and []. We also refer to the recent work by
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Srivastava et al. [] for some applications of fixed point theorems to fractional differen-

tial equations (for details, see []).

Mursaleen andMohiuddine [] earlier reported the existence theorems in the classical

sequence space ℓp for an infinite system of differential equations. On the other hand, exis-

tence theorems for infinite systems of linear equations in ℓ and ℓp were given by Alotaibi

et al. []. Our main object in this sequel is to determine sufficient conditions for the solv-

ability of an infinite system of second-order differential equations.We use the Dardo-type

fixed point theorem given by Aghajani and Pourhadi [] for a new type of condensing

operator and the method based upon the measures of noncompactness to establish the

existence theorem for the above-mentioned infinite systems in the Banach sequence space

ℓp with ≦ p < ∞. Our existence theorem is an extension of those obtained by Aghajani

and Pourhadi [] in the sequence space ℓ.

2 Preliminaries and notation

Let ω denote the space of all complex sequences x = (xj)
∞
j= or, simply, x = (xj). Any vector

subspace of ω is called a sequence space.We use the standard notation ℓ∞, c, and c to de-

note the set of all bounded, convergent, and null sequences of real numbers, respectively.

ByN,R, andC we denote the sets of natural, real, and complex numbers, respectively. We

recall that the notion of little o is used for comparison of growth of two arbitrary sequences

xjand yj and is defined by

xj = o(yj) ⇐⇒ lim
j→∞

xj

yj
=  (yj �= ).

We introduce the space ℓp of all absolutely p-summable series as follows:

ℓp =

{

x ∈ ω :

∞
∑

j=

|xj|p < ∞
}

(≦ p <∞).

Clearly, ℓp is a Banach space with norm

‖x‖p =
( ∞

∑

j=

|xj|p
)/p

(≦ p < ∞).

By e(j) we denote the sequence with jth term  and all other terms zero (j ∈ N); we also

denote e = (, , , . . .). For any sequence x = (xj), let its n-section be given by

x[n] =

n
∑

j=

xje
(j).

A sequence space X is called a BK space if it is a Banach space with continuous coordi-

nates pk : X → C and pk(x) = xk for all x = (xj) ∈ X and k ∈ N. A BK space X ⊃ ψ (that is,

the set of all finite sequences that terminate in zeros) is said to have AK if every sequence

x = (xj) ∈ X has a unique representation

x =

∞
∑

j=

xje
(j).
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We denote byMX , (X,d), and B(x, r), respectively, the class of all bounded subsets of X,

the metric space, and the open ball with center at x and radius r, that is,

B(x, r) =
{

y ∈ X : d(x, y) < r
}

.

Let F ∈MX . Then the Hausdorff measure of noncompactness of F is defined by

χ (F) = inf

{

ǫ >  : F ⊂
n

⋃

j=

B(xj, rj),xj ∈ X, rj < ǫ (≦ j≦ n;n ∈N)

}

.

The function χ :MX → [,∞) is called the Hausdorff measure of noncompactness.

We now recall some basic properties of the Hausdorff measure of noncompactness. Let

F , F, and F be bounded subsets of the metric space (X,d). Then

(i) χ (F) =  if and only if F is totally bounded;

(ii) χ (F) = χ (F̄), where F̄ denotes the closure of F ;

(iii) F ⊂ F implies that χ (F)≦ χ (F);

(iv) χ (F ∪ F) = max{χ (F),χ (F)};
(v) χ (F ∩ F) = min{χ (F),χ (F)}.
In the case of a normed space (X,‖ · ‖), the function χ has some additional properties

connected with the linear structure. For example, we have

χ (F + F)≦ χ (F) + χ (F),

χ (F + x) = χ (F) for all x ∈ X,

χ (αF) = |α|χ (F) for all α ∈C.

Theorem  (see []) Let X be a BK space with a Schauder basis (bj)
∞
j= and F ∈MX .Also,

let Pj : X → X (j ∈N) be the projector onto the linear span of {e(), e(), . . . , e(j)}. Then



a
lim sup
j→∞

{

sup
x∈F

∥

∥(I – Pj)(x)
∥

∥

}

≦ χ (F)≦ lim sup
j→∞

{

sup
x∈F

∥

∥(I – Pj)(x)
∥

∥

}

, ()

where I is the identity operator on X, and

a = lim sup
j→∞

‖I – Pj‖.

It is known that ℓp ( ≦ p < ∞) is a BK space with AK with respect to its usual norm

‖ · ‖p. Additionally, {e(), e(), . . .} as depicted from a Schauder basis for ℓp, in view of (),

the following result is derivable by using Theorem  (see [] and []).

Theorem  Let F be a bounded subset of X = ℓp. Then

χ (F) = lim
k→∞

sup
x∈F

{(

∑

j≧k

|xj|p
)/p}

. ()

The following generalization of the Darbo fixed point theoremwas established by Agha-

jani et al. [] by using a control function.
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Theorem  Let C be a nonempty, bounded, closed, and convex subset of a Banach space

X, and let T : C → C be a continuous function satisfying the inequality

μ
(

T(F)
)

≦ ϕ
(

μ(F)
)

()

for each F ⊂ C , where μ is an arbitrary measure of noncompactness, and ϕ : [,∞) →
[,∞) is an increasing (not necessarily continuous) function with

lim
n→∞

ϕn(t) = .

Then T has at least one fixed point in the set C .

The notion of (α,φ,ϕ)-μ-condensing operators and α-admissible operators were re-

cently demonstrated by Aghajani and Pourhadi [] by considering ϕ and φ as follows.

We use the notation � to denote the functions ϕ : [, +∞)→ [,∞) like

lim inf
n→∞

ϕ(an) = ,

conferred that

lim
n→∞

an = ,

where (an)n∈N is a nonnegative sequence. For ϕ ∈ � , let us consider a function φ :

[, +∞)→ [, +∞) that satisfies the following conditions:

(i) φ is a lower semi-continuous function with φ(t) =  if and only if t = ;

(ii) lim infn→∞ ϕ(an) < φ(a), provided that limn→∞{an} = a.

We use the notation �ϕ to denote the class of all such functions. Throughout this paper,

by ConvF we denote the convex hull of F ⊂ X.

Let T : W ⊆ X → X is an arbitrary mapping. Further, we state that T is (α,ϕ,φ)-μ-

condensing if the functions α :MX → [, +∞), ϕ ∈ � , and φ = �ϕ are such that

α(F)φ
(

μ(TF)
)

= ϕ
(

μ(F)
)

(F ∈W ),

where both F and its image TF belong toMX .

Let T and α be given mappings as before. Then T is α-admissible if

α(F)≧  �⇒ α(ConvTF)≧  (F ∈W ;F ,TF ∈MX).

Remark  If T follows the Darbo condition with regard to a measure μ and a constant

k ∈ [, ), that is, if

μ(TF) = kμ(F) (F ∈W ;F ,TF ∈MX),

then T is an (α,ϕ,φ)-μ-condensing operator, where α(F) =  for any set F ∈ W such that

F ∈MX , φ is the identity mapping, and the function ϕ(t) = kt, t ≧ . In this regard, T is a

μ-contraction.
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Aghajani and Pourhadi [] also established the following fixed point theorem by using

α-admissible and (α,φ,ϕ)-μ-condensing operators.

Theorem  Let C ∈MX be a closed convex subset of a Banach space X, and let T : C → C

be a continuous (α,ϕ,φ)-μ-condensing operator, where μ is an arbitrary measure of non-

compactness. Moreover, T is α-admissible, and α(C) ≧ . Then T has at least one fixed

point that pertains to kerμ.

3 Infinite systems of second-order differential equations

Let us consider the following infinite system of second-order differential equations:

–
dxi

dt
= fi(t,x,x,x, . . .) ()

with the initial conditions given by

xi() = xi(T) = 
(

i ∈N :=N∪ {} = {, , , . . .}; t ∈ I = [,T]
)

.

The space of all continuous real functions on I with values in R and the space of all

functions with two continuous derivatives on the interval I are shown by the standard

notations C(I,R) and C(I,R), respectively. It is evident that x ∈ C(I,R) is a solution of

() if and only if x ∈ C(I,R) is a solution of the following system of integral equations:

xi(t) =

∫ T



G(t, s)fi
(

s,x(s),x(s),x(s), . . .
)

ds (t ∈ I), ()

where

fi(t,x,x,x, . . .) ∈ C(I,R) (i ∈N),

and the Green function G(t, s) associated with () is given by

G(t, s) =

{

t
T
(T – s) (≦ t ≦ s≦ T),

s
T
(T – t) (≦ s≦ t ≦ T).

()

For more details of green functions, we refer to []. We can rewrite () with the help of

() as follows:

xi(t) =

∫ t



s

T
(T – t)fi

(

s,x(s),x(s),x(s), . . .
)

ds

+

∫ T

t

t

T
(T – s)fi

(

s,x(s),x(s),x(s), . . .
)

ds. ()

Upon differentiating both sides of () with respect to t, we get

d

dt

{

xi(t)
}

= –


T

∫ t



sfi
(

s,x(s),x(s),x(s), . . .
)

ds

+


T

∫ T

t

(T – s)fi
(

s,x(s),x(s),x(s), . . .
)

ds. ()
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Again, by differentiating both sides of () with respect to t we obtain

d

dt

{

xi(t)
}

= –


T
tfi

(

t,x(t),x(t),x(t), . . .
)

+


T
(t – T)fi

(

t,x(t),x(t),x(t), . . .
)

= –fi
(

s,x(s),x(s),x(s), . . .
)

.

We now investigate the existence result concerning the second-order differential equa-

tions for the infinite system given by () in the Banach sequence space ℓp (≦ p < ∞) with

the help of measures of noncompactness. For this investigation, we consider the following

hypotheses:

(i) The functions fi (i ∈N) are defined on I ×R
∞ and take real values. Furthermore,

the operator f is shown on the space I × ℓp as

(t,x) �→ (fx)(t) =
(

f(t,x), f(t,x), f(t,x), . . .
)

,

which represent the space of maps from I × ℓp into ℓp; it is found that the class of

all functions {(fx)(t)}t∈I is equicontinuous at every point of ℓp.
(ii) There are a nonnegative mapping g : I →R+, a function h : I × ℓp →R, and a

super-additive mapping ϕ :R+ →R+, that is,

ϕ(s + t)≧ ϕ(s) + ϕ(t)

for all s, t ∈R+, such that

h(t,x)≧  �⇒
∣

∣fi(t,x,x,x, . . .)
∣

∣

p
≦ gi(t)ϕ

(

|xi|p
)

, ()

where x = (xi) ∈ ℓp, t ∈ I , and i≧ k for some k ∈N.

(iii) The function G(t, s)g(s) is integrable on I and such that

g(s) = lim sup
i→∞

{

gi(s)
}

(i ∈N)

for any fixed element t ∈ I . Additionally, if a nonnegative sequence (yn)n∈N

converges to some number ℓ, then

lim inf
n→∞

ϕ(yn) <
ℓ

C
()

such that

sup
t∈I

{∫ T



∣

∣G(t, s)
∣

∣

p
g(s)ds

}

≦ C

for some positive constant C.

(iv) There is a function x such that

h
(

t,x(t)
)

≧  (∀t ∈ I). ()
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In addition, for t ∈ I , we have

h
(

t, y(t)
)

≧  �⇒ h

(

t,

(∫ T



G(t, s)fi
(

s, y(s), y(s), y(s), . . .
)

ds

))

≧  ()

for all y(t) ∈ ℓp.

We are now prepared to formulate our main result.

Theorem  Under assumptions (i) to (iv), the infinite system of second-order differential

equations () has at least one solution x(t) = (xi(t)) such that x(t) ∈ ℓp for each t ∈ I .

Proof Let us consider the operator F = (Fi) defined on C(I,ℓp) by

(Fx)(t) =
(

(Fix)(t)
)

=

(∫ T



G(t, s)fi
(

s,x(t),x(t),x(t), . . .
)

)

,

where x(t) = (xi(t)) ∈ ℓp, xi ∈ C(I,R), and t ∈ I . Taking into account assumption (i), it is

clearly seen thatF is continuous onC(I,ℓp).Obviously, the functionFx is also continuous,

and (Fx)(t) ∈ ℓp if x(t) = (xi(t)) ∈ ℓp. In view of the fact that ϕ is superadditive, together

with Eq. () and hypothesis (iii), it follows that

∥

∥(Fx)(t)
∥

∥

p

p
=

∞
∑

i=

∣

∣

∣

∣

∫ T



G(t, s)fi
(

s,x(s),x(s),x(s), . . .
)

ds

∣

∣

∣

∣

p

≦

∞
∑

i=

∣

∣

∣

∣

(∫ T



(

G(t, s)fi
(

s,x(s),x(s),x(s), . . .
))p

ds

)/p(∫ T



ds

)/p′ ∣
∣

∣

∣

p

≦ Tp/p′
∞

∑

i=

∫ T



∣

∣G(t, s)
∣

∣

p∣
∣fi

(

s,x(s),x(s),x(s), . . .
)
∣

∣

p
ds

≦
Tp/p′

Tp

p

∫ T



∥

∥(fx)(s)
∥

∥

p

p
ds < ∞,

where p >  and /p + /p′ = . We now consider the operator F = (Fi) defined on a

nonempty bounded setQ ∈Mℓp (whereMℓp denotes the family of all nonempty bounded

subsets of ℓp) including the functions x(t) = (xi(t)) ∈ ℓp with

h
(

t,x(t)
)

≧ 

for any fixed t ∈ I . Then, clearly, Eq. () yields

χ (FQ) = lim
n→∞

sup
x(t)∈Q

{(

∑

j≧n

∣

∣

∣

∣

∫ T



G(t, s)fj
(

s,x(s),x(s),x(s), . . .
)

ds

∣

∣

∣

∣

p)/p}

≦ lim
n→∞

sup
x(t)∈Q

{(

Tp/p′ ∑

j≧n

∫ T



∣

∣G(t, s)
∣

∣

p∣
∣fj

(

s,x(s),x(s),x(s), . . .
)
∣

∣

p
ds

)/p}

≦ lim
k→∞

sup
x(t)∈Q

{(

Tp/p′ ∑

j≧k

∫ T



∣

∣G(t, s)
∣

∣

p
gj(s)ϕ

(
∣

∣xj(s)
∣

∣

p)
ds

)/p}
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≦ lim
k→∞

sup
x∈Q

{(

Tp/p′ ∑

j≧k

Cϕ
(

|xj|p
)

)/p}

≦ C′ lim
k→∞

sup
x∈Q

{

ϕ

(

∑

j≧k

|xj|p
)/p}

= C′ lim
k→∞

{

ϕ

(

sup
x∈Q

{(

∑

j≧k

|xj|p
)/p})}

≦ C′ϕ
(

χ (Q)
)

.

This shows that

α(Q)φ
(

χ (FQ)
)

≦ ϕ
(

χ (Q)
)

,

where α :Mℓp → [,∞) is the mapping defined by

α(Q) =

{

 (h(t,x(t))≧ ;x ∈Q; t ∈ I),

 (otherwise),

and

φ(b) =
b

C′ (b ∈R+).

Obviously, φ ∈ �ϕ , and it satisfies (). Interestingly, by hypothesis (iv) we conclude that

the operatorF is α-admissible and satisfies all of the conditions of Theorem . Therefore,

F has at least one fixed point x = x(t) such that x(t) ∈ ℓp for all t ∈ I . Hereof, the function

x = x(t) is a solution of the infinite system (). �

Remark  Our existence theorem (Theorem ) is more general than that proved earlier

by Aghajani and Pourhadi []. Indeed, if we set p =  in the sequence space ℓp, then it

reduces to the sequence space ℓ, and so Theorem . of Aghajani and Pourhadi [] is a

particular case of our Theorem .

We now present an interesting illustrative example in support of our result.

Example Consider the following second-order differential equations:

–
d

dt
{xq} =

t(T – t)e–qt

(q + )
+

∞
∑

r=q

xr(t)
√
t

( + q)(r + )
, ()

where q ∈N and t ∈ I = [,T] ( < T < 
√
). Obviously, the functions aqr(t) given by

aqr(t) =

√
t

( + q)(r + )

are continuous, and the series

∞
∑

r=q

∣

∣aqr(t)
∣

∣

p
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is absolutely uniformly continuous on I . Since

aq(t) :=

∞
∑

r=q

∣

∣aqr(t)
∣

∣

p

is uniformly bounded on I , for any t ∈ I and q ∈N, we consider

B = sup
{

aq(t)
}

< ∞. ()

We note that, if x(t) = (xq(t)) ∈ ℓp, then

(fx)(t) =
(

fq(t,x,x,x, . . .)
)

=

(

t(T – t)e–qt

(q + )
+

∞
∑

r=q

xr(t)
√
t

( + q)(r + )

)

∈ ℓp ()

because the norm

∥

∥(fx)(t)
∥

∥

p

p
≦ p

∞
∑

q=

∣

∣

∣

∣

t(T – t)e–qt

(q + )

∣

∣

∣

∣

p

+ p
∞

∑

q=

∣

∣

∣

∣

∞
∑

r=q

xr(t)
√
t

( + q)(r + )

∣

∣

∣

∣

p

is finite. We have to demonstrate that the operator (fx)(t) = ((fqx)(t)) is uniformly contin-

uous on ℓp. For this, we suppose to prove that the sequence (fq(x)) is equicontinuous. Let

ǫ >  be given, and x(t) = (xq(t)) ∈ ℓp. By considering

x′(t) =
(

x′
q(t)

)

∈ ℓp

with

∥

∥x(t) – x′(t)
∥

∥

p

p
≦ δ(ǫ) = ǫB–

it follows from () that, for any fixed q,

∣

∣(fqx)(t) –
(

fqx
′)(t)

∣

∣

p
=

∣

∣

∣

∣

∣

∞
∑

r=q

(

xr(t) – x′
r(t)

)√
t

( + q)(r + )

∣

∣

∣

∣

∣

p

≦

∣

∣

∣

∣

∣

( ∞
∑

r=q

(

xr(t) – x′
r(t)

)p

)/p( ∞
∑

r=q

(
√
t

( + q)(r + )

)p′)/p′ ∣
∣

∣

∣

∣

p

≦

∞
∑

r=q

∣

∣xr(t) – x′
r(t)

∣

∣

p
∞

∑

r=q

∣

∣

∣

∣

√
t

( + q)(r + )

∣

∣

∣

∣

p

≦ B
∥

∥x(t) – x′(t)
∥

∥

p

p
≦ BǫB– = ǫ,
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where p >  and /p+ /p′ = , which yields the continuity, as desired. Hence hypothesis (i)

is satisfied. In order to verify hypotheses from (ii) to (iv), we reckon a function h : I×ℓp →
R that occurs on nonnegative values if and only if

x(t) =
(

xq(t)
)

∈ ℓp,

where (xq(t)) is a nonincreasing sequence in R+ with

x() =  = x(T).

We thus find that

t(T – t)e–qt

(q + )
= o

(

xq(t)
)

()

uniformly with regard to t ∈ (,T). It is convenient to observe that

{

x ∈ ℓp : h
(

t,x(t)
)

≧  (t ∈ I)
}

�= ∅.

Let

h
(

t,x(t)
)

≧ .

Now, from the data

x() = x(T) = 

and () it follows that

t(T – t)e–qt

(q + )
≦ xq(t) ()

for all q > r, r ∈ N, and t ∈ I . Thus, taking into account () and (), we find that, for all

q > r and t ∈ I ,

∣

∣(fqx)(t)
∣

∣

p
≦

∣

∣

∣

∣

xq(t) +

√
t

 + q

∞
∑

k=q

xk(t)

(k + )

∣

∣

∣

∣

p

≦ p

{

∣

∣xq(t)
∣

∣

p
+

tp/

( + q)p

∣

∣

∣

∣

∣

∞
∑

k=q

xk(t)

(k + )

∣

∣

∣

∣

∣

p}

≦ p

{

∣

∣xq(t)
∣

∣

p
+

tp/

( + q)p

∣

∣

∣

∣

∣

( ∞
∑

k=q

(

xk(t)
)p

)/p( ∞
∑

k=q

(



(k + )

)p′)/p′ ∣
∣

∣

∣

∣

p}

≦ p

{

∣

∣xq(t)
∣

∣

p
+

πptp/

p( + q)p

∞
∑

k=q

∣

∣xk(t)
∣

∣

p

}

≦ p
(

 +
πptp/

p( + q)p

)

∣

∣xq(t)
∣

∣

p
,



Mohiuddine et al. Advances in Difference Equations  ( 2016)  2016:317 Page 11 of 13

which yields

∣

∣(fqx)(t)
∣

∣

p
≦ gq(t)

∣

∣xq(t)
∣

∣

p
,

where

gq(t) = p
(

 +
πptp/

p( + q)p

)

.

Since

g(t) = lim sup
q→∞

{

gq(t)
}

= p,

we obtain

sup
t∈I

{∫ T



∣

∣G(t, s)
∣

∣

p
g(s)ds

}

≦
Tp+

p
= C.

By considering ϕ(t) as a kind of identity mapping, we conclude that conditions (ii), (iii),

and () are satisfied. It is now left to show that () holds. Indeed, if we assume that

h
(

t,x(t)
)

≧  (t ∈ I)

and

x(t) =
(

xq(t)
)

∈ ℓp,

then it follows from the term of h that (xq(t)) is a nonincreasing sequence inR+. Therefore,

fq+
(

t,x(t),x(t),x(t), . . .
)

=
t(T – t)e–(q+)t

(q + )
+

∞
∑

r=q+

xr(t)
√
t

( + (q + ))(r + )

≦
t(T – t)e–qt

(q + )
+

∞
∑

r=q

xr(t)
√
t

( + q)(r + )
,

which shows that

≦ fq+
(

t,x(t),x(t),x(t), . . .
)

≦ fq
(

t,x(t),x(t),x(t), . . .
)

for all t ∈ I and q ∈N. Accordingly, we have

≦

∫ T



G(t, s)fq+
(

s,x(s),x(s),x(s), . . .
)

ds

≦

∫ T



G(t, s)fq
(

s,x(s),x(s),x(s), . . .
)

ds

for all t ∈ I and q ∈N. It only remains to demonstrate that

t(T – t)e–qt

(q + )
= o

(∫ T



G(t, s)fq
(

s,x(s),x(s),x(s), . . .
)

ds

)

()
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uniformly with respect to t ∈ (,T). In order to verify (), we have to show that

(q + )

t(T – t)

∫ T



G(t, s)eqtfq
(

s,x(s),x(s),x(s), . . .
)

ds→ ∞ (q → ∞) ()

uniformly in (,T). By straightforward calculation we obtain

(q + )

t(T – t)

∫ T



G(t, s)eqtfq
(

s,x(s),x(s),x(s), . . .
)

ds

≧
(q + )

tT

∫ t/



s(T – s)e(q(t–s)) ds

≧
(q + )eqt/

T

((– 
q
+ T)eqt/

q
–
t(– 

q
+ T)

q
–
t(– 

q
+ T)

q
–
(– 

q
+ T)

q

)

≧
(q + )

T

((– 
q
+ T)

q
–
T(– 

q
+ T)

q
–
T(– 

q
+ T)

q
–
(– 

q
+ T)

q

) (

q >


T

)

,

which converges uniformly to zero as q → ∞. This evidently proves (), so that assump-

tion (iv) is satisfied. Hence, in light of Theorem , Eq. () has a solution in the space ℓp.
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