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Abstract 

Vibration-based energy harvesting has been widely investigated as a means to generate low levels of 

electrical energy for applications such as wireless sensor networks. However, for optimal performance it 

is necessary to ensure that resonant frequencies of the device match the target ambient vibration 

frequencies for maximum energy harvested. Here a novel resonant frequency tuning approach is proposed 

where the application of membrane stresses generated by different stretch ratios applied to circular 

hyperelastic membranes is used to tune the vibration response. Specifically, tuning via mechanical stretch 

is described in terms of effective stiffness theory, where the mechanical stretch of the hyperelastic 

membrane induces membrane tuning stresses and a corresponding reduction in membrane thickness. A 

finite element model (FEM) using ANSYS agrees well with an analytical model of the tuned hyperelastic 

membrane. Lastly, using a mass-loaded circular membrane vibration model, the effective resonant 

frequency of the energy harvester can be determined as a function of changes in membrane tension due to 

the applied stretch. Preliminary experiments verify the resonant frequencies predicted from the analytical 

and FEM models as a function of different levels of mechanical stretch, centrally-loaded added mass, and 

membrane initial thicknesses. The proposed mechanical stretch tuning approach for hyperelastic 

membranes provides an alternative tuning strategy to enable energy harvesting from different ambient 

vibration sources in various environments. 
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1. Introduction 
Energy harvesting is a rapidly growing field which seeks to generate small but useful levels of 

electrical energy from mechanical vibrations present in most environments. ID Techex [1] summarized 

the energy harvesting market and discussed potential applications in areas such as healthcare, electronics, 

and automotive applications, with emerging uses such as a potential power source for micro/nanorobots 

also envisioned [2]. A particularly compelling application is to replace the batteries of individual sensor 

nodes comprising wireless sensor networks due to the potential of small size, ease of implementation, and 

the ability to facilitate the placement of sensors in inaccessible locations, suggesting energy harvesting 

may have tremendous impact when integrated with ubiquitous wireless microsensors used to provide 

continuous monitoring of machine and structural health [3, 4]. A comparative analysis suggests that 

mechanical vibration shows potential as a high power density and long lifetime energy source among a 

variety of potential ambient energy harvesting sources [5], and thus a vibration-based energy source is the 

focus of the current work. 

1.1. Frequency tuning for vibration-based energy harvesting 

A comprehensive discussion of vibration based energy harvesting for wireless, self-powered 

microsystems is available in the literature [6]. Generally, it is desired to ensure that the resonant 

frequencies of an energy harvesting device match the ambient vibration frequencies to maximize the 

energy harvested, and a review of strategies for tuning the frequency range of vibration based energy 

harvesting has been described elsewhere [7]. For example, Challa et al. [8] presented a resonance 
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frequency tuning approach using a magnetic force applied perpendicular to a cantilever beam, achieving 

±20% of the unturned frequency based on the mode (attractive, repulsive) of the magnetic force and the 

separation distance between the magnets. Zhu’s research group [9] designed a horizontal tunable 

electromagnetic vibration-based micro-generator via induced variable axial magnetic forces. More 

recently, a two-dimensional resonant frequency magnetic tuning approach was developed which further 

generalizes these approaches [10]. The tuning model is based on effective stiffness theory, where the 

effective resonant frequency of the system is related to two variable stiffness terms which the two-

dimensional placement of the magnets adds to the system. A two-dimensional tuning method may be 

useful, in particular, for applications where space constraints impact the available design space of the 

energy harvester. In addition, approaches developed at small length scales to tune the effective stiffness of 

NEMS and MEMS devices operating at very high frequencies [11-13] may be adapted for energy 

harvesting applications targeting appropriate frequencies. From a systems-level perspective, one must 

obviously account for any energy required to tune the harvesting device when evaluating the efficiency 

and performance of a tunable energy harvesting system [14-16]. 

In addition to the cantilever-based energy harvesting geometries typically described above, a 

membrane-based energy harvester could also be implemented. For example, Rezaeisaray et al. [17] 

designed and analyzed an SU-8 membrane-based energy harvester which uses a nonlinear stiffness effect 

based on a Duffing oscillator to obtain a frequency bandwidth of 146 Hz. Mo et al. [18] developed a 

theoretical model for a piezoelectric circular membrane subjected to pressure fluctuations, concluding that 

the optimization of energy harvesting performance is highly dependent on the ratio between the thickness 

and radius of the membrane. A piezoelectric circular membrane array connected in parallel was shown by 

Wang et al. [19] to increase the device performance compared to the power generated from a single 

membrane. In addition, Palosaari [20] conducted an experimental study that suggests that pressure 

fluctuations could be a potential method for tuning the resonant frequency of membrane-based energy 

harvesters. (Note that the term pre-stress used in [20] refers to the membrane out-of-plane stress, which 

differs from its use to denote the in-plane membrane stress as used below.) Recently, membrane 

geometry-based energy harvesters have become increasingly attractive as a means to leverage the 

properties of emerging soft materials, which could be utilized to target lower frequency vibration sources. 

In particular, hyperelastic polymers with large strain capability are investigated here. 

1.2. Hyperelastic and electroactive membranes 

Piezoelectric materials (including single crystals, ceramics, and polymers) are commonly used 

materials for vibration-based energy harvesting due to their higher efficiencies and specific power output. 

In recent years, in addition to those widely used piezoelectric materials, electroactive polymers, which 

can deform in response to the application of an electrical stimulus, have been explored for potential 

mechanical energy harvesting applications [21]. Among electroactive polymers, dielectric elastomers 

(DEAs) have drawn great attention due to their outstanding overall performance [22], including large 

elongation, high speed of response, and high energy density. Among commercial products [23-26], 3M 

VHB 4910 acrylic tapes show impressive performance due to their high dielectric constant (εr=4.7) and 

the potential for high actuation strain up to 6 times the axial stretch in both planar directions [26] and will 

be the focus of the work presented here.  

Because relatively high strains (well over 100%) can be produced through mechanical stretch of 

dielectric elastomers, DEAs typically demonstrate hyperelastic material behavior, where the stress-strain 

relationship derives from a strain energy function. The mechanical behavior of hyperelastic materials can 

be characterized by different functional forms of the strain energy, the most common of which are those 

first described by Yeoh [27], Ogden [28] and Mooney-Rivlin [29]. Previous work found that when using 

the Ogden and Mooney-Rivlin material models the membrane thickness decreases in an unstable manner, 

with the resulting membrane stress overestimating the material response [30]. Thus the Yeoh form of the 

strain energy function is used in this work, with the necessary parameters for the Yeoh hyperelastic 

material model for 3M VHB 4910 listed in Table 1 [30]. 
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2. Mechanical stretch tuning mechanism 
In this section a model of resonance frequency tuning via mechanical stretch of a hyperelastic 

membrane-based energy harvester is described. Based on effective stiffness theory, the effects of variable 

membrane tension on the overall device stiffness are used to tune the effective resonant frequency of the 

system. Section 2.1 describes the general tuning model for energy harvesting membranes via the 

application of applied tension. Section 2.2 then presents the relationship between the applied stretch ratio 

and the membrane tension of a circular hyperelastic membrane. The vibration of a central mass-loaded 

circular membrane as a function of membrane tuning tension is then presented in Section 2.3, with a 

theoretical calculation of membrane stretching stiffness derived which can be used in the effective 

stiffness model to tune the primary resonant frequency of a stretched hyperelastic membrane. 

2.1. Hyperelastic membrane tuning via mechanical stretch 

A theoretical lumped parameter tuning model for stretching of a membrane-based energy harvester is 

shown in Fig. 1. When the membrane is subjected to mechanical stretch, the membrane radius expands 

from    to   , and the thickness contracts from the original thickness    to the new thickness   . Following 

the common approach of modeling a vibration-based energy harvesting device as a spring-mass-damper 

system [31], the tuning model for a stretched membrane-based vibration energy harvester is schematically 

shown in Fig. 1b. The model consists of a spring of variable stretching stiffness (which can be changed to 

tune the resonant frequency), a mass, and dampers denoted as mechanical dashpot    and electrical 

dashpot    which represent the mechanical losses and the mechanical energy transformed into electrical 

energy, respectively. Here the stretching stiffness          is related to the external applied stretching 

forces and can be determined as a function of the stretch ratio of the hyperelastic membrane as discussed 

in Section 2.3 below. 

Based on the effective stiffness tuning model, the effective frequency          of the energy harvester 

tuned via mechanical stretch of the membrane can be expressed as shown in Eq. (1), where          is the 

membrane stretching stiffness and      is the effective mass of the system. 
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While in practice it may be difficult to change the added mass during device operation, an alternative 

approach highlighted in Eq. (1) is to adjust the membrane stretching stiffness in order to target the 

environmental source frequencies for the maximum power output. (Indeed, the goal of this work is to 

develop the expression for          for a hyperelastic membrane subject to mechanical stretch.) Based on 

the generic lumped parameter model as shown in Fig. 1b, the power output of an energy harvesting device 

given a sinusoidal ambient excitation vibration             , (where   and    are the source vibration 

amplitude and frequency, respectively) can be written as [31] 
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where total damping ratio    (          is the sum of mechanical    and electrical    damping ratios, 

respectively, and        is the undamped natural frequency of the vibrating structure. Note that the 

relationship between the damping coefficients of    and    as denoted in Fig. 1b and the unitless 

damping ratios of    and    used in Eq. (2) are                  and                 . In 

earlier energy harvesting studies, damping ratios on the order of 0.01 to 0.03 have been reported for 
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piezoelectric and electromagnetic devices, respectively [32] while an open circuit Q-factor of 170-195 

was reported for a horizontal tunable electromagnetic device [9]. When the energy harvesting device is in 

resonance such that          , the power output at resonance      can be simplified as 
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According to Eq. (3), at resonance the power output is dependent on the effective mass, the amplitude and 

frequency of the source vibration, and the damping characteristics of the system. 

2.2. Hyperelastic membrane tuning stresses 

When a hyperelastic membrane is subjected to mechanical stretch, the membrane radial stresses are 

governed by the applied stretch ratio as a function of the hyperelastic constitutive behavior of the material. 

As discussed previously, the high performance electroactive polymer 3M VHB 4910 acrylic [33] is 

studied here, with the Yeoh model materials parameters listed in Table 1. Note that the following 

derivations are simplified by assuming the material is incompressible and isotropic, and the time 

dependence of the mechanical response is neglected.  

The mechanical behavior of hyperelastic materials is characterized by the strain energy function. 

Based on the Yeoh model [27], the strain energy   depends on the first invariant Cauchy-Green 

deformation tensor    such that 
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where    ,     and     are material parameters and    can be calculated from the eigenvalues of the 

deformation gradient tensor for the circular membrane as               , where    is the stretch 

ratio in the radial direction while    and    are the stretch ratios in circumferential and thickness 

directions, respectively. Assuming that the material is incompressible and isotropic requires that           , while for a circular membrane                  , where    and    are the unstretched and 

stretched circumference of the membrane, respectively. Thus the first invariant Cauchy-Green 

deformation tensor    can be written as              . 

In addition, for an incompressible material, the Cauchy stresses    are defined as the force per unit 

area of the deformed configuration. They can be determined based on the derivative of the strain energy 

potential with respect to the stretch ratios    and the hydrostatic pressure   which enforces the 

incompressibility constraint [28]. 
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where subscript   refers to the different directions for simplification in the following equations. Thus the 

Cauchy stress in the radial direction is              and the out-of-plane Cauchy stress in the thickness 

direction is zero due to the assumption of plane strain for a thin membrane                 . The 

Cauchy stress in the radial direction for a hyperelastic circular membrane based on the Yeoh model can 

be written as 

 






























2

4

2

304

2

20104

2
3

1
233

1
22)

1
(2

r

r

r

r

r

rr CCCs








  (6) 

The corresponding contracted thickness of the hyperelastic membrane after stretching is determined as 
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The membrane tension   is a function of the membrane radial stress    and contracted thickness    such 

that        . 

2.3. Vibration of a central mass-loaded circular membrane and stretching stiffness 

Earlier a model for the fundamental frequency of a mass-loaded circular membrane was developed as 

a function of geometry and properties of the membrane, the tension applied to the membrane, and the 

proof mass at the center of the membrane [34]. This model is summarized here for completeness. Note 

that, by definition, membranes are always stretched in tension. For a perfectly clamped homogeneous 

circular membrane, the resonant frequency can be written as [35] 
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where   is the radius of the membrane and  ,  , and   are the tension, density, and thickness of the 

membrane, respectively. Here we are most interested in the first primary vibration mode, as this is the 

fundamental frequency mode which is generally related to the most energy intensive vibrations. For this 

first fundamental (0,1) mode,           [35]. As expected, according to Eq. (8), the fundamental 

frequency of the membrane increases with increasing membrane tension. 

The natural frequencies of the membrane can be lowered in order to target ambient vibration sources 

by adding an additional mass to the membrane. Here we assume that the added mass m is spread over a 

contact radius   at the center of the membrane with a radius of  . Here we also assume that the membrane 

tension   is much larger than the force applied on the membrane by the added mass m, such that the effect 

of the added mass on the tension of the membrane can be neglected. The first fundamental frequency for 

the membrane with central mass-loaded can then be written as [35] 
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where the mass of the membrane is assumed small compared to the added mass   and hence neglected. 

Note that in the derivation of Eq. (9) b must not be significantly smaller than a, as this concentrated 

“point load” would result in significant stretch in the center of the membrane [35]. The impact of the 

radius ratio on the vibration response of a centrally-loaded mass circular has been discussed in detail in 

the literature [34]. According to Eq. (8) and Eq. (9), the frequencies of the unloaded and centrally-loaded 

membrane are proportional to the square root of the tension. Therefore, tuning the membrane tension 

could significantly alter the resonant frequency of the device, which would be useful in the development 

of small footprint energy harvesting devices which are able to target lower environmental source 

frequencies. An analogous discussion of the resonant frequency of a square membrane with/without 

added mass for energy harvesting application is presented in [34]. 

According to Eq. (1), the stretching stiffness of the membrane contributes to the resonant frequency 

of the membrane-based energy harvester. On the other hand, the vibration response of the membrane with 

central loaded mass is determined by Eq. (9). Comparing those two equations, it is straightforward to 

determine the effective mass      and stretching stiffness          of the central loaded membrane-based 

energy harvesting system as 
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Given that the membrane tension   can be written as        , the stretching stiffness of a circular 

hyperelastic membrane as a function of stretch ratio   can be derived by substituting Equations (6) and (7) 

into Eq. (11) such that 
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3. Finite element modeling approach 

To verify the theoretical calculations discussed in Section 2, two separate FEM simulations using 

ANSYS were performed for the circular hyperelastic membrane as described in this section. In the first 

analysis using ANSYS, the membrane tuning stresses was first determined as a function of the applied 

mechanical stretch to apply a desired tension to the membrane. This result then forms the basis for the 

second FEM step, where a modal analysis simulation is used to determine the resonant frequencies of the 

central mass-loaded membrane. 

According to Eq. (6), it is clear that the Cauchy stress in the radial direction    is only related to the 

stretch ratio   and the material properties (   ,     and    ). Verifications of membrane tuning stresses 

are performed by using ANSYS as shown in Fig. 2. The hyperelastic membrane (3M VHB 4910) is 

modeled using the element SOLID 226 with KEYOPT (11) set to 1 to characterize a fully incompressible 

elastomer. As shown in Fig. 2, the displacement of the nodes at the model boundary are imposed from the 

initial radius    to a stretched radius         , with cyclic symmetry boundary conditions in cylindrical 

coordinates with an opening angle of thirty degrees are used in the FEM analysis. The material properties 

for the Yeoh model are used as shown in Table 1, where a membrane initial radius    of          is 

used to correspond to the experimental data (will discuss in Section 4). Therefore, the membrane radial 

stresses for a given value of stretch   are determined by averaging the radial stresses at the exterior nodes 

where     . In addition, based on the resulting displacement for the nodes of the membrane, the 

contracted thickness of the membrane can be determined as the average value of the difference in 

displacements between the membrane top and bottom layers. 

Once the analysis for the membrane radial stress has been completed, this result is then used to 

determine the resonant frequency of the stretched membrane (with a central proof mass added at this stage) 

for comparison with the theoretical calculations of membrane tuned frequency as shown in Fig. 3. The 

membrane with central loaded mass is modeled using ANSYS Shell 41 elements asymmetrically with an 

opening angle of thirty degrees and symmetric boundary conditions as shown in Fig. 4. A radius ratio 

between the membrane and the central load of       was used for the FEM analysis to enable 

comparison with the experimental study described in the next section. In the analysis for the centrally-

loaded membrane, a static analysis is first performed to apply the desired tension calculated from the 

initial FEM analysis as a function of the stretch ratio. Specifically, this membrane stress is induced by the 

method of uniform cooling, where the temperature difference        is calculated from                [36], where   is the tension of the membrane and   and   are the Young’s modulus and thermal 

expansion coefficient of the membrane, respectively. Details of the parameters used in the ANSYS study 

are given in Table 1. Then the next step of the process is that the modal analysis of the clamped 

membrane with the added central mass is performed. In this second ANSYS model, the added mass 

attached to the central section of the membrane is modeled as two sets of overlapping elements. The first 
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set of elements representing the membrane (lower layer) has its nodal plane located on the ‘top’ face, 
whereas the set of elements corresponding to the added mass (top layer) has its nodal plane located on the 

‘bottom’ face. The combination of overlapping elements thus defines the attachment of this layered 

membrane with its nodal plane at the interface between the layers.  

4. Experimental methods 
A preliminary experimental study measuring the resonant frequency of mass-loaded circular 

membranes subjected to different stretch ratios is conducted to confirm the results from the analytical and 

computational models described above. As discussed before, the membrane material used is 3M VHB 

4910 acrylic with the material properties are given in Table 1. Experimental data was obtained for two 

commercially available initial film thicknesses of 500 µm and 1000 µm, respectively, which were 

stretched to final thicknesses of 20 µm and 111 µm, respectively. 

Tests to determine the effective resonant frequencies of the membranes were performed by mounting 

a prototype on a small shaker as shown in Fig. 5. The prototype consisted of a membrane, a central 

magnet/mass, and a coil fixed to the frame which is mounted on a shaker (Vibration Test Systems VG-

100A-6) to provide a given vibration of known amplitude and frequency. The mass at the center of the 

membrane was varied by adding multiples of 7 gram ferrous masses (for a total added mass of 14, 28 and 

42 grams) to the central magnet. The resonance for the mass-membrane system was evaluated by 

measuring the frequency response function of the voltage induced in the coil relative to the input force 

measured by a dynamic load cell (PCB 208A02) mounted between the shaker and the prototype using a 

high impedance measurement device (NI-9215). The peak of the frequency response function is recorded 

as an estimate of the resonance of the system. 

5. Results and discussion 

5.1. Stretching stiffness for the membrane  

The results of the membrane radial stress    obtained both theoretically and from FEM as a function 

of stretch ratio are shown in Fig. 6a. Note that because the stretch ratios are always larger than one 

(           , the ANSYS simulations are performed starting       . From Fig. 6a, the theoretical 

calculations of membrane radial stresses after stretching based on Eq. (6) agree well with the FEM 

simulations in ANSYS. In addition, it can be also be observed in Fig. 6a that the radial stresses of the 

hyperelastic membrane grow faster at larger stretch ratios, suggesting that a large stretch ratio may be 

desired to use in order to widen the frequency tuning range for the membrane-based energy harvesting 

applications. In addition, the result of the membrane contracted thickness as function of stretch ratio is 

shown in Fig. 6b, which shows that a membrane with an initial thickness of         has a membrane 

thickness of          at a stretch ratio of 1.5 and the membrane thickness decreases to       at stretch 

ratio of 5. Again, the FEM results agree very well with the analytical solution. 

Furthermore, the theoretical result of membrane stretching stiffness          based on Eq. (12) is 

shown in Fig. 7. A characteristic that can be observed in Fig. 7 is that the stretching stiffness initially 

increases at small stretch ratios (        ), while for intermediate stretch ratios between 2 and 3.5 

the membrane stretching stiffness exhibits a significant non-linearity and at some points actually 

decreases as a function of stretch. For larger stretch ratios (      ), the membrane stretching stiffness 

again increases significantly as a function of stretch. The result from Fig. 7 is due to the contributions of 

both the membrane radial stress and the contracted membrane thickness on the membrane stretching 

stiffness         . At lower stretch ratios (        ), the stretching stiffness of the hyperelastic 

membrane          increases with increasing stretch ratios. When the stretch ratio is between 2 and 3.5, 

the decrease in the membrane contracted thickness compensates for the slight increase of the membrane 

radial stresses, resulting in the nonlinear effective stiffness observed in this range. For larger stretch ratios 

(      ), the membrane radial stresses are dramatically increasing while the membrane thickness 

gradually decreases, resulting in the observed increasing stretching stiffness of the hyperelastic membrane. 

The results shown in Fig. 7 suggest that a large stretch ratio (      ) could be desired for tuning of the 



8 

 

hyperelastic membrane-based energy harvesting applications. Thus, in the experimental study described 

in Section 4, representative values of stretch ratio of 3, 4 and 5 are used to measure the resonant 

frequency of a mass-loaded circular hyperelastic membrane. 

We note that while the theoretical result of membrane stretching stiffness shown in Fig. 7 showed a 

potential tuning range for stretch ratio of         , this analysis only considers a membrane that is 

initially stretched prior to adding the centrally loaded mass. The stretching stiffness is only a function of 

the stretch ratio and membrane material properties based on Eq. (12). However, as will be discussed in the 

next section, a key assumption in the analytical model is that the impact of the added mass is small 

compared to the applied tension resulting from the stretch in order to calculate the effective tuned 

frequency of the membrane with centrally loaded mass from Eq. (9). Thus the larger range of stretch 

ratios (      ) appears most promising for energy harvesting tuning application, resulting in the largest 

change in stretching stiffness as a function of applied stretch with the behavior monotonic in this region. 

5.2. Membrane tuning frequency with added mass 

Based on the effective stiffness theory described in Section 2, one can theoretically determine the 

effective resonant frequency of a mass-loaded circular membrane subjected to a mechanical stretch as a 

function of different added masses, initial thicknesses and stretch ratios using Eq. (1), (10), and (12). 

These theoretical predictions are compared in Fig. 8 with the results from the finite element analysis and 

two small sets of experimental data for the hyperelastic membranes listed in Table 2. A radius ratio of       matching the experimental conditions was used for the analytical predictions. (A discussion of 

the impact of radius ratio on the effective resonant frequency of the membrane is presented elsewhere 

[34].) Values for the membrane stretch ratio of 3, 4, and 5 were used in the analytical model. 

As shown in Fig. 8, the FEM results agree well with the theoretical model. For example, Fig. 8a 

shows that a larger centrally-loaded mass can significantly decrease the first natural frequency of the 

loaded membrane, with experimental results agreeing with the theoretical results very well. On the other 

hand, if the membranes are subjected to the same stretch ratio, it is clear from Fig. 8b that the lower initial 

membrane thickness corresponds to a lower resonant frequency. 

In addition, the effective tuned resonant frequencies as a function of stretch ratio for the two sets of 

films with initial thicknesses of 500 µm and 1000 µm are shown in Fig. 9a and Fig 9b, respectively. As 

expected based on Eq. (1), the tuned resonant frequency of the membrane has a shape similar to that of 

the membrane stretching stiffness shown in Fig. 7. Specifically, for the same initial thickness of the 

membrane, at larger stretch ratios (      ), increasing the membrane tension (i.e. increasing the stretch 

ratio) can effectively increase the first resonant frequency of the loaded membrane as shown in Fig. 9. We 

note that previous work for hyperelastic films has found that experimental factors such as temperature and 

the preparation and history of test samples can influence the effective properties of the materials [26, 37]. 

The results shown in Fig. 9 suggest that mechanical stretch shows promise as a means of providing an 

appreciable bandwidth for tuning the resonant frequency of membrane-based energy harvesting devices. 

Lastly, the experimental frequency results are compared with analytical calculations as a function of 

the ratio of membrane tension to the force induced by the added mass in Fig. 10. The experimentally 

obtained frequencies in most cases closely match the analytical model, with the largest differences found 

for the cases of small ratios of membrane tension to the forces induced by the added mass (T/mg). This 

error is attributed to the fact that, for smaller ratios of T/mg, the force induced by the added mass is 

comparable with the membrane tension, such that in those cases the added mass can appreciably impact 

the tension of the membrane. Due to the assumptions implicit in the development of the analytical model, 

Eq. (9) does not as accurately capture the results from the experiments in those cases. The results in Fig. 

10 suggest that large ratios of T/mg can be used for the design of tunable hyperelastic membrane-based 

energy harvesters with a targeted resonant frequency via mechanical stretch. 

6. Conclusions 
Given the increasing interest in the development of wireless sensor networks, technologies which 

could provide the self-contained sensors with their own renewable power supply are becoming increasing 
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attractive. Moreover, recent advances in low-power sensor technology have reduced the power 

requirements of these sensor nodes, thus it is becoming increasingly feasible to implement wireless 

sensors self-powered by non-conventional power sources, of which vibration-based energy harvesters are 

possible solutions. Practical implementation of vibration-based energy harvesters will almost certainly 

require a way to tune the resonant frequencies to enable the device to harvest energy in various 

environments. In the current work, a resonant frequency tuning approach for a hyperelastic circular 

membrane-based energy harvester is developed based on effective stiffness theory. Specifically, the effect 

of the mechanical stretch on the hyperelastic membrane induces a membrane tuning stress and 

corresponding reduction in membrane thickness which impacts the effective stiffness and hence the 

vibrational response of the system. Finite element modeling in ANSYS verified the predictions obtained 

via the analytical model, with both approaches well describing the data obtained from an experimental 

study of a centrally-loaded hyperelastic membrane-based energy harvester. We note that a limitation of 

the proposed tuning approach is that such a technique may be difficult to practically implement while the 

device is in operation (i.e. adaptive, real-time tuning of the membrane resonant frequency). In addition, 

note that from a systems perspective, the energy needed to implement the tuning mechanism (in this case, 

the effective work done by the actuator for stretching) should be included in an overall analysis of the 

system performance [16]. Nonetheless, these results can be used to guide the design of a tunable 

membrane-based hyperelastic energy harvester via the application of membrane stresses to enable one to 

match the resonant frequencies of the harvesting mechanism with the ambient source vibration 

frequencies present in a given environment.  
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Captions 

 

Fig 1. (a) Schematic of tuning model via mechanical stretch of a membrane-based energy harvester. (b) 

Lumped parameter model where the stretching stiffness is represented as a variable spring and is a 

function of the applied membrane stresses. 

 

Fig 2. ANSYS model of a circular hyperelastic membrane subjected to a mechanical stretch. 

 

Fig 3. Flow chart of finite element modeling using ANSYS for the circular hyperelastic membrane. 

 

Fig 4. A schematic model of a circular membrane with a centrally loaded mass in ANSYS. 

 

Fig 5. (a) Schematic of the resonant frequency test for a circular hyperelastic membrane with a centrally-

loaded (magnetic) mass. (b) Picture of the prototype mounted to the shaker. 

 

Fig 6. Impact of mechanical stretch on circular hyperelastic membrane radial stress and thickness: 

(a) radial stress as a function of stretch ratio; (b) thickness as a function of stretch ratio. 

 

Fig 7. Stretching stiffness of a circular hyperelastic membrane as a function of stretch ratio based 

on Eq. (12). The initial (unstretched) membrane thickness is 1000 μm. 
 

Fig 8. Comparison of analytical predictions (black lines), experimental data (squares) and FEM results 

(dashed lines) for the effective first mode natural frequency of a circular mass-loaded hyperelastic 

membrane subjected to mechanical stretch: (a) frequency as a function of added mass; (b) frequency as a 

function of membrane initial thickness. 

 

Fig 9. Comparison of analytical predictions (black lines), experimental data (squares) and FEM results 

(dashed lines) for the effective first mode natural frequency of a circular mass-loaded hyperelastic 

membrane as a function of stretch ratio subjected to mechanical stretch: (a) the initial (unstretched) 

membrane thickness is 500 μm; (b) the initial (unstretched) membrane thickness is 1000 μm. 
 

Fig 10. Comparison of analytical predictions and experimental data for the effective first mode natural 

frequency of a circular mass-loaded membrane subject to different stretch ratios. 

 

Table 1. Material parameters of hyperelastic membrane. 

 

Table 2. Experimental conditions for measurement of the tuned frequency of stretched hyperelastic 3M 

VHB 4910 membranes. The initial unstretched radius of all membranes is 19.05 mm. 
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(a) (b) 

Fig 1. (a) Schematic of tuning model via mechanical stretch of a membrane-based energy harvester. (b) 

Lumped parameter model where the stretching stiffness is represented as a variable spring and is a 

function of the applied membrane stresses. 
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Fig 2. ANSYS model of a circular hyperelastic membrane subjected to a mechanical stretch. 
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Fig 3. Flow chart of finite element modeling using ANSYS for the circular hyperelastic membrane. 
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Fig 4. A schematic model of a circular membrane with a centrally loaded mass in ANSYS. 
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(a) (b) 

Fig 5. (a) Schematic of the resonant frequency test for a circular hyperelastic membrane with a centrally-

loaded (magnetic) mass. (b) Picture of the prototype mounted to the shaker. 
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(a) (b) 

Fig 6. Impact of mechanical stretch on circular hyperelastic membrane radial stress and thickness: (a) 

radial stress as a function of stretch ratio; (b) thickness as a function of stretch ratio. 
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Fig 7. Stretching stiffness of a circular hyperelastic membrane as a function of stretch ratio based 

on Eq. (12). The initial (unstretched) membrane thickness is        . 
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(a) 

 

 
(b) 

Fig 8. Comparison of analytical predictions (black lines), experimental data (squares) and FEM results 

(dashed lines) for the effective first mode natural frequency of a circular mass-loaded hyperelastic 

membrane subjected to mechanical stretch: (a) frequency as a function of added mass; (b) frequency as a 

function of membrane initial thickness. 
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(a) 

 

 
(b) 

Fig 9. Comparison of analytical predictions (black lines), experimental data (squares) and FEM results 

(dashed lines) for the effective first mode natural frequency of a circular mass-loaded hyperelastic 

membrane as a function of stretch ratio subjected to mechanical stretch: (a) the initial (unstretched) 

membrane thickness is       ; (b) the initial (unstretched) membrane thickness is        . 
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Fig 10. Comparison of analytical predictions and experimental data for the effective first mode natural 

frequency of a circular mass-loaded membrane subject to different stretch ratios. 
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Table 1. Material parameters of hyperelastic membrane. 

Membrane (3M VHB 4910) 

Symbol Description Value Units    Initial radius 19.05 mm    Initial thickness 1000 µm   Stretch ratio 1.1-5 unitless    Dielectric constant 4.7 unitless   Young’s modulus 1.44 MPa   Thermal expansion coefficient 1.8      
 m/m-°C      0.0693 MPa     Yeoh model -8.8      
 MPa      16.7      
 MPa 

 

  



24 

 

Table 2. Experimental conditions for measurement of the tuned frequency of stretched hyperelastic 3M 

VHB 4910 membranes. The initial unstretched radius of all membranes is 19.05 mm. 

Initial 

thickness 

(μm) 

Stretch 

ratio 

Stretched 

thickness 

(μm) 

Added 

mass (g) 

Tuned 

frequency 

(Hz) 

500 5 20 14 22 

500 5 20 28 16 

500 5 20 42 11 

1000 4 60 7 36 

1000 3 111 14 25 

1000 3 111 42 12 

 

 


