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Abstract. The recent implementation of the fourth funda-

mental electric circuit element, the memristor, opened new 

vistas in many fields of engineering applications. In this 

paper, we explore several RF/microwave passive circuits 

that might benefit from the memristor salient characteris-

tics. We consider a power divider, coupled resonator band-

pass filters, and a low-reflection quasi-Gaussian lowpass 

filter with lossy elements. We utilize memristors as config-

urable linear resistors and we propose memristor-based 

bandpass filters that feature suppression of parasitic fre-

quency pass bands and widening of the desired rejection 

band. The simulations are performed in the time domain, 

using LTspice, and the RF/microwave circuits under con-

sideration are modeled by ideal elements available in 

LTspice. 
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1. Introduction 
The memristor is a two-terminal one-port electric 

circuit element, envisioned and postulated by Chua [1]-[3], 
characterized by a constitutive relation between the time 
integral of the element’s current and the time integral of the 
element’s voltage. Memristor symbol and the constitutive 
relation are shown in Fig. 1. 
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Fig. 1. Memristor symbol and constitutive relation. 

Conventionally, q is called the charge and φ is called 
the flux of the memristor but these quantities need not have 
any physical interpretations. 

The memristor is said to be charge-controlled if its 
constitutive relation can be expressed by 

 )(q  (1) 

where Φ(q) is a continuous and piecewise-differentiable 
function with bounded slopes. Differentiating (1) with 
respect to time t, the memristor port equation is obtained 
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is called the memristance at q. Just as memristor is 
an acronym for memory resistor, memristance is an acro-
nym for memory resistance. It should be noted that the 
memristance at any time depends on the entire past history 
of the element’s current. Equations (2) and (3) define 
an ideal memristor. 

The memristor exhibits a distinctive “fingerprint” 
characterized by a pinched hysteresis loop, a double-valued 
Lissajous figure passing through the origin, confined to the 
first and the third quadrants of the v-i plane. Consequently, 
Chua [2] establishes the following identification of mem-
ristors: “Any two-terminal device which exhibits a pinched 
hysteresis loop in the v-i plane when driven by any bipolar 
periodic voltage or current waveform, for any initial con-
ditions, is a memristor. The loop shrinks to a straight line 
whose slope depends on the excitation waveform, as the 
excitation frequency tends to infinity.” 

An important and salient feature of the memristor is 
that it exhibits non-volatile memory [3]: when a memristor 
is opened or short-circuited, or when the excitation is 
switched off, the memristor holds its charge and the flux 
and “memorizes” its memristance – it is a resistor with 
memory. 

In addition to the three traditional fundamental pas-
sive circuit elements, the resistor, the capacitor and the 
inductor, the memristor is the fourth basic ideal (pure) 
element of electric circuits characterized by a state-depend-
ent Ohm’s law. In a broader sense, the memristor begins 
a subclass of memristive systems introduced by Chua and 
Kang [4]. 

Extensive analysis of the memristor salient properties 
and the detailed memristor fingerprints summary, from the 
simulation and modeling viewpoint, are presented in [5] 
along with the generalization to memristive systems and 
non-electrical applications. 
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The successful implementation of memristor is a tita-
nium-dioxide nano device fabricated at Hewlett-Packard 
Laboratories [6]. This pure solid-state implementation of 
memristor, without an internal power supply, is sometimes 
referred to as the HP memristor. 

The direct physical realization of memristor as the 
fourth basic circuit element opens new vistas and research 
interests in many application fields ranging from digital 
memories to analog devices. Moreover, special issues of 
the eminent IEEE publications have been dedicated to this 
emerging technology [7], [8]. 

Despite an immense interest among researchers and 
engineers on the memristor, commercially available mem-
ristors are still not available, so reliable circuit models are 
needed to explore and simulate application circuits which 
exploit memristor’s potentials. SPICE (Simulation Program 
with Integrated Circuit Emphasis) is a general-purpose 
simulation program which allows the testing of complex 
circuits before they are actually implemented experimen-
tally, so it can be useful for simulating memristors and 
memristor-based circuits [9]-[24]. 

Memristors hold promise for use in diverse applica-
tions ranging form digital memories and logic to analog 
circuits and systems. In analog circuits, the resistance may 
require a continuous value, so memristors might be used as 
configurable components and the desired resistance could 
be initialized by a specific procedure, different from the 
expected circuit operation [25]-[28]. 

Application of memristors in RF/microwave circuits, 
and in a broader context in electromagnetic systems, is 
another challenging field for researchers and engineers. 
Bray and Werner [29] utilize memristors as electromag-
netic switches to implement a frequency selective surface. 
Werner and Gregory [30] analyze a memristor-based elec-
tromagnetic absorber. Sombrin et al. [31] use the ideal 
memristor as a behavioral model for passive non-linearity 
in filters, antennas and connections. Gregory and Werner 
[32] analyze a polarization-switchable patch antenna with 
memristors as microwave switches. Xu et al. [33] analyze 
a planar ultra-wideband (UWB) monopole antenna with 
memristor-based reconfigurable notched band. Wu at al.  

[34] explore the feasibility of fabrication transient photonic 
memristor at microwave frequencies with metamaterials. 
Xu et al. [28] incorporate a memristor in a microstrip 
transmission line as a load, analyze single memristor-
loaded split-ring resonator filter, and utilize a memristor as 
a carrier-wave modulator connecting a microstrip patch 
antenna to the ground. 

In this paper we focus on the application of memris-
tors in microwave passive circuits, such as power dividers, 
lossy lowpass filters and coupled-resonator bandpass 
filters. 

2. LTspice Model of the Ideal 
Memristor 
LTspice [35] is used in this work to explore various 

microwave circuits with memristors by the time-domain 
simulations, i.e. the SPICE nonlinear transient analysis. 

The microwave circuits will be represented by ideal 
circuit elements available in LTspice, such as resistors, 
capacitors, lossless transmission lines, independent voltage 
sources, and behavioral voltage and current sources. As 
pointed out in [5, p. 158] “Even though these elements 
cannot be manufactured in their ideal representations, they 
are indispensable as modeling tools for describing and 
understanding the essence of processes within existing 
systems.” 

The LTspice model of the ideal memristor, Fig. 2, is 
based on the memristorR1 model and subcircuit proposed 
by Biolek et al. [24, Fig. 1, p. 950], [5, Ch. 4, p. 141–142]. 
The corresponding fingerprint, a pinched hysteresis loop 
passing through the origin, is shown in Fig. 3. 

Initial microwave circuit design often starts with ide-
alized microwave components. Therefore, a memristor-
based microwave circuit composed of ideal elements is 
expected to give a good insight into the circuit operation 
and performance. This work considers only circuits with 
ideal elements and is meant to be a proof-of-concept on the 
potential application of memristors for RF/microwave cir- 
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Fig. 2. LTspice model of the ideal memristor based on the memristorR1 model and subcircuit proposed by Biolek et al. [24], [5]. 
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Fig. 3. Fingerprint of the ideal memristor of Fig. 2: Pinched 

hysteresis loop, a double-valued Lissajous figure 
passing through the origin, confined to the first and the 
third quadrants of the v-i plane. 

cuits. Our model of the memristor is a simplified version of 
a really operating threshold-type memristive device. 

We use the ideal memristor as a linear resistor with 
a programmable resistance, which can be adjusted with 
accuracy and reproducibility by auxiliary programming 
circuitry. It is assumed that the signal to be processed, e.g. 
filtered, should under no circumstance affect the value of 
the (programmed) memristance. The resistance value is 
equal to Rini, shown in Fig. 2, in our modeling. 

It is expected that at frequencies higher that 
100 MHz, which are typical for RF/microwave circuit 
operation, the memristor has behavior similar to that of 
a linear resistor. Consequently, it can be assumed that the 
distortions of the signals processed by memristor-based 
microwave circuits should be negligible. We increase the 
excitation frequency of Fig. 2 to analyze the memristor 
dynamics with regard to the required frequency behavior. 
For frequencies over 100 kHz the pinched hysteresis loop 
of Fig. 3 degenerates to straight line implying a limiting 
frequency for a linear operation and the FFT analysis 
shows that the higher harmonics are more that 80 dB below 
the fundamental. 

Precision variable resistors are important for RF/mi-
crowave circuits, e.g. in impedance matching and for tun-
ing the frequency characteristics. Therefore, memristors 
might be promising elements for this application field. 

3. The Wilkinson Power Divider 
The Wilkinson power divider [36] is a passive three-

port linear time-invariant microwave network, matched at 
all ports, which is used for power division or power com-
bining. In power division, an input signal is divided into 
two output signals of lesser power. The divider is usually 
implemented in planar technologies, such as microstrip and 
stripline. It can be designed with an arbitrary power divi-
sion ratio, but we shall consider the equal-split (3 dB) case, 
only. 

The ideal Wilkinson power divider 3 dB, Fig. 4, con-
sists of a resistor and two quarter-wave lossless transmis-
sion-line sections. We replace the resistor with a memris-
tor, excite the divider with a 2 V amplitude 1 GHz sinusoi-
dal signal, and observe the response at the two output ports 
terminated by matched loads. The reference (nominal) 
impedances of all ports are 50 Ω. The scattering parameters 
of the divider, at the operating frequency, are given by 
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The instantaneous power at the divider output ports is 
shown in Fig. 5. The average input power is 10 mW and 
the average output power is 5 mW per port that verifies the 
equal-split power division. 

The Fast Fourier Transform (FFT), that is a built-in 
option of the LTspice waveform viewer, is used to estimate 
the frequency content of the output signal, Fig. 6, in order 
to verify that the memristor acts as a linear resistor and 
does not introduce spectral impurities. Obviously, the am-
plitude spectrum of Fig. 6 confirms that the output signal is 
sinusoidal at 1 GHz, which is the input signal frequency. 

We hope that memristors might be useful in the 
design of Wilkinson power divider because the 
memristance can be adjusted – programmed – precisely to 
a desired value which is not the case with ordinary 
microwave resistors. 
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Fig. 4. LTspice model of the ideal Wilkinson power divider 3 dB. 
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Fig. 5. Instantaneous power of the ideal Wilkinson power divider 3 dB shown in Fig. 4. 
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Fig. 6. Amplitude spectrum of the output signal of the 

Wilkinson power divider shown in Fig. 4. 

4. The Hairpin-line Bandpass Filter 
The hairpin-line bandpass filter [37] is a coupled-

resonator filter realized with a cascade of pairs of parallel-
coupled open-circuited transmission lines. It is suitable for 
planar implementations, such as microstrip technology, as 
it is easy to fabricate due to the absence of short circuits. 
Practically, this filter is obtained by folding the planar half- 

wavelength resonators into a “U” shape. For an accurate 
design of the hairpin-line bandpass filter full-wave elec-
tromagnetic simulations are required. 

Coupled transmission lines are not available in 
LTspice, so a subcircuit should be created to represent 
a section of the open-circuited pair of coupled transmission 
lines. We assume ideal coupled lines, so the equivalent 
networks elaborated in [38, Fig. 3.28, p. 100–101] can be 
used to construct the network shown in Fig. 7, i.e. the 
LTspice subcircuit for modeling the hairpin-line filter. 
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Fig. 7. Equivalent network for the section of a pair of ideal 

coupled transmission lines open-circuited at two ports. 
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Fig. 8. LTspice model of the hairpin-line bandpass filter. The networks marked by X are subcircuits shown in Fig. 7. The filter is symmetrical 

with respect to node n3. The voltage source amplitude is set to 2 V in order to generate the transmission scattering parameter. 
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Fig. 9. Magnitude of the transmission scattering parameter of the hairpin-line filter. The frequency response has undesired pass bands. 
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Fig. 10. LTspice model of the ideal hairpin-line bandpass filter with memristor, which suppresses some undesirable pass bands and widens the 

rejection band. The filter is excited by two sinusoidal RF signal. The frequency of the first signal is at 1 GHz, which is the center 
frequency of the pass band, so the signal passes through the filter. The second signal at 2.008 GHz, which is the frequency inside the 
first undesired pass band of the filter from Fig. 8, is suppressed by insertion of the memristor. 

0.0ns 0.5ns 1.0ns 1.5ns 2.0ns 2.5ns 3.0ns 3.5ns

-3.0V

-2.5V

-2.0V

-1.5V

-1.0V

-0.5V

0.0V

0.5V

1.0V

1.5V

2.0V

2.5V

3.0V
V(nrf) V(nout)

 
Fig. 11. Time-domain response of the hairpin-line filter with memristor. The output signal V(nout) is sinusoidal at 1 GHz. 
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Fig. 12. Amplitude spectrum of the output signal of the hairpin-line filter with memristor. The input signal component at 2.008 GHz is 

suppressed by about 60 dB. 
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Fig. 13. 3D model of the hairpin-line filter with memristor. 

 

The LTspice model of the filter is shown in Fig. 8 and 
the magnitude of the transmission scattering parameter is 
presented in Fig. 9. The filter is designed as a bandpass 
filter with the center frequency at 1 GHz and only one pass 
band is desired. Evidently, undesired pass bands exist, 
which is a known side effect of all-transmission-line filter 
realizations. 

The hairpin-line filter of Fig. 8 is an electrically sym-
metrical network with respect to node 3. Symmetrical pas-
sive two-port networks can be conveniently analyzed by 
using Bartlett’s bisection theorem [39], Bartlett and 
Brune’s theorem [39], and the even- and odd-mode analy-
sis [37]. 

We propose, in this work, insertion of a grounded 
memristor connected to node 3, as shown in Fig. 10, in 
order to suppress some undesired pass bands and to widen 
the rejection band of the filter. It can be shown that this 
approach suppresses parasitic pass bands at frequencies 
which are even multiples of the desired pass-band center 
frequency. 

The time-domain response of the ideal memristor-
based hairpin-line bandpass filter is shown in Fig. 11. The 
Fast Fourier Transform of the response is presented in 
Fig. 12. The physical 3D model of the filter is shown in 
Fig. 13. 

5. Capacitively Coupled Resonator 
Bandpass Filter 
The capacitively coupled resonator filter is useful for 

narrowband applications, usually with bandwidths of less 
than 10% of center frequency [37]. It can be implemented 
in planar  technologies, e.g. as the  end-coupled  microstrip 
half-wavelength resonator bandpass filter. The resonators 
are open-end microstrip resonators that are approximately  
a half guided wavelength long at the center frequency of 
the bandpass filter. The resonators are capacitively coupled 
through the gap between the two adjacent open ends. 

The LTspice model of the ideal capacitively coupled 
resonator filter is shown in Fig. 14 and the magnitude of 
the transmission scattering parameter is presented in 

Fig. 15. The filter is designed as a narrowband band-pass 
filter with the center frequency at 6 GHz, only one pass 
band is desired, but undesired pass bands exist. 

We propose insertion of a grounded memristor con-
nected to the middle of the central resonator, as shown in 
Fig. 16, in order to suppress some undesired pass bands (at 
even multiples of the desired pass-band center frequency) 
and to widen the rejection band of the filter. The corre-
sponding time-domain response is shown in Fig. 17. The 
Fast Fourier Transform of the response is presented in 
Fig. 18. 

The role of the grounded memristor connected to the 
middle of the central resonator in Fig. 16 can be explained 
as follows. The ideal transmission lines, T1, T2 and T3 are 
resonators that are approximately a half guided wavelength 
long at the center frequency of the bandpass filter, which is 
6 GHz. The line T3 is split in two equal-length parts T3a 
and T3b, which are the quarter-wavelength lines at 6 GHz. 
A quarter-wavelength of transmission line is the simplest 
realization of the ideal impedance inverter [37, p. 56]. 
A shunt resistor with an inverter on each side is equivalent 
to a series resistor. It introduces some loss, about 0.4 dB, 
but it does not change the shape of the desired pass band. 
However, in the frequency band around 12 GHz, T3a and 
T3b are λ/8-lines and the shunt resistor with the λ/8-line on 
each side is equivalent to a two-port attenuating network.  

It should be noted that the filter of Fig. 16 is an elec-
trically symmetrical network with respect to node n0 and 
can be conveniently analyzed by using Bartlett’s bisection 
theorem [39]. 

6. Low-reflection Transmission-line 
Quasi-Gaussian Lowpass Filter with 
Lossy Elements 
Gaussian-like frequency-domain transfer functions 

are often desirable in digital signal transmission because 
they do not yield overshoots and ringing in the time do-
main, so a special class of low-reflection filters is required. 
Lossy elements are introduced in the filter realization in 
order to achieve a good matching.  
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Fig. 14. LTspice model of the ideal capacitively coupled resonator bandpass filter. The filter is symmetrical about the central resonator 

designated by T2resonator. The voltage source amplitude is set to 2 V in order to generate the transmission scattering parameter. 
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Fig. 15. Magnitude of the transmission scattering parameter of the ideal capacitively coupled resonator bandpass filter. The frequency response 

has undesired pass bands. 
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Fig. 16. LTspice model of the ideal capacitively coupled resonator bandpass filter with memristor, which suppresses some undesirable pass 

bands and widens the rejection band. The filter is excited by two sinusoidal RF signal. The frequency of the first signal is at 6 GHz, 
which is the center frequency of the pass band, so the signal passes through the filter. The second signal at 11.9 GHz, which is the 
frequency inside the first undesired pass band of the filter from Fig. 14, is suppressed by insertion of the memristor. 
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Fig. 17. Time-domain response of the capacitively coupled resonator filter with memristor. The output signal V(nout) is sinusoidal at 6 GHz. 
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Fig. 18. Amplitude spectrum of the output signal of the capacitively coupled resonator filter with memristor. The input signal component at 

11.9 GHz is suppressed by about 35 dB. 
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Fig. 19. LTspice model of the ideal low-reflection transmission-line quasi-Gaussian lowpass filter with resistors as lossy elements [40]. The 

voltage source amplitude is set to 2 V in order to generate the transmission scattering parameter. 
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Fig. 20. Magnitude and phase of the transmission scattering parameter of the lossy lowpass filter. The phase characteristic (dotted) is very 

linear in a wide frequency range, thus implying the flat group delay characteristics. The amplitude characteristics is not very selective. 
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Fig. 21. LTspice model of the ideal low-reflection transmission-line quasi-Gaussian lowpass filter with memristor. The filter is excited by 

a sum of three sinusoidal signals of amplitudes 2.5 V, 0.8 V and 0.5 V, at frequencies 1 GHz, 3 GHz and 5 GHz, respectively. This 
excitation approximates a bipolar rectangular pulse train with the period of 1 ns and the amplitude of 2 V. The nominal impedances of 
the ports are 50 Ω, i.e. the source and load impedances are 50 Ω, so the signals at the input and output ports swing from –1 V to +1 V. 
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Fig. 22. Time-domain response of the lossy lowpass filter with memristor. The output signal V(nout) is a very good replica of the input signal 

V(nrf) due to the linear phase response, i.e. because of the nearly constant group delay. 
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Fig. 23. Amplitude spectrum of the output signal of the lossy lowpass filter with memristor. The frequency content exactly corresponds to the 

input signal constructed of three sinusoidal signals that approximate a bipolar rectangular pulse train. 

 

LTspice model of the lossy quasi-Gaussian lowpass 
filter proposed by Djordjević et al. [40] is shown in 
Fig. 19. The corresponding frequency response is shown in 
Fig. 20. The phase characteristic is linear in a wide fre-
quency range. 

We propose a modified lossy filter, Fig. 21, in which  

the resistors are replaced by memristors. The expected 
benefit of this approach is easier and precise tunability of 
the required resistances due to the inherent tunability fea-
ture of the memristor by programming its memristance. 
The corresponding response is shown in Fig. 22 and the 
frequency content of the output signal, generated by the 
LTspice FFT algorithm, is presented in Fig. 23. 
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7. Conclusion  
Memory circuit elements are gaining significant at-

tention owing to their ubiquity and potential use in miscel-
laneous areas of engineering. In this paper we have pre-
sented prospective utilization of memristors in microwave 
passive circuits. Memristors are exploited as linear resistors 
with programmable resistance, which can be accurately 
adjusted to a desired or specified value. Precise controlla-
bility of the memristance value might be important for 
tuning microwave circuits and optimizing their per-
formance.  

The signals processed by microwave circuits are typi-
cally sinusoidal with very high frequencies with respect to 
the memristor characteristics. Consequently, we expect that 
the memristor should keep its memristance at the initial 
value, which has been setup by some other control cir-
cuitry. Therefore, we may possibly replace resistors by 
memristors in the traditional designs of microwave circuits. 
It should be noted that the way of the memristor modeling 
in this case is not so much important because our model at 
such frequency range behaves as a pure linear resistor. 

The Wilkinson power divider has been presented in 
this paper as an example of a microwave device that inher-
ently comprises a resistor in its realization. The resistance 
value is critical for the expected operation, so the memris-
tor might be a promising solution. 

Coupled-resonator half-wavelength bandpass filters, 
the hairpin-line filter and the capacitively coupled filter, 
have been modified in this paper by inserting a memristor 
at the symmetry plane of the filters. The memristor-based 
filters have shown a wider rejection band and suppression 
of the unwanted pass bands at the frequencies that are even 
multiples of the center frequency of the desired pass band. 
By fine tuning the memristance value, a compromise be-
tween attenuation in the pass band and the amount of sup-
pression could be achieved. 

Lowpass transmission-line quasi-Gaussian filter has 
been presented in this paper as an example of a microwave 
filter that inherently comprises lossy resistive elements. 
The filter design requires optimization of the resistances to 
achieve the target performance – linear phase characteris-
tic. Accordingly, the memristor might be beneficial as 
a replacement for resistors and the memristance electronic 
adjustment might be a solution to the problem. 

Due to the unavailability of memristors, it has been 
necessary to use accurate models that would allow 
(1) experimenting with the memristor-based microwave 
circuits via simulation programs, LTspice in this work, and 
(2) studying the performance of the circuits. 

Simulation of the considered memristor-based mi-
crowave circuits have verified the expected functionality 
and encouraged us to further explore the memristor de-
ployment in the field of the RF/microwave engineering. 
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