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SUMMARY

This paper describes a discrete modal-control design approach that is applied to
a single-~control-surface, unswept aircraft wing subject to bending-torsion flutter.
The modal approach is a mathematical method to decouple the equations of motion into
isolated differential equations. 1In this paper, a pole-placement approach is then
applied to determine stability gains in the discrete plane using only the two
complex-conjugate flutter-mode equations. A fixed—gain Kalman filter is used to
estimate the modal amplitudes using three measurements. Results are presented for a
full-state estimator (36 states) and two reduced-state estimators using two different
closed-loop pole locations. The control law is designed for a dynamic pressure that
is 50 percent greater than the uncontrolled-flutter dynamic pressure. With constant
control-law gains, the closed~loop system remains stable over the dynamic-pressure
range from flutter onset to approximately an 80-percent increase in pressure.

INTRODUCTION

In the 1960's and early 1970's, research in controlling the primary mirror of a
large orbiting space telescope was conducted. The goal was to control the figure
error of the primary mirror to a fraction of a wavelength with many actuators mounted
at the rear of the mirror and with a figure-error sensor located at the center of
curvature. A modal-control technigque was developed (ref. 1) to decouple the equa-
tions of motion representing the plant. The technique allowed each controlled mode
to be individually compensated for in the modal domain. Additional research applying
the modal-control approach to the mirror problem is described in references 2 and 3.
Subsequent to this work there has been renewed interest in applying modal control to
other areas, particularly to the area related to large, flexible spacecraft control
(refs. 4 to 7). BAnother area in which modal control could have a significant impact
relates to flutter suppression. This paper describes a discrete modal-control design
approach that is applied to a single-control-surface, unswept aircraft wing subject
to bending-torsion flutter. One advantage of the modal-control approach is that the
flutter mode, as well as all other flexible-wing modes, can be mathematically repre-
sented by two isolated complex-conjugate equations. The decoupled nature of the
modal-control approach allows additional insight into the control problem, and it is
possible to use either classical control techniques or modern control theory to
design feedback gains. 1In this paper, a pole-placement approach is used to calculate
the stability feedback gains, which are analytically designed by using only two
complex-conjugate flutter-mode equations.

Several other approaches have been applied to the flutter-suppression problem.
These approaches include an aerodynamic enerqgy method (refs. 8 and 2) and optimal-
control approaches (refs. 10 to 12). A modal-control analysis is used in refer-
ence 12, but the design is for a continuous~control law and the performance index is
expressed in terms of a quadratic cost function that is related to all of the modal
amplitudes. As described above, the main thrust of this paper is to isolate and
control only the flutter mode, influencing the higher order modes as little as possi-
ble. The modal-control approach appears to be a good method to meet this goal.



The first section of this paper includes a brief description of the wing and the
various subsystems that comprise the open-loop plant. Detailed models of all subsys-

tems are given in appendix A.

The second section includes the equations for transforming the physical domain
to the modal domain and includes the form of the various matrices. A theoretical
solution for the modal equations of motion is presented for a discrete sampling
period. The analysis carries through to the use of the flutter-mode equation to
design the stability feedback gains.

While the research was being conducted, it became obvious that wind gust and the
external disturbance states should be estimated. The approach used in the third
section is to augment the modal equations and solve a convolution integral to deter-
mine the effect of these states on the modal amplitudes. The discrete form for the
total system with 36 state equations is shown.

The fourth section of this paper shows how the discretized fixed-gain Kalman
filter is calculated. The symbology illustrates the matrices that are to be approxi-
mated both for off-design analysis and for reduced-state estimation. Two methods are
presented for calculating the reduced-state estimator. Also included are the equa-
tions to calculate the estimator closed-loop stability and the total closed-loop-
system stability.

The fifth section ("Results") contains several figures showing the performance
for two design eigenvalue locations. One eigenvalue has a low damping ratio of 0.14
and the other a higher damping ratio of 0.62. Performance is determined by normal-
izing the root-mean-square (rms) value of each variable about a zero mean with the
rms value of wind gust about a zero mean. The plots shown compare a base run using
perfect modal feedback and stability gains adjusted for each dynamic pressure with
several runs using three output measurements with an estimator. Both full-state
estimation and reduced-state estimation runs are presented. The "Results" section
also contains figures showing some typical data signals for several states and step
responses due to an external command input.

DESCRIPTION OF MODEL

An unswept aircraft wing (fig. 1) subject to bending-torsion flutter was used as
a model for application of the modal-control concepts. Most of the data for this
wing are in reference 13. The semispan for this wing model is 5.08 m (200 in.) and
the chord varies linearly from 2.54 m (100 in.) at the root to 1.52 m (60 in.) at the
tip. Five grid points, excluding the root section, are located along the elastic
axis at the corresponding 40-percent-chord location. The aerodynamic center is
located at 25 percent chord.

The wing model has the capability of incorporating one or more control surfaces
along either the leading or the trailing edge or along both edges. For all analyses
in this paper, a single trailing-edge control surface is used. The equations of
motion that describe the complete system are derived from several detailed models
described and defined in appendix A. These detailed models include the structural
equations of motion, unsteady aerodynamics with Jones' approximation of the Wagner
function (refs. 14 and 15), an external-disturbance model using the Kussner function
(ref. 16) to relate the wind gust to forces and moments on the wing, a Dryden wind
model (ref. 17) for the vertical direction, and an in-line compensator that relates



the feedback control signal to the actuator input signal. When all of these models
are combined as in appendix A, the state-space equation of motion for the complete
system is

X =AX +BA +DX (1)
m m m m ¢ m 4

with Xn defined as
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where An is the open~loop-model state matrix, B, is the open-loop-model cogtrol
input matrix, D is the open-loop-model disturbance input matrix, X and X
represent the state vector and its time derivative for the open-loop model, A, is
the control feedback signal, X3 is the external-disturbance state vector, X, and
Xw represent the wing state vector and its time derivative, X is the unsteady
aerodynamic state vector, and Xy is the compensator state vector. (A list of sym-
bols used in this paper appears after the references.) A block diagram of the open-

loop-system model is shown in figure 2.

MODAL ANALYSIS

Modal analysis is an approach for transforming the system (eq. (1)) into an
equivalent number of decoupled state-space equations. The rationale for this
approach is that the decoupled equations allow added insight into the control prob-
lem. Stability feedback gains can be calculated with only the two complex unstable
flutter—-mode equations by either a classical control approach or modern control
theory. Since the equations are decoupled, theoretical solutions are known and can
be used. These ideas are illustrated in this section.

The state vector X & is transformed to a modal-amplitude vector Chn with the
real form of the eigenvector matrix U, as follows:

X = U_c (3)

Inserting equation (3) into equation (1) yields the modal equation of motion

& =nrc +ca +[u T ]x (4)
m m m m c m m' 4

where

-1

A =U_ AU (5)
m m m m
6. =u_"18 (6)
m m m



Matrix 1\.rrl is composed of the system eigenvalues in block diagonal form as
B'm,1 0
A = A . (7)

0 * .
m,n|

—

The block elements Km j are assumed to be distinct eigenvalues, either real or
. .M, .
complex—-conjugate pairs. For real eigenvalues,

(8)

and for complex eigenvalues,

a, w,
1 1

m,i

=W, a.

where a, and Wy are the real and imaginary parts.
The discrete solution to equation (4) at time T, of

Tm = to + T (10)

for period T is
c (T) = @c () + T ea (k) + [¢ (Xt ,T) Jxgtt) (11)

where matrices @m, Fm, and Gm have the form

qﬁ,1, . 0 7

@m _ L . '¢m,i . (12)
50 e .¢m,2
r--Ym,1- 0 )

r = C Yaui (13)
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The solution and form for ¢m are shown later.

The solution for @m is
ih = exp(AmT)

with block element

¢m,i = exP(aiT)
forx xm i real and distinct and
’
cos w,T sin @, T
i i
& . = expl(a.T)
m i .
rt -sin w,T cos w,T
i i
for A_ . complex.
m, i

The solution for Pm is

T
r = -[:m [@m(t - 1] dx
)

The block element is

1
Ym,i = (a—.>(exp(txi'1‘) -1
i
for A . real and distinct and is
r
_ 1 1 M11m, i Yi2m,i
Ym,J. 2

2|
a "+ w [1"V2m,1 Y1m, i

(14)

(15)

(16)

(17)

(18)

(19)

(20)



for A_ . complex, where
m,1i

= + i -
Yi1m, i (exp(aiT))(ai cos w,T + w; sin wiT) @, (21)

i - +
Y12m,i (exP(aiT))(ai sin miT w; cos miT) wy (22)

The modal equations are now in explicit decoupled form and can now be used to
design stability feedback gains. Putting equations (12), (13), and (14) into equa-
tion (11), neglecting the disturbance term since it does not affect stability gain
design, and partitioning the eqguations relating to the unstable flutter mode yields

the block equation

cm,i(Tm) = ¢m,icm,i(to) + [“n,igm,iyAc(to) (23)

The control-feedback signal A, is related to the modal amplitude Cm,i by the

control-feedback gain matrix D, as

Aglty) = Doop (ty) (24)

where

Dc = [klc k2c] (25)

since there is one control surface and two modal amplitudes relating to the complex,
unstable flutter mode. 1In this paper, a pole-placement technique is used; the deri-
vation of the feedback gains for the pole-placement approach is given in

appendix B.

The closed-loop equation for the controlled mode is determined by substituting
equation (24) into equation (23) as follows:

cm,i(Tm) = [¢m,i + Ym,igm,iDc]cm,i(to) (26)

For stability, the eigenvalues of the 2 X 2 closed-loop matrix must have a magnitude
less than unity. It is assumed that all ¢m,i’ except the term relating to the flut-
ter mode, have open-loop eigenvalues located within the unit circle. This design
procedure assumes that higher order modes are influenced as little as possible.
Stability of the total closed-loop system is described in a later section.



ESTIMATOR MODEL FOR WIND GUST AND EXTERNAL-DISTURBANCE STATES

If the modal amplitudes cm,i of equation (23) could be measured directly, the
stability problem would be solved. Unfortunately, only physical states can be mea-
sured, and these states are related to all Cp (eq. (11)). Therefore, an estimator
is required to obtain the modal amplitudes in the feedback configuration described

previously.

During the period of this research, it became obvious that the wind-qust veloc-
ity W and the external-disturbance state vector Xy must be estimated to get a
good approximation of the two unstable modal-amplitude coordinates. One approach is
to augment the states in equation (2) with Xy and Wy and then solve the modal
equations as described previously. The approach used in this paper is to augment the
modal equation (eq. (11)) after solving for the discrete solutions for W and X4
and the effect of Wg and Xd on c. given as matrix ¢m in that equation.

The wind qust is assumed to have a first-order, slowly varying time response
with time constant Tg defined as

ﬁg = - -11—- L (27)
9
with the solution
W (T ) = exp(-T/1t )W (t ) (28)
g m g g9 o
The differential equation representing the external disturbance is

X. =AX. + B L (29)

where As and By are the external-disturbance state matrix and forcing-function

input matrix. The solution, for a step input Wg applied to a zero-order hold, is

= -1 -

Xg(Ty) = exp(AgTIXg(ty) + Bq” ' [exp(AgT) = I]Bgig(t,) (30)
for A nonsingular. The two eigenvalues of A are defined as A and A and
4 . A e .. a . 1d 24

are used in the solution for ¢m. For simplicity, we can define
b5 = exp(A,T) (31)
and
T, = a, '[exp(a.m - I]B (32)
4 d d d



and substitute into equation (30) as follows:
= +
xd('rm) ¢dxd(to) I‘dwg(to) (33)

The general solution for ¢m in equation (11) results from solving the forcing-
function disturbance term in equation (4) as follows:

T

m -1

[¢ (Xt /T ) Jx tt) = L (e (t - » J[u_" o J{x ()} ac (34)
(o]

The solution to this equation requires the use of equations (A21), (A23), (28),
and (33) and the solution to three convolution integrals. The derivation is given in
appendix C. For the text of this paper, ¢m is defined as

o = [0, ¢4] (35)

where ¢ and ¢ relate the initial wind-qust velocity and external-disturbance
state toJthe modal-coordinate states. Using these augmented states from equa-

tions (28), (33), and (35) and inserting them into equation (11) yields the equation
for the discrete modal state vector X :

xo('rm) = ono(to) + BoAc(to) + Log(to) (36)
where
.
c
m
X, = wg (37)
K
r— -
@m ¢g ¢d
= - 0
Ao 0 exp( T/Tg) (38)
_9 Fd ¢d
~
TG
mm
B, = 0 (39)
0




and L, is a vector relating the external wind § to the state vector X, . For
this paper, Lo is defined as the middle~column vector in equation (38). The aug-
mented states W and X3 also cause changes in the form of equation (1). By

making use of egaation (3), the acceleration at time Tm is

x(r)=[au w FIx(r)+Balt) (40)

where Wi and F, are part of the derivation given in appendix C.

The measured acceleration output Yo(Tm), assuming negligible sensor dynamics,
is defined as

Yo(Tm) = coxo(Tm) + DoAc(to) + Oo(Tm) (41)

where 90 is measurement noise,

0
fl

o = Go [AmUm W Fm] (42)

(43)

O
Il
@
53}

and G, is a transfer matrix with the number of rows equal to the number of measure-
ments. Each row of G, has all 0's and a 1 located in the column corresponding to
the state that is being measured.

KALMAN-FILTER MODEL

The discretized model of the system dynamics and output measurement is described
by equations (36) and (41) and is shown in the upper portion of figure 3. Initial
conditions for this model are explained below. The initial state vector XO(O) is
assumed to be a random vector with Gaussian distribution and has an expected value

E{x,(0)} = % (0) = X (0) (44)

A

where Xo is the best estimate of the initial state vector.

The covariance P 1is defined as

~ ~ T _
cov[X_(0); X _"(0)] = p(0) > 0] (45)



where the variance §; is
X = - X
Xo XO(O) (46)

o

With similar notation for other variables, the Gaussian, discrete white plant
noise & is

E{g(t)} =0 (47)
and the covariance is
cov[E(t); £ ()] = Es, (48)

I |
where £ 1is the plant-noise intensity and 6t1 is the Kronecker delta defined as

6t1 ( T)
(49)
6t1 =0 (t # 1)
Similarly, the Gaussian, discrete white measurement noise 90 is
Efe_(t)} = 0 (50)
and covariance is
cov[6 (t); 8 T(m)] =98 (51)
o) o) o t<t
where 6‘ is the measurement-noise intensity. In addition, X _(0), E&(t), and
fo) (o]
60(1) are mutually independent for all t and <.
With equations (48) and (51), the state process noise R 1is defined as
Lo
R = LogLo (52)
and the variance of measurement noise Qo is defined as
m
Qo = 90 (53)

Both R and Q, are assumed to be constant during a run.

10



With the above definitions and the definition for conditional probability, the
equations for the predict cycle are

xo(Tmlto) = ono(tolto) + B_A(t_) (54)

P(T |t ) = A P(t |t )A T + R (55)
m o (o] (o] o O

A~

where X represents the estimated value of X5 and A

and B, represent approx-
imate matrices for A, and B,.

The approximated matrices have been used both for
off-design cases and for cases with less than full-state estimation.

The equations for the update cycle are:

T T -1
G, = Bt |t )c “[c P [t )c ™ + g ]

(56)
QO(Tm) = éoﬁo(Tmlto) + 60Ac(to) (57)
X ez |T ) = X (T je) + 6 {r(r) - ¥ ()} (58)
P(TmITm) = P(Tmlto) - chop(Tm|to) (59)

where G is the Kalman gain matrix. The structure for the discrete

Kalman-filter
model is shown in the lower portion of figure 3.

The one remaining link is the relationship between the estimated state vector

X, and the control-feedback signal A,. The equation relating these variables is

Ac(to) = Dchxo(to to) (60)

where G is a matrix with two rows of elements that are all 0 except for a 1 in

each row located in the columns that allow the two modal-amplitude estimates of the
unstable mode to be controlled.

Closed-Loop System

A closed-loop stability check is made by looking at the stability of the Kalman
loop by itself and by looking at the complete closed-loop control system that
includes both the plant and the Kalman model. By using equations (41), (54), (57),

and (58), the updated estimated state vector X, becomes

11



X (TolT) = [a, - 6, CA X (t ]t,)
+ [Bo - Gk[coBo + Dy - Do]]Ac(to)
+ choxo(Tm) + ero(Tm) . (61)
Stability of the Kalman loop requires that the eigenvalues of [io - Gkéoio] lie

within the unit circle. The state equations for the complete discrete closed-loop
system are

: 0
Xo(Tm) S11 S12 xo(To) Ib
= + + 62
o ) E(to) GO(Tm) (62)
xo(TmITm) SZ1 S22 xo(to|to) GkCoLo Gk
where
S11 = Ao (63)
Sq2 = BDG, (64)
S21_= GxCoPo (65)
Sg2 = By = GxCoBp * ByD.Go -~ Gk[coBo = CoBo + Dy ~ Do]Dch (66)
811 S12
Stability requires that the eigenvalues of the matrix lie within the
unit circle. 21 22

Suboptimal Filter

The optimal Kalman filter for a plant produces a time-varying gain in which the
entire state is estimated and sufficient observations are processed to ensure that
all the required states are observable. Moreover, in the presence of random, unknown
error sources, process noise must be added to maintain an adequate estimate of the
state uncertainty. Since this requires the propagation and correction of the state
covariance matrix for each observation, it is not always practical to use an optimal
filter in a real-time control system. The usual alternative is to simulate the opti-
mal process off-line until the Kalman gain stabilizes, and then use the steady-state
Kalman gains as a constant~gain complementary filter. However, even this approach
requires the updating of a large state vector and the processing of a large number of
observations. It thus becomes pertinent to seek a smaller state vector and fewer
observations which could be used to generate a smaller dimension, constant yet stable
gain. Such a system is defined to be suboptimal, and the equations used for the
suboptimal system in real time are equations (54), (57), (58), and (60). The off-
line calculatigns fgr thg optimalAKalman gain G, are made assuming full-state esti-
mation, with Ay, By, Cg, and Dg equal to Ao, Byr Cqs and Dy,

12



PN o

The results for two different methods of reducing the number of estimated states
are presented in this paper. The first method is to partition the matrix after solv-
ing for the optimal gain G- In particular, the method involves calculation of the
reduced matrices by partitioning both rows and columns of Agr partitioning only rows
of B,, partitioning only columns of Cj, and leaving D, unmodified. The second
method'involves galculation of the reduced Gy directly. This is accomplished by
using Ao and CO in equations (55), (56), and (59). Results for both methods are
described hereinafter. The actual states used are presented in the "Results"
section.

RESULTS

This section presents the results for two different sets of closed-loop design
eigenvalue (pole) locations for the flutter mode. For each set of pole locations,
the statistical accuracy of several state variables resulting from wind-gust distur-
bances is plotted as a function of dynamic pressure. Plots are presented for the
case in which perfect modal feedback is used, for the case in which full-state esti-
mation is used, and for a few cases in which reduced-state estimation is used. 1In
addition, some typical data signals and step responses are presented. Stability of
the filter and total closed-loop system has been checked with equations (61) and (62)
for every case considered.

The system defined by equation (1) has 33 states: Xy has 11 states defined by
5 bending states, 5 torsional states, and 1 control-surface state; X has 11 states
defined by the derivatives of the Xw states; Xa has 10 states, sigce the
unsteady~aerodynamics terms are modeled by a second—-order differential equation for
each wing panel; and xf has 1 state. The unsteady aerodynamics is based on Jones'
theory for two-dimensional incompressible flow (ref. 14) and is a good approximation
to the lift-deficiency function. State Xe is always included, but the compensator
can be effectively nullified by setting the numerator and denominator frequencies
approximately equal and large compared with the flutter-mode frequency. Figure 4
contains a plot of the open-loop eigenvalues as a function of dynamic pressure for
the 10 flexible-wing modes. The first flexible mode is the flutter mode, with flut-
ter onset occurring at approximately 54.0 kPa. All modes have a structural damping
ratio of 0.03. Table I contains the open-loop eigenvalues at the design dynamic
pressure gq of 82.7 kPa. The eigenvalues are numbered for reference. The equiva-
lent open-loop eigenvalues are also shown for the discrete plane with a sampling
period of 0.005 sec, which is the period used for all runs in this paper. For this
sampling period, modes 19 and 20 have a frequency greater than one-half the sampling
frequency.

Stability is the most important aspect in flutter control, and it must be main-
tained throughout the flight regime. A second important aspect is the wing response
and control-surface activity, resulting from a random wind-gust input disturbance
(egs. (A29) and (A30)). The approach used in this paper, for each of the variables
recorded, is to normalize the rms value about a zero mean by the rms value about a
zero mean of the wind gust o_. . The recorded standard deviations are for the

)
g

wing-tip bending chs, wing-tip angular rotation cas, control-surface deflection

Ogar control-surface angqular velocity og, and the control-torque input command

5

o 2%
u
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TABLE I.- OPEN-LOOP EIGENVALUES

= 82.7 kPal

Continuous~plane Discrete-plane
eigenvalue eigenvalue
Mode No. 3 _
Real Imaginary Real Imaginary
Flexible 1 15.98 47 .1 1.0530 0.2527
wing 2 15.98 -47.1 1.0530 -.2527
3 -38.41 61.4 . 7867 .2493
4 -38.41 -61.4 +7867 -.2493
5 -5.42 139.8 .7449 .6264
6 -5.42 -139.8 .7449 -.6264
7 -6.31 214.0 .4653 .8499
8 -5.31 -214.0 .4653 -.8499
9 -8.68 263.5 .2399 .9270
10 -8.68 -263.5 .2399 -.9270
11 -8.93 306 .1 .0384 .9556
12 -8.93 -306.1 .0384 -.9556
13 -11.19 379.8 -.3050 .8951
14 -11.19 -379.8 -.3050 -.8951
15 -13.93 450 .1 ~.5864 .7253
16 -13.93 -450.1 -.5864 -.7253
17 -17.34 605.8 -.9111 .1030
18 -17.34 -605.8 -.9111 -.1030
19 -21.10 729.5 -.7872 -.4361
20 -21.10 -729.5 -.7872 .4361
Actuator/ 21 -357.6 365.1 -0.04216 0.1619
control surface 22 -357.6 -365.1 -.04216 -.1619
Unsteady 23 -72.11 0.6973
aerodynamics 24 -71.80 .6987
25 -70.27 .7037
26 -69.18 .7076
27 -33.16 .8472
28 ~-10.96 . 9467
29 -10.93 .9468
30 -10.84 .9473
31 -10.71 .9479
32 ~5.78 9715
Wind gust 33 ~0.6992 0.9966
External 34 -31.1 0.8559
disturbance 35 -240.0 .3011
Compensator 36 ~500.0 0.08208

14
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Two sets of closed-loop pole locations are evaluated. One location is for a
low~-damped control mode (L = 0.14) and the other is for a higher damped control mode
(L = 0.62); both pole locations have approximately the same damped natural frequency.
The two design locations are given in table II for both the continuous and discrete
planes. The relationship between the continuous-plane and discrete-plane eigenvalues
is given in appendix B.

TABLE II.- DESIGN POLE LOCATIONS FOR CONTROL MODE

Set Continuous-plane location Discrete-plane location Damping ratio
1 -10 + 703 0.89 + 0.33] 0.14
2 ~58 + 743 70 + 0.273 .62

Four different cases have been simulated for each design pole location. The
first case, which serves as a reference case for all other data runs, assumes full-
state feedback to get a perfect estimate of the unstable modal-amplitude coeffi-
cients. In addition, the control-feedback gains Dc are recalculated for each
dynamic pressure q in order to maintain the controlled mode at the design pole
location. Figures 5 and 6 show the feedback gains used to maintain the controlled
mode at the design eigenvalue. For all other runs described in this paper, the
feedback gains are kept constant with the values at g = 82.7 kPa, shown by the
dotted lines in figures 5 and 6.

The other three cases use three output measurements: wing-tip acceleration
(grid point 5 in fig. 1), control-surface position, and control-surface angular
velocity. All feedback numbers that would be manipulated in a computer (estimator
model and stability feedback gains) are maintained constant over the complete range
of g.

The second case is for a full-state estimator design (X, in eq. (37)). For
this case, the open- and closed-loop eigenvalue variations of the first two modes are
illustrated in figures 7 and 8. These figures are shown in the continuous plane for
ease of understanding. For the design eigenvalue at 0.89 + 0.33j, the mode 1 closed-
loop eigenvalue shows a small variation, although damping is very small at low values
of g. The mode 2 closed-loop eigenvalue illustrates a larger variation than the
open-loop case for off-design values of g. With the design eigenvalue of
0.70 + 0.27j, both the mode 1 and mode 2 eigenvalues illustrate a wide variation over
the range of g.

The last two cases are for reduced-state estimators (suboptimal filter) and
represent different states for the two design pole locations. The partitioning
method is used whereby rows and/or columns of nonestimated states are removed from
the full-state estimator design. The goal for reduced-state estimation is to reduce
the number of computer calculations while maintaining a stable system over the range
of q. Table IITI has the total number of estimated states and the eigenvalue number
as given in table I for each design eigenvalue.

15



TABLE III.-~ REDUCED-STATE ESTIMATION

Design eigenvalue Case Total no. of states Eigenvalue no.
0.89 + 0.333 3 13 1 to 8,21,22,27,33,34
«89 + 0.33j 4 9 1 to 6,21,22,27
.70 £ 0.273 3 17 1 to 12,21,22,27,33,34
.70 £ 0.277 4 15 1 to 12,21,22,27

Notice that fewer flexible-wing modes are required to maintain stability for the
low-damped control mode. A possible reason is that the modal amplitude of the lower
damped mode is more dominant compared with the higher order modes, making the lower
mode more observable in the output measurement compared with the higher damped con-
trol mode. Both simulation and analysis have shown that the actuator/control-surface
mode must be estimated to maintain stability, while only 1 of the 10 unsteady-
aerodynamics modes requires estimation. The mode selected has the largest Kalman
gain feedback values of all the unsteady-aerodynamics modes. For stability it is
possible to either use or ignore the wind-gust estimate and the external-disturbance

states.

Simulation results for the four cases described are illustrated in figures 9
to 18. The first five fiqures are for the closed-loop design eigenvalue at
0.89 t+ 0.33j and the last five figures are for the design eigenvalue at
0.70 = 0.27j. Numbers on each curve correspond to the appropriate case.

Two anomalies are readily observable. The first is that curve 2 shows less
bending and less torsional sensitivity to wind-qust disturbance than does curve 1 at
high dynamic pressures. One possible explanation is that because the estimator for
curve 2 is not optimized for the off~design cases it is probable that the increased
modal interaction results in modal contributions that subtract from the overall
total. It is just as likely that these contributions add to the total, resulting
in a larger state variation. The second anomaly is that at low values of q the
control-surface activity is greater for the reference case than for the other three
cases. The reason may be that the low-pass filter action in the estimator vresults in
a less sensitive control system than the case with perfect modal feedback.

As expected, cases 3 and 4 show greater activity for rms wind gust than the
first two cases. Comparison of the cases shows that less rms variation is obtained
by estimating the wind gust and one of the two external-disturbaance states. The
final data point at g = 96.5 kPa 1is not shown for curve 4 in figures 9 to 13 since
both the closed-loop eigenvalues and the simulation data showed an unstable system.
In figqures 14 to 18 the closed-loop system was barely stable at g = 96.5 kPa, and
the simulation showed a large increase in the accuracy of each variable.

Several simulation runs were made for cases with measurement noise. A random
noise with a standard deviation of 10 percent of the measurement was used for the
accelerometer and control-surface angular velocity and a noise with a standard devia-
tion of 1 percent was used for the control-surface position. In addition, a bias
error of 0.025g was used for the accelerometer and a bias error of 0.005 rad/sec was
used for the control-surface velocity. The simulation runs had statistical data very
close to that shown for the perfect-measurement cases.
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Some typical simulation plots are shown in figure 19 for the case of full-state
estimation. The dynamic pressure was 82.7 kPa and the design eigenvalue was
0.89 + 0.33j with random and bias measurement errors. The plotg in the first part of
figure 19 represent the measurements of wing-tip acceleration h5 control-surface
angular velocity 5, and control-surface deflection §, and wind-gust velocity W
The second part of figure 19 contalns the wing-tip bending h5, wing-tip angular
rotation g wing-tip velocity h and wind-qust velocity W_. The top two curves
in the third part of figure 19 are the actual modal-amplitude coefficients of the
controlled mode while the bottom two curves are the estimated modal amplitudes that
are used for control.

FPigqure 20 shows some typical step responses resulting from an external command
applied at the same input as feedback signal A, for g = 82.7 kPa with a design
eigenvalue of 0.89 % 0.33j. The four cases illustrated are perfect modal estimation
(fig. 20(a)), full-state estimation (fig. 20(b)), 13-state estimation (fig. 20(c)),
and 9-state estimation (fig. 20(d)). There are seven plots in each figure: h5,

a., 8, two plots of estimated modal amplitude, and two plots of actual controlled
modal amplitude. In figure 20(a), the estimated modal amplitudes are set identical
to the controlled modal amplitudes to get the perfect feedback. For full-state esti-
mation, the estimated modal amplitudes are a very good representation of the con-
trolled modal amplitudes, but as the number of estimated states decreases the quality
of the estimated modal amplitudes also decreases. The noisy estimates cause
increased noise on the control-surface position. The basic responses of the various
states are approximately the same for all the cases, although there is a slight
attenuation and a little oscillation in the h5 curve for the reduced-state estima-
tion cases.

A final set of data was taken for another suboptimal-filter case inﬂwhich the
Kalman gain is calculated directly using the reduced matrices ﬁo and Co- The
results from this approach are generally not as good as the results from the parti-
tioning method. For the reduced-state estimation cases for a design eigenvalue of
0.89 + 0.333j, all data are slightly worse than the data shown in figures 9 to 13.

The closed-loop system is unstable at g = 96.5 kPa for the 13-state estimation, and
the system goes unstable at g = 89.6 kPa for the 9-state estimation. For the
reduced-state-estimation cases for a design eigenvalue of 0.70 %+ 0.27j, the data
indicate slightly better results for the 15-gtate-estimation case but worse results
for the 17-state~estimation case.

CONCLUSIONS

A modal-control design approach has been used to stabilize a single-control-
surface, unswept-wing model subject to bending-torsion flutter. The wing has five
panels with five bending and five rotational degrees of freedom in addition to the
one control-surface degree of freedom. The complete model also includes unsteady
aerodynamics, wind gust, and external-disturbance states relating the wind gust to
forces and moments on the wing.

The modal analysis shows the relationship between the physical and the modal
domains and the form of the matrices in the modal domain. Since the modal equations
of motion are decoupled with block elements of one or two states, analytical solu-
tions can easily be used to obtain feedback gains. The modal approach used in this
paper is to partition the two complex-conjugate equations representing the flutter
mode and the design feedback gains to stabilize this mode. Only two numbers
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are needed to create a stable system. A procedure for calculating these gains for a
discrete system for the pole-placement approach used herein is described in

appendix B.

The equations for a fixed-gain discrete Kalman filter with a reduced number of
output measurements are described. The analysis includes equations for the estimator
stability and for the stability of the total closed-loop system. Two approaches for
using a suboptimal filter are included.

Statistical data runs using a random wind-gust disturbance have been made for
two different closed-loop design-eigenvalue locations for the controlled mode. One
eigenvalue location is for a low-damped case (0.14 damping ratio) and the other is
for a higher damped case (0.62 damping ratio). With three output measurements (wing-
tip acceleration, control-surface position, and control-surface angqular velocity),
the full-state estimator (36 states) stabilizes the wing over a dynamic~pressure
range that is 80 percent greater than that of the uncontrolled system. The design
point is at a 50-percent increase in dynamic pressure, and the feedback gains are
maintained constant for all off-design dynamic pressures.

Stability can be maintained with fewer estimated states for the low-damped
eigenvalue case than for the higher damped case. For the low-damped eigenvalue case,
a 13-state estimator model allows stability to be maintained over the entire dynamic-
pressure range with only a small decrease in performance, while a 9-state estimator
model allows stability to be maintained over most of the range (68~percent increase
in dynamic pressure).. Simulation runs were made for both the 17-state and the
15~state estimator wmodels for the higher damped eigenvalue case. Both models allow
stability to be maintained over the complete dynamic pressure range with a small
decrease in performance. The best performance results are obtained in the cases
where wind gust and an external-disturbance state are estimated. Random measurement
errors with a standard deviation of 10 percent of the measurement for both wing-tip
acceleration and control-surface angular velocity and 1-percent standard deviation
for control-surface deflection, along with small bias errors, appear to have negligi-
ble effect on all of the runs described.

All the data shown for the reduced-state estimators are for the approach where
the reduced states are obtained by partitioning rows and/or columns of the matrices
in the full-state estimator design. The partitioning method shows better stability
and generally less state variations due to wind gust than the approach where the
reduced Kalman gains matrix is calculated directly using a reduced plant model.

Langley Research Center

National Aeronautics and Space Administration
Hampton, VA 23665

March 26, 1982
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APPENDIX A
MATRICES FOR DEVELOPMENT OF SUBSYSTEM MODELS

This appendix contains the definitions and forms of all matrices used to develop
the structural model, the aerodynamics model, the external-disturbance model, the
wind-qust model, and the compensator model. In addition, a derivation for the
structural-damping model is included. Most of the data for the structural matrices
and the steady-state aerodynamics influence coefficients come from reference 13.

Structural Equation of Motion

The state vector X for the wing is defined to have 11 states:

h
L

X =la (a1)

where hw is the 5-state bending displacement with positive axis down, @, is the
5-state torsional rotation with positive leading edge up, and § is the trailing-
edge control-surface displacement corresponding to trailing edge down. (A list of
symbols used in the appendixes appears after the references.) The equation of motion
for the wing structure is

MX +CX +KX =Gu+L +L (A2)
S w S W s w [} a a

where Ms’ Cs, and Ks represent the structural matrices for the mass-inertia
terms, damping terms, and wing bending/torsional-stiffness terms, GS represents the
control-torque input matrix, u represents the control-torque input variable, L
represents the aerodynamic 1lift and moments, and Ly represents the external-
disturbance forces and moments. The individual matrices are defined below. A devia-
tion of Cq is included at the end of this appendix.

a

The structural mass—-inertia matrix Mg is defined as

Mw Sw 55
Mg =[S, I Hg (A3)
a T = T
55 H6 J6
where
55181
Ss5Vss
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Hgq1Vs1
Hg = . (A5)

Hgs5Vss

and Mw is a diagonal mass matrix, Jw is a diagonal inertia matrix, Sw is a
diagonal mass-~unbalance matrix, S& is a control-surface mass-unbalance vector, ﬁé
is a control-surface moment of inertia vector, Jg is the moment of inertia about

the control hinge, and V5 defines the wing panel containing the control surface as
T
v,=[0 0o 1 o o] (n6)

The wing structural-stiffness matrix Ks is defined as

- -
Kh 0 0
K = |0 K 0 (A7)
s a
2
0 0 J
L 5“’5J

where Kh is the bending-stiffness matrix, X is the torsional-stiffness matrix,
and w is the control-surface structural radian frequency. Both K, and Ka are
full mdatrices and are calculated by taking the inverse of their respective flexibil-
ity matrices.

The control-torque input matrix G, is defined as

G = |-V (A8)

The matrix G has one column relating to the single control surface being used. 1In
this analysis, the countrol is modeled as a torque. The actuator torque is applied to
the control-surface rotation axis, and an equal and opposite torque is applied
directly to the corresponding wing section.

Aerodynamics Model
The unsteady-aerodynamics model contains Jones' exponential approximation of

Wagner's indicial loading function for incompressible two-dimensional flow (refs. 14
and 15) as a scalar multiplier of the three-dimensional steady-state 1ift and moment
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distribution for the wing. Jones assumed a time-response function Ka(t) as
follows:

K (t) = 1 - 0.165 exp (-0.0455 %—t—) - 0.335 exp(—0.3 %) (A9)

where V 1is the airspeed and b is the semichord. The unsteady-aerodynamics
states X, are functions of both the wing-position states X 6 and wing-velocity

states iw as follows:

£ =AX +B,X +B.X (A10)
a a a 1a w 2a w

In return, X, causes changes in L, as follows:

|
It

+ X+ X '
Caxa D1axw D2a w (a11)

where X is defined to have two five-element states X and X

a 1a 2a°’

X = (A12)

since Ka(t) is shown to have a second-order response.

The aerodynamics matrices are defined as the following:

-
A AL k(SALV(S—]
= [9
D, (2v> EA EAL k SEALV ¢ (A13)
T ~ =T
Lc A C AL kac ALV(§J
[ 7
0 A k gAY
p. =-[3)]o EA k _EAV
2a 2 58 (A14)
-7 -
LO C'A ksC AVG-‘
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a7
c = (q |ea | |{0.006825 L)1 0.10803) (A15)
a 2 b

b
P
S
0 0 0
Pra T | _ (A16)
I L X (LY

0 0 0
B, = (V) (317)
2a

0 I keVs

0 1
A = ) (A18)
a <—0.01365 V—>I (—0.3455 ‘—’)I
2 b
b
where
-7 T
c = V5 Cé (A19)
1 .2

q =5V (A20)

and where A is the influence-coefficient matrix for the steady-state aerodynamic
lift distribution, E is a diagonal matrix with elements equal to the distance
between the elastic axis and the aerodynamic center at the ith station, c is a
diagonal matrix with elements equal to the distance from the center of pressure of
the control surface to the hinge, L 1is a diagonal matrix with elements equal to the
distance from the three-quarters of the chord to the elastic axis, k is the ratio
of control-surface 1lift slope to wing-section lift slope at the wing Section contain-
ing the control surface, g is the dynamic pressure, p 1is the density, I is an
identity matrix, V 1is the airspeed, and b 1is the wing semichord.

External-Disturbance Model
The time response Kq for the external disturbance has a form similar to that

for the unsteady aerodynamics. The model used is the Kussner function (ref. 16) for
the indicial response to a step of vertical gqust velocity defined as

vt vt
Kd(t) =1 - 0.5[%xp(—0.13 £—> + exp(-'g—ﬂ (a21)
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In a manner similar to the wing unsteady 1ift and moment, the two-dimensional
response Ky is used as a scalar multiplier to the steady-state three-dimensional
aerodynamic 1lift and moment distribution. As shown in equation (29), the differen-
tial equation for the external-disturbance state vector X3 is a function of the
wind-gust velocity Wg:

" +
X, = BXo Bdwg

with

L

a Ca¥g : (a22)

Since Kd is a second-order response, X3 has two states:

% = (A23)

A | M
1
0.565
c.= (@|Ea | {1 &.13 v ————j (a24)
4 2 b
1 b
ctal U
0 1
Ad = V2 v (Aa25)
-0.13 —E -1.13 S
b
(0
B, = (A26)
Nt

Wind~-Gust Model

A Dryden wind model is used to simulate W for the transverse direction. The
Dryden spectra ¢W for turbulence velocity (ref. 17) is

g9

2

o Lg[1 + 3(L.Q ) ]

¢, (8) = o >3
g ° I x[1+ (L 2,) ]

(a27)
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where Q is the spatial frequency, L is the wind-turbulence scale length (533 m

(1750 ft) in ref. 17), and Og is the rms wind-gust intensity. By using the rela-
tionship between spatial frequency and temporal frequency wg as

w =QVv (A28)
g

and by assuming a discrete random-number generator with sampling period Tg and
band-pass frequency 2%/T , the equations of motion and matrices become

e

= Agxg + ngc (A29)

and

X A30
g ng ( )

\

where Xg has two states and W, is the white noise of unit intensity.

The matrices for the wind-gust model are the following:

o 1
A = (A31)
g
2
- -2
_Yg Yg
[0
B = (a32)
g
|1
6y Y
c = |o T—g [——3 1 (A33)
g g g \|§
where
v
yg =1 (A34)

Compensator Model

There are occasions when in-line compensation, such as a lag circuit, a lead
circuit, or a combination, is to be installed. A compensator has been installed at
the input to the actuator and is driven by a control-feedback signal A, as follows:

*
Xf = Afo + BfAc (A35)
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and
u = Cfo + EfAc (A36)
where Ag, Bgs Cf, and Eg are compensator matrices and Xe is the compensator

state. Given a transfer function with a lead frequency Wy e and a lag frequency
w,., and a gain Ee, the compensator terms become

2f
= - 7
Re = ~wye (A37)
Cf = Wi T Wye (a38)
B_.=E_= @, /0 (A39)

Complete Model

The equations described previously are combined in block diagram form represent-
ing the complete open-loop system in figure 21. The key equations are given in the
blocks and the equation numbers are given above the blocks. The measured output
Y, is shown as a function of all the states (eq. (41)). Equation (A2) requires some
rearranging to get it into proper form for analysis. Combining equations (A11),

(A22), and (A36) with equation (A2) yields

X =DX + + + + + 40
. DwxW waw c;axal c;fxf ded BcAc (A40)
where
-1 )
= - +
Dw Ms [ cs D1a]
A =m '[-kx_+D, ]
W s [] 2a
c =n "¢
a S a
P (a41)
c.=m ¢
d s d
c.=M ¢
f s s £
-1
B =M G E
c S s £
J
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With these definitions, the matrices for equation (1) are

B B A 0 (a42)

Bm = (A43)

Derivation for Structural-Damping Matrix Cq

The homogeneous differential equation for the wing structure is
. o
MX +CX +KX =0 (Ad45)
s w s w s w
By using the modal transformation,

X =U2 (A46)

Z +DZ + AC =0 (A47)
where

c.U (n48)
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A =10 M KSU (249)

Equation (A47) is completely decoupled with each differential state equation of the
form

. o,
Z2 . +20 .w .Z .+*+w .°Z .=0 (250)
s,i s,is,is,i s,i “s,i

where w; ; 1is the radian frequency for mode i and Cg,; is the structural damp-
ing ratio for mode i. The matrix As is calculated by letting the damping ratio be
0 in equation (A45) and solving for the eigenvalues. The matrix D is determined

next by inputting approximate values for Cs' With equation (A48), Cq is calcu-
lated as

s 's's' s°s : (A51)
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DERIVATION OF FEEDBACK GAINS FOR POLE-PLACEMENT APPROACH
This appendix presents the derivation and final equations for calculating the
stability feedback gains for a discrete control system, in which the desired pole
locations are either in the unit circle for discrete pole placement or in the stan-

dard S-plane for continuous pole placement. The derivation is for a complex-
conjugate plant with one control input A,

The modal equation of motion is given in equation (4):

cm(t) = Amcm(t) + GmAC(to)

and the discrete form solution for the unstable flutter mode is presented in
equation (23):

= +

cm(Tm) d)mcm(to) [Ymgh]Ac(to)

Equations (24) and (25) define the control feedback as
Ac(to) - Dccm(to)

where

Finally, the closed-loop expression in equation (26) is

cm(Tm) = [¢m + ymngc]cm(to)

In the preceding equations, subscript i 1is deleted for convenience.

Subscripts m and ¢ and the arguments T, and tj will be dropped in the
remainder of this paper for simplicity. If the desired poles A are located in the
continuous plane, the first step is to calculate the equivalent poles 2Z in the
discrete plane. Defining xd and Z in terms of the real and imaginary parts gives

(B1)

N
|

= exp(adT) cos (wdT)

[\
il

exp(adT) sin (wdT) (B2)
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where ag and wg are the real and imaginary parts of Xd'
real and imaginary parts of Z, and T is the sampling period.

ZR and 2

are the

By defining ¢, v, and g in terms of their components, equation (23) becomes

€4 ¢4 %12 €4 Y11 Y12

i
+

2 2P %11 |2 Y12 Y14
With the definitions
Vi T Y1199 * Y29,
and
Vo T TYq299 T Y49,

the closed~loop expression in equation (26) is

~ -
€4 2P ®15] [©4
€3 %51 % %2
- -
where
O19 = ®0 + Vikee

039 = =045 2%1¢

o
]
<
-
-
+
hf
~
LY
Q

22

(B3)

(B4)

(B5)

(B6)

(B7)

(B8)

(B9)

(B10)
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The closed-loop eigenvalues of equation (B6) are found by using

2= 0y 12
= 0 (B11)
21 2" 0
with the solution
[
_ P11 " %22 J = = 2, = =
Z = 2 g Yoy = 85)7 + 40,05, (B12)

Substituting equation (B7) into equation (B10) yields

®ict VKoo g 2
= — +- - -
2 2 3 va1k1c Vokoo)T T 4y, (0, + vk, = vk, ) (B13)

2<|>11 + v k + v k

For complex-conjugate eigenvalues,
Z = + Z_3
ZR t2z.3 (B14)
Equating the real parts of equations (B13) and (B14) yields

1
Koe = V2(2ZR = 200, T vikyG) (B15)

For complex~conjugate eigenvalues, the expression under the radical in equation (B13)
is negative. Equating the imaginary parts of equations (B13) and (B14) and substi-
tuting equation (B15) yields

2 2 Vi
“lzg 2 7Y - 0T ey, w207, 4 2¢12<€;>(ZR = 644)
k= (B16)
c 2
(vy)

2P} v, LIPS

2

For the two real eigenvalues, either distinct or equal, Z is expressed as

dyq + 0y, 1\/— - 2 - -
Zr1 = 2 =g V(8 - 0,5)7 + 40,0,

(B17)
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or

¢
22 1 = - \2
t3 J(¢11 = 0,5)7 * 40,05, (B18)

+
R2 2
Adding equations (B17) and (B18) and using equation (B13) yields

1

kre = ;;(ZR1 * Zgy = 20y - vk (519)
Subtracting equation (B19) from equation (B18) and substituting for k2c yields
2 2 Y1
ZppZra T b1q * 0gp" + by (Zpg * Zpy) + ¢12<$; (Zgq + Zgy = 264,)
k, = (B20)
1c 2

(v4) v oy
¢12 V2 12°2
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DERIVATION FOR TRANSFORMATION MATRIX RELATING EXTERNAL-~DISTURBANCE
STATES TO MODAL COORDINATES

The Kussner function is given in equation (A21) of appendix A and the model
given in equations (29) and (A23). The solution to the differential equation is
shown in equations (30) to (33). The differential equation (eqg. (29))

and the general solution (eq. (33))
= X +
xd(Tm) ¢d d(to) Pde(to)

are repeated here with the following definitions:

rq’11d <"12;

bq = (c1)
L¢21d cl’zij
Y14

= (c2)
124

From equation (A24) and with the following definitions,

A 1
1
Ed = |EA l1 (C3)
1
- 1
CTA
2
\'A
k1d = -0.13<—§> (Cc4)
b
= - v
k2d = -1.13 5 (C5)
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the external-disturbance force and moment vector is written as

K
- (< - - |24
g (T (v) {24} [k1dx1d(Tm) <2>X2d(TmJ (ceé)

Substituting equation (33) and combining terms gives

= (2 :
Lg(Ty) (V){Ed}(¢1dx1d(to) * 0,a%0a )+ Ya¥glt,)) (c7)
where
%10 = “¥14%11a 7 9+%%a%214 (c8)
%2a = “¥1a®12a = 9-%%24%224 (c9)
Yg = _k1dY1d - 0.5k2d'y2d (c10)
With actual values the following are obtained:
- y
6,4 = 0-065 b(exp(x1dT) + exp(deT)) (c11)
byg = (0.065 exp(), T) + 0.5 exp(A, 1)) (c12)
Yg=1- 0.5(exp()\1dT) + exp(deT)) (C13)

The general solution for ¢m is given in equation (34) as

T
m

-1
¢ (X ot T )% (€ ) = J; Lot - w]lu "' J{x (0} as

o
Using equations (A44), (A22), and the solution for G4 in equation (A41) we get

T -
m M
-1 s
(R artor Ty )xg(t) = J; (4,0t - © ][, ](;5--) fLam} as (c14)
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Substituting equation (C7) yields

[
¢ (X t /T (E ) = t [qm(t - T)]{hm}(¢1d(1)x1d(to)

o

b, (DK (B )+ Yd(t)wg(to)) dz

where

)= @[ ]{fﬁ;fé}

Rewriting equation (C15) gives

¢m(xd’to'Tm)xd(to) = ¢gwg(to) * q’1dx1d(to) * ¢2dX2d(to)
where the three convolution integrals are

T
m

¢y = .[ [¢h(1)](Yd(t - 1)) az {hm}
o

T T -
m
bygq = _[ [2 (©)](0,4(t = ) ax| [n_}
L o |
— ,r -
m
byq = ] [2 (0)](0,5(t - ©)) at| fn_}
L ©O -
By letting

O E

and with equation (35)
by = [0y 4]

the discrete solution for the modal coefficients in equation (11) becomes
cm(Tm) = @mcm(to) + PQOAc(to) + ¢gWg(to) + ¢dxd(to)
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The solution for each convolution integral ¢_, ¢qqr and ¢pq is shown below. A
typical block matrix for & is given in equations (16) and (17) with elements
defined in equations (B1) and (B3). The equations for bqqr 929 @and ygq are
defined in equations (C11) to (C13). Combining all of these equations, the solution
for equations (C18), (C19), and (C20) can be determined. The result below does not
include the final multiplication by vector hm, which would only affect the final
gains. Since this is a typical block, subscript i is dropped for convenience.

With the definitions

e

1 exp(k1dT) (Cc23)

e, = exp(xsz) (C24)

the elements of each matrix are the following, with equations (C25) and (C26) relat-
ing to $q4- equations (Cc27) and (c28) relating to , and equations (C29) and

¢2d
(C30) relating to ¢g:

2 Juwby, + (a -2 )00, - ey)

v
o = ¢ = 0.065 ~—
11,14 22,1d L2 (a - x1d)2 Y 2
. whyy * (@ =2, )(05, = o) (Cc25)
(a - x2d)2 + w2
o - - 0.065 v bip e =2 q) - w(oy, - e,)
12,14 21,14 L2 (a - k1d)2 Y 2
. bypla = Ng) = wleyy - o) (C26)

(o - xzd)z + o

0.065[wo,, + (o = A 3)(8,, = e,)]

v
¢ =¢ b
11,24 22,2d b (a - k1d)2 + wz
D.5[m¢12 + (a - lzd)(¢11 - ez)] (c27)
+
2 2
(a - sz) + W
o Ly o.065[¢12(a - x1d) - w(¢11 - e1)]
%12,24 T~ "%21,2a " » CERA Y
@ = Ma @
0.5[¢. (a - 22) - ofe,, - e)]

(o - xzd)z _—
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APPENDIX C

fiie T P2,9 7 T T 0 (@ = A )2 + o
w + | A e
(a - sz) + w
o " oy = 0.5 t1a(e = Myg) = wloyy - o))
12, 21 12 * 2 2
g r9 (a - sz) + w
d1p(@ = 20) ~ w(e,, - e,) (©30)
(a - Azd)z + wz

where and Y,, are defined in equations (21) and (22).

Y14
Portions of the derivation presented here are also used to derive W and Fm’
used in equation (40). Equation (1) is given as

X =AX +BA +DX
m m m m c m d

Using eguations (A23), (A44), and the solution for Gq in equation (A41) the distur-
bance term becomes

q Ms_1cd
D X3 = (3) (%] *a (c31)

Substituting equation (C3) and using the definitions in equations (C8) to (C10)
results in

q Ms_1Ed
Pn¥a = (V) N (Yd g t01a%1a T 9aX Zd) (c32)

-1
W= (%} {-%af% (v4) (c33)

Mg
- (2)(.s..¢
m = (v){ 0 }[“’1& 42al (c34)
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SYMBOLS

Symbols Applicable to Entire Paper
control-feedback signal
external-disturbance state matrix
open-loop-model state matrix
external-disturbance forcing-~-function input matrix
open-loop-model control input matrix
augmented discrete modal-control input matrix
augmented discrete output modal state matrix
modal-amplitude vector
control-feedback gain matrix
open-loop~model disturbance input matrix
augmented discrete output-control input matrix

discrete matrix relating external disturbances to Y,

transformation matrix relating estimated modal~amplitude vector to modal

amplitude used for control
Kalman gain matrix
control input matrix for modal equation
transfer matrix for output measurements
ith element of matrix G,
wing displacement for ith panel
wing displacement for fifth panel
identity matrix
imaginary number
control-feedback gains
vector relating external random wind to state vector
covariance matrix

variance of measurement noise
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q dynamic pressure
R state process noise

S11,S12,Sz1,822 submatrices for discrete closed~loop state matrix

s Laplace transform

T sampling period for control

T time at end of sampling period

t time

t, initial time

Un eigenvector matrix

u control-torque input

Wg wind-gqust velocity

W discrete matrix relating wind qust to Y,

Xa unsteady-aerodynamics state vector

X3 external-disturbance state vector

Xf compensator state vector

xm state vector for complete open—-loop model

Xo augmented discrete modal state vector

Xy wing state wvector

Yo measured acceleration-output vector

a, real part of eigenvalue Km,l

aw,i wing torsional rotation for ith panel

ag wing torsional rotation for fifth panel

Pd vector defining discrete transformation between initial value of wind gust

and external-disturbance state

Fm control input matrix in the discrete modal solution
m, i ith element of Pm

& trailing~-edge control-surface displacement
6t1 Kronecker delta
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C damping ratio

90 Gaussian, discrete white measurement noise
! . .
90 measurement-noise intensity
Am open-loop eigenvalue matrix
) N ith element of A
m, i ™
A1d'x2d eigenvalues of Ay
g Gaussian, discrete white plant noise
—
g process-noise intensity
c standard deviation
T time variable
Tg first-order time constant for wind-gust approximation
@m discrete modal state transition matrix
¢d discrete transition matrix for external disturbance
o . ith element of &
m, i m
bmatri £
¢d sul rix o ¢m
submatrix of
¢y b
¢m discrete transition matrix relating external-disturbance states to the
modal-amplitude vector
w; imaginary part of eigenvalue km
Superscripts:
—_ mean value
~ estimated value
~ variance
-1 inverse
T transpose

Special operators:
E{ } expected value of a vector

exp exponential
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[ 1
cov[ ]

x|

atroa

ol
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matrix
covariance

conditional density of X given the value of Y

Symbols Applicable to Appendixes Only

influence-coefficient matrix for the steady-state aerodynamic lift
distribution '

unsteady-aerodynamics state matrix

compensator state matrix

wind-gust state matrix

submatrix of An

submatrix of By

compensator~control input matrix

wind-gust forcing-function input matrix
unsteady~aerodynamics forcing-function input matrices

wing semichord

unsteady—-aerodynamics output state matrix

external-disturbance output matrix

compensator—-output state matrix

wind-gust output matrix

structural-damping matrix

defined in equation (A14)

diagonal matrix with elements equal to the distance from the center of
pressure of the control surface to the hinge

modal structural-damping matrix
submatrix of Ay
unsteady-aerodynamics forcing-function output matrices

diagonal matrix with elements equal to the distance between elastic axis
and aerodynamic center at the ith station

defined by equation (C3)



compensator-output-control input matrix
submatrix of AL

submatrix of D

submatrix of A

control-torque. input matrix

defined by equation (AS5)

control-surface moment of inertia vector
defined by equation (C16)

diagonal inertia matrix

moment of inertia about the control hinge
time response for Jones' approximation
time response for Kussner function
bending~stiffness matrix

wing structural-stiffness matrix
torsional-stiffness matrix

ratio of control-surface lift slope to wing-section lift slope at the wing
section containing the control surface

constants

diagonal matrix with elements equal to the distance from three-quarters of
the chord to the elastic axis

aerodynamic lift and moment vector
external-disturbance force and moment vector
wind-turbulence scale length

matrix containing structural mass and inertia terms
diagonal mass matrix

diagonal mass-unbalance matrix

defined by equation (A4)

control-surface mass-unbalance vector

sampling period for wind-qust random-number generator
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U modal transformation for free vibration

s
v airspeed

V6 wing panel containing control surface

Vq1Vy defined respectively in equations (B4) and (BS)

We white noise of unit intensity

Xg wind-gust state vector

x1a’X2a components of unsteady-aerodynamics state vector X
x1d’X2d components of external-disturbance state vector X3
Zy discrete~plane imaginary root

Zn discrete-plane real root

Zg structural modal coordinate

a3 real part of desired pole

Yq defined in equation (C10)

Yg band-pass frequency for wind model

Y1a' Yaq components of Pd

Y117 Y12 elements of matrix Y0 %m

As diagonal eigenvalue matrix for structure

xd desired pole

Gg wind-gust intensity

¢11,¢12 elements of the open-loop discrete modal transition matrix
%11a7 ®12a’ 9214 9224 components of ¢4

611'$1Z'$21’622 elements of the closed-loop discrete modal transition matrix

¢W Dryden spectra
g .
Qg spatial frequency for wind-gust model
W3 imaginary part of desired pole
wg temporal frequency for wind-gust model
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compensator frequencies
w6 control-surface structural radian frequency

One dot over a symbol indicates first derivative with respect to time.
over a symbol indicate second derivative with respect to time.

Two dots
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Figure 1.- Simplified model of unswept aircraft wing.
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Figure 2.~ Block diagram of open-loop-system model.
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Structure of Discrete-~System Dynamics and Measurements
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Figure 3.- Total discrete-system structure.
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Figure 4.- Flexible-wing modes as a function of dynamic pressure.
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Figure 5.- Feedback gains to maintain design eigenvalue at 0.89 t 0.33j for
all g. (Dashed line indicates constant g of 82.7 kPa.)
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C —~ 90
Mode 2, |
closed
loop: - 80
L C I Mode 1,
H G .D| closed
F.E lOOp —~ 70
-~ C
. e | o
I Te— ~®g D 9
H — 60
¢ F<;-Mode 2, ' ig
D Y]
; loop C_Xtry .
Dynamic pressure, kPa oop .l— t‘{; u — 50 4
o
S o wode 1, Nlio
E 69.0 | Mode 1, 4o
' o
F 75.8 open &
loop H
G 82.7 ' o0
—{30 §
H 89.6 g
I 96.5 l
— 20
Stable Unstable
region l region — 10

L ] 1 | l . ] | 1 ] l_1 o
=70 -60 -50 -40 -30 -20 -10 0 10 20
Real axis, rad/sec

Figure 7.~ Eigenvalue variations of first two modes as function of dynamic
pressure for case of full-state estimation with mode 1 closed~-loop design
eigenvalue at 0.89 % 0.33j (s = =10 £ 703j) for g = 82.7 kPa.



| =110
E D €
| oo
Mode 1, (
closed loop — 90
) |
Mode 2, — 80
open 1523;7 I
4]
o
» l —~70
_-c 5
I~ o Mode 1, S
H | open loop— — 60 =
i
D E Eg
£ g
(:cl" ~‘R.F ¢ — 50 >
~ H 9
Dynamic pressure, kPa I \3: T
C 53.4 Mode 2, -4 g
D 62.1 closed loop F g I -
E 69.0 DC
F 75.8 — 30
G 82.7 |
H 89.6
1 96.5 | -~ 20
Stable Unstable
region region
<————L———> — 10
l | | ] | ] 1 ] | I l ] J__J 0
-100 -90 -80 -70 -60 -50 =40 .-30 -20 -10 ] 10 20

Real axis, rad/sec

Figure 8.- Eigenvalue variations of first two modes as a function of dynamic
pressure for case of full-state estimation with mode 1 closed-loop design

eigenvalue at 0.7 + 0.27j (s = =58 & 74j) for g = 82.7 kPa.

52




120 -

1 Perfect modal estimate
.110 2 Full-state estimation
3 13-state estimation

4 9-gtate estimation

.100 -
.090 L

.080

.070 —~

o} o, m/(m/sec)
h5/ Wg

040~

030~

.020 —

010 p~

0 i i i | j

50 60 70 80 90 100
q, kPa

Figure 9.- Root-mean-square wing-tip bending for 1 m/sec rms wind gust as a .

function of dynamic pressure for design eigenvalue of 0.89 % 0.33j
(s = -10 + 703).
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Figure 10.- Root-mean-square wing=tip rotation for 1 m/sec rms wind gust as a
function of dynamic pressure for design eigenvalue of 0.89 t 0.33j
(s = =10 + 703).
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Figure 11.- Root-mean-square control-surface rotation for 1 m/sec rms wind gust
as a function of dynamic pressure for design eigenvalues of 0.89 % 0.33j
(s = =10 £ 703).
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Figure 12.- Root-mean-square control-surface velocity for 1 m/sec rms wind gust
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Figure 13.- Root-mean-square control-torque input command for 1 m/sec rms wind
gust as a function of dynamic pressure for design eigenvalue of 0.89 t+ 0.33]
(s = =10 + 703j).
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Figure 14.- Root-mean-square wing-tip bending for 1 m/sec rms wind qust as a
function of dynamic pressure for design eigenvalue of 0.70 + 0.273
(s = =58 + 743).
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Figure 15.- Root-mean-square wing-tip rotation for 1 m/sec rms wind gust as a
function of dynamic pressure for design eigenvalue of 0.70 t 0.27j
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