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In a steady state of fluid the nonlinear dependence of stress tensor on a thermal driving 

force is investigated by a direct extension of the mode-coupling theory to far-from-equilibrium 

situation. The steady state is generated from a local equilibrium state having the same 

average values of gross variables as in the steady state. In the lowest approximation for 

the mode-coupling term ·the explicit expression of the stress tensor is obtained and evaluated. 

The effects of the higher mode-coupling approximations on the stress tensor are also briefly 

examined. 

§ 1. Introduction 

Recently the nonlinear stress tensor in a classical fluid was studied by 

Kawasaki an~ Gunton1> (herafter referred to as KG). They started with the 

Liouville equation and made use of the projection operator to obtain the stress 

tensor. In the present paper we examine the same problem by a direct extension 

of the mode-coupling · theory2a> to far-from-equilibrium situation. This approach 

makes it feasible to develop a systematic approximation scheme in terms of the 

mode-coupling theory. Both in KG and in the present work a linearized 

hydrodynamic approximation is adopted in the calculation of the stress tensor. 

The justification of this approximation can be niore easily examined by the 

present work than by former. 1> 

The derivation of the steady state distribution is based on the fact that the 

difference between the local equilibrium distribution and the true distribution 

functions quickly disappears after a time which is larger than the periods of the 

microscopic fluctuations but shorter than the time scale of the variation of the 

macroscopic variables. A formulation of this problem is found in Ref. 3). · The 

most interesting feature in the nonlinear transport is the existence of nonanalytic 

terms in the transport coefficients with respect to a thermal driving force.1>• 4> 

These nonanalytic terms arise because of the presence of a diffusion mode. The 

diffusion mode brings the so-called long-time tail into variou~ time correlation 

functions.6> 

In § 2 we derive expressions tor the nonlinear stress tensor in a steady 

state with a shear velocity gradient. In the lowest approximation for the mode-
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112 T. Yamada and K. Kawasaki 

coupling term an expression for the stress tensor is obtained. This approximation 
is basically the same as that which was used by Zaitsev and Shliomis6> to study 
fluctuations near the convective instability. Section 3 is devoted to discussion 
and higher-order approximations are examined. 

§ 2. Steady state distribution and nonlinear stress tensor 

We start with the Fokker-Planck equation corresponding to the nonlinear 
Langevin equation :2> 

_l__P(a, t) =H(a)P(a, t), (1) at 
where P(a, t) is the probability distribution function for gross variables. The 
operator H is 

(2) 

The bare Onsager kinetic coefficients L 1° are assumed to be independent of the 
gross variables. We further assume that the probability distribution takes the 
Gaussian form in both equilibrium and local equilibrium states m the_ following 
way: For equilibrium state, 

(3) 

and for local equilibrium state, 

P1 (a)= const X exp [ -t I:; la1- <at)zl 2], (4) 
i 

where <a1). and <a1) 1 are the averages of ai in equilibrium and local equilibrium 
states, respectively. In effect we are assuming that P 1 (a) is a displaced Gaussian 
since the local equilibrium distribution can be constructed by multiplying the 
factor exp[- L;1 b1a1] to P.(a), where {b1} are the fields conjugate to {a1}.8> 

We then find 

(5) 

and 

(6) 

with 

a( =a,- <at) •. 

Let us now suppose that the system is in a local equilibrium ·state at t = 0. 
For t>O, P(a, t) will deviate from P 1 by virtue of its time evolution, Eq. (1). 
The function P(a, t) will reach an approxi,mate steady state P. after a time r 
which is longer compared with the periods of oscillations of fluctuations of {a} 
but is shorter compared with the macroscopic time when the averages <a1) change 
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Application of Mode-Coupling Theory to Nonlinear Stress Tensor in Fluids 113 

appreciably. This fact is expressed as 

P,(a) ~e•HP,(a) =P1(a) + fat etHHP1 • (7) 

The steps leading to Eq. (7) can be made formally more precise by employing 

. a projection operator technique as was done by one of the authors (K.K.) .8> 

Only the results are quoted here. 

By introducing a projection operator fP which acts on an arbitrary function 

F(a) as 

(8) 

P, can be rewritten as 

(9) 

with Q=l-fP. The details are given in Ref. 3). 

We can transform HP1 as follows : 

H(a)P,(a) =[H(a) -H(a-c)]P1(a) = [H1 (a) +H'(a)]Pz(a) (10) 

with 

where 

with 

and 

H., (a) =2i :E _§__G.) ,1zc 1 (a1 - <az)z), 
t, j,! a a, ' 

(11) 

(12) 

where use has been made of the facts that H(a)P.(a) =0 and P,(a) ~P.(a-c). 
From now on we choose <a,)1 = 0. 

By noting that 

(13) 

and 

QH'P,(a) =OP, (14) 

with 
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114 T. Yamada and K. Kawasaki 

(15) *' 
the steady-state average (X). of an arbitrary function of {a} can be obtained as 

(X),=(X)t+ Saoodt(O[exptQi1]QX(a)) 1 , 

where i1 is the adjoint operator of H: 

i1 =ill+ HL +H.' 

- . f) 
H 1 = ~ K,(c)-, 

i aa, 

i1L=~L, 0 02 +~ [;w,J-Li00'ii]ar_!__, 
i a a, a a,. i, j a a, 

with 

(16) 

(17) 

(18) 

(19) 

(20) 

Here we have defined another projection operator Q=1-P, where Pis a 
projection operator which acts on an arbitrary function of {a} as 

(21) 

Linearized approximation 

Now, we examine Eq. (16) by discarding H. m Eq. (17). This linearization 
is made in the same spirit as the use of linearized hydrodynamics in evaluating 
transport coefficients by the mode-coupling theory, and hence it should not be 
affected by the fact that we are interested in nonlinear transport, which is taken 
care of by our use of local equilibrium state arbitrarily far from equilibrium. 
Effects of H. will be considered in the next section and in Appendix C. 

Let us now consider the following form of an operator X: 

X(a) =a,a1 -(a,a1) 1 • 

As will be shown in Appendix A, Eq. (16) becomes 

(X(a)),= Saoodt(Oa,(t)a1 (t))tdt, 

where 

with 

ai(t) = [exp(tM)a], 

*l In order to derive Eq. (15) we have used th~ relations 

<a,a 1.), = iJ ,, and CV ,11 + CV '*'*' + CV .. ,. J = 0 . 

(22) 

(23) 

(24) 
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Application of Mode-Coupling Theory to Nonlinear Stress Tensor in Fluids 115 

(25) 

Stress tensor 

We now apply this formalism to the e-valuation of stress tensor P* (more 
precisely, the contribution of long-wavelength transverse velocity fluctuations to 
P*) which is given by KG (3 · 24) and (3 · 26) 

P*=<J*) •. 

According to KG, we put 

J* = kBT :E (ukuk*- <ukuk.)t), 
k 

(26) 

(27) 

where uk is the dimensionless transverse velocity fluctuation which consists of 
two indep~ndent components perpendicular to a wave vector k. Each component 
is normalized in such a way that its equilibrium average square fluctuation reduces 
to unity. 

We choose {a} to be a set of the local velocity uk. The average local 
velocity in the dimensionless unit is given by 

Ux=O, Uy=DVpjkBT X, U,=O, (28) 

where p and T denote the mass density and the temperature, respectively. 
Inserting the expression*l 

C{) qa,kM-kr = j k~T [! (qp{lar + qr(Jafi) 

into Eq. (15), we find 

Then, we obtain 

(29) 

(30) 

Pa*p =- kBTD :E :E f"'_ <u'k,u"'!_k,uka(t) U~k (t) )tcdt, (31) 
V k k' Jo 

where the subscript c means that the cumulant average is taken by regarding 
each pair ukau~k as a single unit. The replacement of the bare Onsager kinetic 
coefficient Lt0 by (r;/ p)k2 and the use of Eqs. (24) and (25) yield the linearized 
hydrodynamic equation 

_!!:_Uka(t) = -!Lk2Uka(t) +D(ky~Uka(t) + 2kv:a Ukz(t) -(JayUkz(t)). (32) 
dt P ak:c k 

This equation-of-motion is equivalent to KG ( 4 · 6) except that the latter is time 
reversed. The use of Eq. (32) enables evaluation of the stress tensor, Eq. (31). 
This is done in Appendix B. By defining the nonlinear shear viscosity as 

*l In the actual calculation instead of dealing with two components of uk we work with 
three components u'k, a=x, ;y, z.2al 
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the results are 

T. Yamada and K. Kawasaki 

n(D)=-P:JD, 

1l1J=1J(D) -n(O) =CokBT(p/7JYI2D 112 , 

11:c=P:c*z(D) _:_p:.,(O) =ClkBT(pD/7J)812 , 

11v=P:'v(D) -P:'v(O) =C#,BT(pD/7JY;2 , 

J.=P.~(D) -P.~(O) =CakBT(pD/nY12 , 

(33) 

(34) 

where the numerical coefficients Co, cl, c2 and Ca are -3.0o X l0-3, l.Oa X l0-2, 
4.28 x 10-2 and 5.67 X l0-8, respectively. These numbers are to be compared with 
-5.1 x lO-S, -1.7 x lo-s, 5.0 x 10-s and -4.6 x 10-s given in KG, respectively. 
The difference between these numerical values and those in KG is caused by 
two reasons: (A) In the latter the time correlation functions of the quantities 
u%, (- t) u'l!_k, (- t) and uk"u~k enter into the expression of stress tensor, where 
u%,( -t) obeys the time .reversed form of Eq. (32); (B) the higher order current 
correlation functions are included in KG. In terms of mod~-coupling theory the 
higher order current correlation functions which come from a different origin 
from that of KG appear if the mode-coupling operator Hv is taken into account. 
This problem will be examined in the next section. Note that this circumstance 
also explains the small numerical difference between the results of Fixman and 
Botch7l and those of Yamada and Kawasaki6l for nonlinear shear viscosity of 
binary :fluids near the critical point. 

§ 3. Discussion 

In the preceding section and Appendix B we obtain the stress tensor in the 
lowest approximation to the ,mode-coupling operator Hv. In this section we 
briefly consider the effect of the higher order correction of the operator Hv. 
Since we are only interested in the D-dependence of the quantities 

Sap= Sooodt(J;'11 [exp tQH]QJ:p) 1 , (35) 

we take the following Fokker-Planck operator H: 

H=Ho+Hv (36) 

with 

(37) 

- , a 
Hv=~ v,(a)-, 

i aai 
(38) 

where the summation ~' means that the magnitude of wave number is limited 
above a certain cutoff ko which is proportional to (pD/1JY12• Since Eq. (36) is 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

/a
rtic

le
/5

3
/1

/1
1
1
/1

8
6
0
4
2
8
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

6
 A

u
g
u
s
t 2

0
2
2



Application of Mode-Coupling Theory to Nonlinear Stress Tensor in Fluids 117 

Fig. 1. The lowest order diagram for the 

nonlinear correction. 

Fig. 3. Diagrams which renormalize propaga

tors. 

Fig. 2. The next lowest order diagram. 

of the same form as was used in mode-coupling theory2a) except for the existence 

of the lower cutoff, we can use much of the t~chniques and the terminologies 

in Ref. 2a) to estimate the quantities SafJ· The lowest and the next lowest 

diagrams with respect to the mode-coupling operator ilv are shown in Figs. 1 

~3 where the time increases from the right to the left and a free propagator 

G/(t) =exp[(ico, -L/)t], 

=0, (39) 

is represented by a solid line and we find that a disconnected diagram and a 

diagram which is connected by a single line do not appear due to the existence 

of the projection operator Q,8l·*l Contributions from Fig. 3 serve to renormalize 

a free propagator and to repl~ce the bare Onsager kinetic coefficient by the 

renormalized one. Therefore, hereafter we only deal with diagrams which do 

not contain self-energy corrections such as one shown in Fig. 3, and replace the 

free propagators in Figs. 1 and 2 by the renormalized ones in which the renor

ma]ized viscosity 1J(D) is substituted for the bare one 'lf· In higher order 

diagrams the same replacement is made. Since the evaluation of Fig. 1 has 

already been carried qut ~n the preceding section, we here concentrate on the 

estimate of the contributions from Fig. 2. By omitting the numerical coefficients 

the contributions from Fig. 2 approximately become 

s ""'_!__ I:' _!_ k 1 k' _!_ 
af) V 2 k,k' k2 k2 + (k-k'Y+k' 2 k2 

rvconst + O[k0
2 ln (kM/ko)], (40) 

where the magnitu9.e of all internal momenta k, k' and (k- k') has the upper 

and lower cutoff wave ,numbers kM and k0, respectively. If the lower limit k0 

is put equal to zero (namely, put D = 0) the constants in S.x, Svv and S,, vanish 

due to symmetry. Comparing Eq. (34) with (35) we conclude that the singular 

correction to stress tensor from Fig. 2 is smaller than that from Fig. 1. It is 

*' This can be proved by ·the second quantization technique.•> 
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118 T. Yamada and K. Kawasaki 

.Fig. 4. A higher order diagram. Fig. 5. A type of diagram which is of O(ko1) 

at most. 

difficult to estimate the higher order diagrams than that in Fig. 2. However, 
the study of the diagram in Fig. 4 shows that the contribution of this diagram 
has a form const + 0 [klkM]. Then we can deduce from this result and Eq. 
(40) that a (2n)-vertex diagram has a contribution to Sap of the form const+ 
O[k02k;-1>] for n>l.*> The second term arises •. for example, from a diagram 
shown in Fig. 5. The shaded area consists of propagators, the magnitude of 
whose internal momenta is of 0 (kM) and the left two solid lines have internal 
momenta of 0 (k0). Thus, if this deduction is true, it is sufficient to consider 
the diagram in Fig. 1 in order to evaluate the dominant nonlinear correction to 
the stress tensors. Since a renormalized propagator is used in the .above 
consideration, 1J (D) has a general form 

(41) 

Then we have a self-consistent equation for determining the 1J(D). Therefore 
the numerical coefficient C0 above is replaced by another one multiplied by a 
factor 0 (1). However, this fact means that the modes having large · wave 
numbers necessarily participate m the present consideration. . The determina
tion of the precise value of C0 is, however, beyond the scope of the present 
paper. 

Recently Ashurst and Hoover8> reported the molecular dynamics results of 
the nonlinear shear viscosity A1J. Their A1} seems to be consistent with D 1f2-de
pendence but the coefficient C0 is rather too small to account for their results. 
We conclude that their A1} is probably due to ·more microscopic processes 
explained by the Eyring formula.9> In order to see the effects predicted by KG, 
one may have to see J1j very precisely for much smaller· values of D than tl10se 
of Ashurst and Hoover. 

Acknowledgement 

The authors would like to thank Professor ]. D. Gunton for informing us 
of the details of the computer program used in KG. 

*' This may be proved by increasing the number n step by step from 1 and ass1gnmg 
factors. k", k and k-' to an integral of the internal momenta of the diagram, a vertex and a ti:me 
integral at the intermediate state, respectively, where k is either ko or k:.. This procedure can be 
easily done up to n=2 but becomes hard as n increases. This problem will be furtherinvestigated 
in Appendix C. 
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Application of Mode-Coupling Theory to Nonlinear Stress Tensor in Fluids 119 

Appendix A 

Using an abbreviated notation 

A,1=a,a1 - <aia1)z, 

we first find that 

(1-P) f11A,1 = (1-P) (K, (c)a1 + K 1 (c) ai) = 0. 

f11 in Eq. (16) can be thus dropped. Next we obtain 

(1-P) ftLA>J = ~ (M,zAu + MuAz,) 
z 

with 

M,1=iw,, -LNJ,,. 

Repeating the same operation on A,h we liave 

where M is a matrix whose i, j element is M.,. 

Then it can be readily verified that 

exp[t(1-P) (f11 +f1L)]A11 =a,(t)a1 (t) -<a,(t)a1 (t))z, 

where 

a,(t)=[exp(tM)a],. 

By inserting Eq. (A· 5) to Eq. (16) we obtain 

<A,,),= r= dt<Oat (t) a1 (t) ) 1 , 

where we have made use of the fact that <0)1=0. 

Appendix B 

(A·1) 

(A·2) 

(A·3) 

(A·4) 

(A·5) 

(A·6) 

(A·7) 

An evaluation of the quantities (31) can be done in the same way as KG. 

We have briefly outline the procedure and give the results. 

It can be easily shown that the quantities defined as 

~l(k) = r= dt t[uk""(t) u!".k(t)+ uk11 (t)u':k(t)]' 

~2 (k) = r= dt Uk x (t) U':_k (t), 

~S (k) = r= dt Uky (t)U!"_k (t), 

~4 (k) = r= dt uk. (t) u':_k (t) (B·1) 
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120 T. Yamada and K. Kawasaki 

satisfy the following differential equations: 

with 

( -2gk~+k _1_+ 4k"'k11)e (k) = _ _!_u "'u"' 11 8k:r: It · ~~ D 1c -Tc ' 

( -2glt+k11 _1_+ 2 k:r;k 11 )~1(k) + (4k:• -1)~a(k) = _ _!__(u~c"'u!.~c+ U~c 11 U":..~c), 8k:r: k1 k 2D 

(-2glt+k11 _1_)~.(k) + 2( 4 ~~ -1)~1(k) = _ _!_~~c 11 u!.~c, 
~ k D -

~,(k) = :.~ [k:r: 1 ~a(k) +k.,/~ 1 (k) +2k:r;k~l(k)] (B·2) 

Y==1J/ (pD). 

These equations are solved and "yield 

Ec(k)=- fTc., dk:r:'_}_k K(k,k')0,(k'), 
' JcoxDlcr D 11 

(B·3) 

where 

and 

with 

and 

+ k/ (k:r:- k:r:') [1- k:r:k:r:' J 
k1k'1 k 111+k.1 ' 

(B·6) 
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Application of Mode-Coupling Theory to Nonlinear Stress Tensor in Fluids 121 

Substituting Eq. (B · 3) into Eq. (31) and using the relation 

<ukau~k)L=&ap-kak 1 ik 2 , (a, /3=x, Y, z) 

we obtain the following for 'the stress tensor: 

P* = - kBT ". i"" dk ,l__K(k k') (1- k/2) k'2k,' kv 
:&:& v "-' :c k ' k'2 k4 ' k - ooXDky y 

P* =- 2kBT "i"~ dk 'l__K(k k') [kx'kv (1-!!d__) 
'V'V v "-'. :c k ' k'2 k'2 k ooxDk• , 'V 

(B·7) 

(B·S) 

Before proceeding further, the limiting values of these quantities for D---'>0+ ·are 

examined and obtained as (V==-1J/ p) 

P*---" _ kBT D L; _1_( k,2 + 2kx2k/) 
zv V k 2vk2 k2 k4 ' 

P* _ 2kBTD" _1_· 2k/kxkv 
zz~ ""-..J • 

• V k 2vP k4 
(B·9) 

The limiting values of the quantities P:z, Piv and P.~, vanish due to symmetry. 
This result reflects the fact that these quantities are even function of D.1> 

On the other hand P:v in this limit does not vanish. By using the definition 
of the nonlinear shear viscosity,' we obtain 

(0) = kBT" _1_( k,2 + 2kx2k/).' 
11 V 7<' 2vk2 k2 k4 

(B ·10) 

Equation (B ·10) gives the linear part of the shear viscosity. By subtracting 
the linear part of the stress tensor from the nonlinear one, Eq. (B · 8), the 
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122 T. Yamada and K. Kawasaki 

remammg quantities are found to be convergent even if the Upper limit of wave 
numbers kM is taken to infinity and have the form const X kBT(D/vY12. The 
constants C, (see Eq. (34)) are numerically evaluated by the use of F ACOM 
230-60. The Simpson 1/3 rule is used for the numerical integration. The val].les 
are given in Eq. (34). 

Appendix C 

We consider the whole set of diagrams with (2n) vertices, n = 1, 2, · · ·, 
except for those containing self-energy corrections as in Fig. 3. Since we are 
interested in the order of magnitude of these diagrams with respect to k0, propa
gators are simply classified into two species, an L- and a U-bonds: These propa
gators have internal momenta of order of k0 and kM, respectively. In Fig. 6 the 
dashed and the solid lines correspond to the L- and ·the U-bonds, respectively. 
Then, due to the momentum conservation law, only those vertices shown in 
Fig. 7 are allowed. Furthermore, either the dashed or the solid vertex shown 
in Fig. 8 (A) [8 (B)] appears in each diagram at the extreme left [right]. A 
part of a diagram not coming to pieces if L-bonds are removed is named " U
block" and indicated by a symbol U in the diagram. Here we give a rule to 
evaluate the order*l of a diagram. (A) An intermediate state containing only 
L-bonds (hereafter referred to as "L-state ") gives the order k0 -

2• (B) Every 
vertex shown in Figs. 7 (E) r-.J (H) has a factor k0, respectively. (C) In general, 
a (2n)-vertex diagram has (n + 1) independent integrals. If the integration 
variable is of 0 (ko), the order k0

8 is given to the integral. 
The following facts can be easily derived: 

1) The decoration of a single L-bond by a U-block give the same order diagram 
as, or a higher order one than the original one (see Fig. 9). 

2) The addition of a single L-bond to the original diagram yields a new diagram 
smaller than the original one at least by a factor k0• This can be seen from 

Fig. 6. U-bond and L-bond. 

>-(8) 

-"">----, 
'(Fl 

-< ·--< 
(C) (G) 

(0} 

Fig. 7. Various types of bare vertices. 

< 5 
Fig. 8. Other types 'of ver

tices which appear at the 

extreme left and right of 

the diagram. 

*J Hereafter by "order'' we mean the "order of magnitude with respect to ko ,. unless stated 
otherwise. 
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J. 
-----<1[>-----

Fig. 9. Procedure (1). 

(C) 

Fig. 10. Procedure (2). 

----r---, 
,,' ~ 

,' 

__ JY? __ _ 
,, 

~ig. 11. Procedure (3). 

(A) 

--- ... .... , 
\ 

_____ ,.,"'' 

(B) 

,. .... ----&> < . u ........ ____ .-

<:~B~~B~ .... --9> 

~J~IJ~I ····~~9> 
(C) 

<BJ~r ... ~~~B~~~ 
~r~~~~~ -...:~~0~~~ · 

Fig. 12. The final set of diagrams which have to be 

considered. 

an example in Fig. 10(B). Other examples shown in Figs. 10(C) and 10(D) 

are smaller than the original one by factors k0
2 and k0

8, respectively. 

3) ·If the bare vertices, Figs. 7 (F) and 7(H), are replaced by vertices of 

U-blocks, at least a factor of 0 (k0) is multiplied to the contribution of an 

original diagram, (see Fig. 11). 

The whole diagram can be constructed of U-blocks, L-bonds and the dashed 

vertices in Figs. 7 (F), 7 (H) and 8. First we consider a diagram composed of 

a single U-block. Since the contribution from this diagram has· a form canst+ 

0 (k0
8), we may take no notice of this type of diagram as far as the lowest 

nonlinear correction is concerned. Next we consider a diagram whose intermediate 

states contain no L-state. The order of this diagram is at least k0
3• Then we 

may also ignore this type of diagram. From now on we take account of the 

whole set of diagrams with (2n) vertices (n>1) having at least one L-state; 

of course, this set does not contain a diagram of the type shown in Fig. 1 

where the propagators are replaced by the renomalized ones. From this set we 

successively remove diagrams which can be obtained by the combination of pro

cedures (1) rv (3) as long as this manipulation does not yield the lowest order 

diagrams mentioned above. Finally we have a new set of diagrams from which 

we cannot take away any diagrams by the above-mentioned method. Diagrams 

in this set can be divided into two groups according to whether they contain 

U-blocks or not. The latter group consists of diagrams like one shown in Fig. 
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12 (A). The order of these diagrams is k0
2 which corresponds to Eq. ( 40).

The former group consists of diagrams each of which has at most two Lbonds 
at every instant and have no vertices shown in Figs. 7 (F) and 7 (H), because 
otherwise we are always able to obtain a lower order than this by reversing 
procedures (1) rv (3). If in a certain diagra~ of this group different U-blocks 
refer to the same time interval, this diagram can be omitted in our consideration 
since it is apparently of higher order than that shown in Fig. 12 (B) or 12 (C). 
Among the di~grams in Figs. 12(B) and 12(C), those in Fig. 12(B) give the 
lowest order contribution and their orders are at most k0

2• 

Finally we conclude that the lowest nonlinear correction to the stress tensor 
comes from the diagram in Fig. 1 with renormalized propagators. The resolvent 
operator formalism used in the present appendix is found in Ref. 2b) and the 
techniques developed in quantum many-body problem10l can be used for this prob
lem as well. 
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