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Abstract In this paper, we apply the modified Laplace decomposition method (MLDM) to obtain

series solutions of the boundary layer equation. The technique is based on the application of

Laplace transform to boundary layers in fluid mechanics. The nonlinear terms can be easily handled

by the use of Adomian polynomials. The obtained series solution is combined with the diagonal

Padé approximants to handle the boundary condition at infinity. Comparison of the present solu-

tion is made with the existing solution and excellent agreement is noted.
ª 2010 King Saud University. All rights reserved.
1. Introduction

The study of laminar boundary layer flow of an incompressible

fluid has several important engineering applications such as the
aerodynamic extrusion of plastic sheets, the cooling of an infi-
nite metallic plate in a cooling bath, the boundary layer along
liquid film condensation process, glass and polymer industries.

The pioneering work in this area was done by Sakiadis
(1961a,b). Since then, the characteristics of momentum and en-
ergy transfer over a flat plate have been extensively studied,

both numerically and analytically, and similarity solutions
m (Y. Khan), nfaraz_math@

ity. All rights reserved. Peer-

d University.
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for a large variety of boundary conditions were proposed, like
for stretching walls (Crane, 1970; Banks, 1983; Magyari and
Keller, 2000; Kuiken, 1981), porous media (see Ingham and
Pop, 2002; Nield and Bejan, 1999), permeable surfaces (Magy-

ari and Keller, 2000; Magyari et al., 2003), etc. Although the
numerical approach allows studying more complex boundary
conditions, the importance of analytical solutions is undeni-

able and it is witnessed by the large amount of work per-
formed, particularly in recent years, on this subject. Various
kinds of solutions methods (Wazwaz, 1997, 2006; Xu, 2007;

Noor and Mohyud-Din, 2009; He, 2006, 2003; Abbasbandy,
2007; Rashidi, 2009; Ganji et al., 2009; Fathizadeh and Rash-
idi, 2009) were used to handle the boundary layer problem.
One of those solution methods is the Laplace decomposition

method was proposed by Khuri (2001) and developed by
Yusufoglu (2006). A reliable modification of the Laplace
decomposition algorithm has been done by Khan (2009). Fur-

thermore, the Laplace transformation method was also com-
bined with the well-known homotopy perturbation method
(Madani and Fathizadeh, 2010; Mohyud-Din et al., 2010;

Yildirim, 2010), the variational iteration method (Hesameddini
and Latifzadeh, 2009; He et al., 2010) and the Adomian
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decomposition method (Khan and Faraz, 2010; Islam et al.,

2010; Wazwaz, 2010) to produce a highly effective technique
for handling many nonlinear problems.

This technique basically illustrates how the Laplace trans-
form can be used to approximate the solutions of the nonlinear

differential equations by manipulating the decomposition
method which was first introduced by Adomian (1994). The
method is very well suited to physical problems since it does

not require unnecessary linearization, perturbation and other
restrictive methods and assumptions which may change the
problem being solved, sometimes seriously. The basic motiva-

tion of the present study is to extend our previous approach
proposed in Khan (2009) to solve boundary layer problem
on semi-infinite domain. The modified Laplace decomposition

method is much easier to implement as compared with the
Adomian decomposition method where huge complexities
are involved. To the best of authors knowledge no attempt
has been made to exploit this method to solve boundary layer

equation on semi-infinite domain. Also our aim in this article is
to compare the results with solutions to the existing ones
(Wazwaz, 2006; Xu, 2007; Noor and Mohyud-Din, 2009).

2. Modified Laplace decomposition method

In order to elucidate the solution procedure of the modified
Laplace decomposition method, we consider the following
general form of 3rd order non-homogeneous nonlinear ordin-

ary differential equation with initial conditions is given by

f000 þ b1ðxÞf00 þ b2ðxÞf0 þ b3ðxÞf ¼ gðyÞ; ð1Þ
fð0Þ ¼ a; f0ð0Þ ¼ b; f00ð0Þ ¼ c; ð2Þ

According to Laplace decomposition method (Khuri, 2001;
Yusufoglu, 2006), we apply Laplace transform (denoted
throughout this paper by L) on both sides of Eq. (1):

s3L½f� � s2a� sb� cþ L½b1ðxÞf00� þ L½b2ðxÞf0� þ L½b3ðxÞf�
¼ L½gðyÞ�; ð3Þ

Using the differentiation property of Laplace transform, we
have

L½f� ¼ a
s
þ b
s2
þ c
s3
þ 1

s3
L½gðyÞ� � 1

s3
L½b1ðxÞf00 þ b2ðxÞf0 þ b3ðxÞf�:

ð4Þ

The Laplace decomposition method (Khuri, 2001; Yusufo-
glu, 2006) admits a solution in the form

f ¼
X1
m¼0

fm: ð5Þ

The nonlinear term is decomposed as

gðyÞ ¼
X1
m¼0

Am; ð6Þ

where Am are Adomian polynomials of f0; f1; f2; f3; . . . ; fn and it
can be calculated by the following formula

Am ¼
1

n!

dm

dkm N
X1
i¼0

kifi

 !" #
k¼0

; m ¼ 0; 1; 2; 3 . . . : ð7Þ
Using Eqs. (5) and (6) in Eq. (4) we get

L
X1
m¼0

fm

" #
¼ a

s
þ b
s2
þ c
s3
þ 1

s3
L
X1
m¼0

Am

" #

� 1

s3
L b1ðxÞ

X1
m¼0

f00m þ b2ðxÞ
X1
m¼0

f0m þ b3ðxÞ
X1
m¼0

fm

" #
;

ð8Þ

Matching both sides of Eq. (8), we have the following
relation;

L½f0� ¼
a
s
þ b
s2
þ c
s3
; ð9Þ

L½f1� ¼
1

s3
L½A0� �

1

s3
L½b1ðxÞf000 þ b2ðxÞf00 þ b3ðxÞf0�;

L½f2� ¼
1

s3
L½A1� �

1

s3
L½b1ðxÞf001 þ b2ðxÞf01 þ b3ðxÞf1�: ð10Þ

In general the recursive relation is given by

L½fmþ1� ¼
1

s3
L½Am� �

1

s3
L½b1ðxÞf00m þ b2ðxÞf0m þ b3ðxÞfm�; m P 0:

ð11Þ

Taking the inverse Laplace transform from both sides of
Eqs. (9)–(11), one obtains

f0ðxÞ ¼ HðxÞ; ð12Þ

fmþ1ðxÞ ¼ L�1
1

s3
L½Am� �

1

s3
L b1ðxÞf00m þ b2ðxÞf0m
��

þ b3ðxÞfm��; m P 0: ð13Þ

where HðxÞ represents the term arising from source term and

prescribe initial condition. The modified Laplace decomposi-
tion method (Khan, 2009) suggests that the function HðxÞ de-
fined above in (12) be decomposed into two parts, namely
H0ðxÞ and H1ðxÞ. Such that

HðxÞ ¼ H0ðxÞ þH1ðxÞ: ð14Þ

The initial solution is important, and the choice of Eq. (12)
as the initial solution always leads to noise oscillation during
the iteration procedure. Instead of the iteration procedure,

Eqs. (12) and (13), we suggest the following modification

f0ðxÞ ¼ H0ðxÞ;
f1ðxÞ ¼ H1ðxÞ þ L�1 1

s3
L½A0� � 1

s3
L½b1ðxÞf000

�
þb2ðxÞf00 þ b3ðxÞf0�

�
;

fmþ1ðxÞ ¼ L�1 1
s3
L½Am� � 1

s3
L½b1ðxÞf00m þ b2ðxÞf0m

�
þb3ðxÞfm��; m P 1:

ð15Þ

The solution through the modified Laplace decomposition

method highly depends upon the choice of H0ðxÞ and H1ðxÞ.
We will show how to suitably choose H0ðxÞ and H1ðxÞ by
example.

3. Series solution for the boundary layer equation

In this section, we apply the modified Laplace decomposition
method (MLDM) for solving boundary layer problem in an

infinite domain. Let us consider the following nonlinear third
order boundary layer problem which appears mostly in the
mathematical modeling of physical phenomena in fluid

mechanics (Wazwaz, 2006; Xu, 2007; Noor and Mohyud-
Din, 2009)
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f000 þ ðn� 1Þff00 � 2nðf0Þ2 ¼ 0; n > 0;

fð0Þ ¼ 0; f0ð0Þ ¼ 1; f0ð1Þ ¼ 0;
ð16Þ

where f00ð0Þ ¼ a < 0, will be examined in this work. By apply-
ing the aforesaid method subject to the initial conditions, we

have

L½f� ¼ sþ a
s3
þ 1

s3
L½2nðf0Þ2 � ðn� 1Þff00�; ð17Þ

The inverse of Laplace transform implies that

fðgÞ ¼ gþ ag2

2
þ L�1

1

s3
L½2nðf0Þ2 � ðn� 1Þff00�

� �
; ð18Þ

Following the technique, if we assume an infinite series

solution of the form (5) we obtain

X1
m¼0

fmðgÞ ¼ gþ ag2

2
þ L�1

1

s3
L 2n

X1
m¼0

AmðgÞ
 !""

� ðn� 1Þ
X1
m¼0

BmðgÞ
 !##

; ð19Þ

In the above equation AmðgÞ and BmðgÞ are the Adomian

polynomials (Adomian, 1994) that represent the nonlinear
terms. So Adomian polynomials are given below

X1
m¼0

AmðgÞ ¼ ðf0Þ2ðgÞ; ð20Þ

The few components of the Adomian polynomials are given
as follow

A0ðgÞ ¼ ðf00Þ
2ðgÞ;

A1ðgÞ ¼ 2f00ðgÞf01ðgÞ;
A2ðgÞ ¼ ðf01Þ

2ðgÞ þ 2f00ðgÞf02ðgÞ;
A3ðgÞ ¼ 2f01ðgÞf02ðgÞ þ 2f00ðgÞf03ðgÞ;
A4ðgÞ ¼ ðf02Þ

2ðgÞ þ 2f01ðgÞf03ðgÞ þ 2f00ðgÞf04ðgÞ;
A5ðgÞ ¼ 2f00ðgÞf05ðgÞ þ 2f01ðgÞf04ðgÞ þ 2f02ðgÞf03ðgÞ;
..
.

AmðgÞ ¼
Pm
i¼0

f0iðgÞf0m�iðgÞ:

ð21Þ

And for BmðgÞ we find

X1
m¼0

BmðgÞ ¼ fðgÞf00ðgÞ; ð22Þ

B0ðgÞ ¼ f0ðgÞf000ðgÞ;
B1ðgÞ ¼ f0ðgÞf001ðgÞ þ f1ðgÞf000ðgÞ;
B2ðgÞ ¼ f0ðgÞf002ðgÞ þ f1ðgÞf001ðgÞ þ f2ðgÞf000ðgÞ;
B3ðgÞ ¼ f0ðgÞf003ðgÞ þ f1ðgÞf002ðgÞ þ f2ðgÞf001ðgÞ þ f3ðgÞf000ðgÞ;
B4ðgÞ ¼ f0ðgÞf004ðgÞ þ f1ðgÞf003ðgÞ þ f2ðgÞf002ðgÞ þ f3ðgÞf001ðgÞ

þ f4ðgÞf000ðgÞ;
B5ðgÞ ¼ f0ðgÞf005ðgÞ þ f1ðgÞf004ðgÞ þ f2ðgÞf003ðgÞ þ f3ðgÞf002ðgÞ

þ f4ðgÞf001ðgÞ þ f4ðgÞf001ðgÞ;
..
.

BmðgÞ ¼
Pm
i¼0

fiðgÞf00m�iðgÞ:

ð23Þ
Through the modified Laplace decomposition method

(Khan, 2009) the function HðgÞ can be written as

HðgÞ ¼ gþ ag2

2
¼ f0ðgÞ þ f1ðgÞ; ð24Þ

By this consideration, we first set modified recursive rela-
tions in the form

f0ðgÞ ¼ g;

f1ðgÞ ¼ ag2

2
þ L�1 1

s3
L½2nðA0Þ � ðn� 1ÞðB0Þ�

� �
;

fmþ1ðgÞ ¼ L�1 1
s3
L 2nAmðgÞ � ðn� 1ÞBmðgÞ½ �

� �
; m P 1

ð25Þ

Writing f0ðgÞ ¼ g in Eq. (25), the other components are

f1ðgÞ ¼
ag2

2
þng3

3
;

f2ðgÞ ¼
að3nþ1Þg4

24
þnðnþ1Þg5

30
;

f3ðgÞ ¼
a2ð3nþ1Þg5

120
það19n2þ18nþ3Þg6

720
þnð2n2þ2nþ1Þg7

315
;

f4ðgÞ ¼
a2ð27n2þ42nþ11Þg7

5040
það167n3þ297n2þ161nþ15Þg8

40320

þ nð13n3þ38n2þ23nþ6Þg9

22680
;

ð26Þ

The series solution is given as

fðgÞ ¼ gþ ag2

2
þ ng3

3
þ að3nþ 1Þg4

24

þ 1

30
n2 þ 1

40
na2þ 1

120
a2 þ 1

30
n

� �
g5

þ 19

720
n2aþ 1

240
aþ 1

40
na

� �
g6

þ 1

120
n2aþ 1

315
nþ 2

315
n3 þ 11

5040
a2 þ 3

560
n2a2 þ 2

315
n2

� �
g7

þ 11

40320
a3 þ 33

44880
n2aþ 3

4480
a3n2 þ 23

5760
naþ 1

2688
a

�

þ 167

40320
n3aþ 1

960
a3n

�
g8

þ 1

3780
nþ 527

362880
n3a2 þ 19

11340
n3 þ 709

362880
na2þ 23

8064
n2a2

�

þ 23

22680
n2 þ 13

22680
n4 þ 43

120960
a2

�
g9 þ � � � ð27Þ
4. The Padé approximants

Our aim in this section is mainly concerned with the mathe-
matical behaviour of the solution fðgÞ in order to determine

the value of free parameter a ¼ fð0Þ. It was formally shown
by Wazwaz (2007), Boyd (1997) and Mohyud-Din et al.
(2010) this goal can easily be achieved by forming the Padé
approximants (Baker, 1975) which have the advantage of

manipulating the polynomial approximation into a rational
function to obtain the more information about fðgÞ. It is
well-known fact that Padé approximants will converges on

the entire real axis if fðgÞ is free of singularities on the entire
real axis. More importantly, the diagonal approximants are
most accurate approximants, therefore we will construct on

diagonal approximants. Using the boundary condition
f0ð1Þ ¼ 0, the diagonal approximants ½M=M� vanish if the
coefficients of numerator vanish with the highest power in
the g. Choosing the coefficients of the highest power of g equal



Table 1 Comparison of the numerical value of a ¼ f00ð0Þ obtained by MLDM with MADM and MVIM.

n Padé approximants Present method MADM (Wazwaz, 2006) MVIM (Noor and Mohyud-Din, 2009)

0.2 [2/2] �0.3872983347 �0.3872983347 �0.3872983347
[3/3] �0.3821533832 �0.3821533832 �0.3821533832
[4/4] �0.3819153845 �0.3819153845 �0.3819153845
[5/5] �0.3819148088 �0.3819148088 �0.3819148088
[6/6] �0.3819121854 �0.3819121854 �0.3819121854

0.3 [2/2] �0.5773502692 �0.5773502692 �0.5773502692
[3/3] �0.5615999244 �0.5615999244 �0.5615999244
[4/4] �0.5614066588 �0.5614066588 �0.5614066588
[5/5] �0.5614481405 �0.5614481405 �0.5614481405
[6/6] �0.561441934 �0.561441934 �0.561441934

0.4 [2/2] �0.6451506398 �0.6451506398 �0.6451506398
[3/3] �0.6397000575 �0.6397000575 �0.6397000575
[4/4] �0.6389732578 �0.6389732578 �0.6389732578
[5/5] �0.6389892681 �0.6389892681 �0.6389892681
[6/6] �0.6389734794 �0.6389734794 �0.6389734794

0.6 [2/2] �0.8407967591 �0.8407967591 �0.8407967591
[3/3] �0.8393603021 �0.8393603021 �0.8393603021
[4/4] �0.8396060478 �0.8396060478 �0.8396060478
[5/5] �0.8395875381 �0.8395875381 �0.8395875381
[6/6] �0.8396056769 �0.8396056769 �0.8396056769

0.8 [2/2] �1.007983207 �1.007983207 �1.007983207
[3/3] �1.007796981 �1.007796981 �1.007796981
[4/4] �1.007646828 �1.007646828 �1.007646828
[5/5] �1.007646828 �1.007646828 �1.007646828
[6/6] �1.007792100 �1.007792100 �1.007792100

Table 2 Comparison of the numerical value of a ¼ f00ð0Þ obtained by MLDM with MADM, MVIM and HPM.

n Present method MADM (Wazwaz, 2006) HPM (Xu, 2007) MVIM (Noor and Mohyud-Din, 2009)

4 �2.483954032 �2.483954032 �2.5568 �2.483954032
10 �4.026385103 �4.026385103 �4.0476 �4.026385103
100 �12.84334315 �12.84334315 �12.8501 �12.84334315
1000 �40.65538218 �40.65538218 �40.6556 �40.65538218
5000 �104.8420672 �104.8420672 �90.9127 �104.8420672
The above tables clearly reveal that present solution method namely MLDM shows excellent agreement with the existing solutions in the

literature (Wazwaz, 2006; Xu, 2007; Noor and Mohyud-Din, 2009). This analysis shows that MLDM suits for boundary layer flow problems.
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to zero, we get a polynomial equations in a which can be
solved very easily by using the built in utilities in the most
manipulation languages such as Maple and Mathematica.

5. Conclusion

The main aim of this work is to provide the series solution of
the Boundary layer equation by using the modified Laplace
decomposition method (MLDM). The new modification of

Laplace decomposition method (LDM) is a powerful tool to
search for solutions of various nonlinear problems. The meth-
od overcomes the difficulty in other methods because it is effi-

cient. We derived the same results by combining the series,
obtained by the modified Laplace decomposition method, with
the diagonal Padé approximants. The convergence of MLDM

is also shown in Tables 1 and 2. Comparison of the present
solution is made with the existing solution (Wazwaz, 2006;
Xu, 2007; Noor and Mohyud-Din, 2009). An excellent
agreement between the present and existing solutions is
achieved. The analysis given here further shows confidence
on MLDM.
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