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Abstract

This research focuses on the solution of higher order boundary value
problems by our proposed method �Modi�ed Optimal Homotopy Per-
turbation Method� (MOHPM). A homotopy with an embedding param-
eter and Daftardar-Jafari polynomials are used. To control the conver-
gence of solution, some auxiliary functions which depend upon variables
and some constants are used. The proposed method is simple, rapid, ef-
fective and accurate. The accuracy has been proved by comparing our
results with the solutions of optimal homotopy perturbation method
(OHPM), optimal homotopy asymptotic method (OHAM), variational
iterative method (VIM),variational iteration method using He's poly-
nomials (VIMHP), homotopy perturbation method (HPM), Adoman
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1. INTRODUCTION

Nonlinear boundary value problems have a signi�cant contribution in today's modern
�elds of science and technology. They take place from steady state solutions of transient
problems. The signi�cance of higher order boundary value problems (BVPS) can be judge
from their extensive use in mathematical modeling of di�erent entities such as visco-
elastic �ows, hydrodynamic stability problems, non-Newtonian �uids and convection of
heat etc [1]. In general, an nth order BVP can be represented as:

w(p) = ξ(w, w′, . . .w(p−1)) + Θ(s), f < s < h,

having boundary conditions
w(q)(f) = ηi and w

(q)(h) = λi,
where(q < p)is a non-negative integer, ηiand λi are real �nite constants and Θ(s) is a

continuous function on[f, h ].
Finding a solution for the above type di�erential equations is a tedious job. One may

�nd an exact solution, but if the degree of non linearity is high, it becomes impossible to
get an exact solution. Researchers have therefore focused on analytic solutions of such
type problems. In literature we come across di�erent analytic methods. Some of the in-
teresting analytic methods which can be applied to a wide range of high order di�erential
equations are homotopy analysis method (HAM) [2-4], homotopy perturbation method
(HPM) [5-6], Adomian decomposition method (ADM) [7], optimal homotopy asymptotic
method (OHAM) [8-12], optimal homotopy perturbation method (OHPM) [13-15] and
variational iteration method (VIM) [16-18]. In order to obtain best approximate solution
of di�erential equations, researchers in the �eld modify the existing analytical methods
time to time. One such modi�cation of (HPM) has been done by V. Marinca et al
[13-15].The basis for their new method, which is known as (OHPM) is He's homotopy
perturbation method. This method is developed on the same lines as was done earlier in
He's homotopy perturbation method. A visible change in (OHPM) is that the non linear
function is extended in series form for the parameter involved and auxiliary functions are
inducted within the coe�cients of this truncated series. In (OHPM) the auxiliary func-
tions have unknown parameters which can be determined optimally. All these techniques
give (OHPM) an edge over the conventional (HPM).

Our purpose in this paper is to obtain a new version of OHPM, which produces more
accurate and reliable results than OHPM. The target is achieved here by introducing
Daftardar-Ja�eri polynomials in OHPM. The modi�ed version of OHPM thus obtained
will have its name as modi�ed optimal homotopy perturbation method (MOHPM). It
is important to note that these polynomials were de�ned in Daftatdar-Ja�eri Method
(DJM)[19], and basically are the non linear terms of the Taylor's series. S. Bhalekar et
al. [20] have proved the convergence of these polynomials. It can be observed from the
solved problems in section 3 that MOHPM is a powerful method as it converts a complex
problem into a simpler one, which can then be solved easily. This method has great
potential to solve ordinary di�erential equations of any order. The same technique can
also be extended to solve partial di�erential equations, Integro-di�erential equations and
system of di�erential equations of physical phenomenon. In our coming papers we will
be showing the application of MOHPM to these types of problems. Here we have solved
some linear and non linear higher order BVPS by MOHPM and OHPM to con�rm the
di�erence in obtained solutions. The results of MOHPM are also compared with those
of exact solutions and the errors are compared with the already existing well-known
results of OHAM, VIM, HPM, VIMHP, ADM and B-Spline. Numerical results show
that MOHPM is found best in giving better and more accurate results.
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This manuscript is arranged as follows: In part 2, introduction of MOHPM is given.
Part 3 is devoted to the application of MOHPM to higher order BVPS. In the same
section results of numerical simulation using Mathematica 7.0 are given. In next and
�nal section a concluding remarks are given for the obtained results.

2. INTRODUCTION OF MOHPM

Consider the problem

(2.1) ξ (κ(s)) + ζ (κ(s))− Γ(s) = 0, s ∈ Ω

(2.2) ∆

(
κ,
∂κ

∂s

)
= 0, s ∈ Π,

where ξ and ζ are linear and nonlinear operators respectively, ∆ is the boundary operator,Π
is the boundary of the domainΩ, Γ is the analytic function and the di�erential along the
normal drawn outwards from Ω is represented by ∂

∂s
. According to homotopy scheme, we

create a homotopy, κ̃(s, ϑ) : Ω× [0, 1]→ R by

Σ (κ̃, ϑ) = (1− ϑ) (ξ(κ̃(s, ϑ))− ξ(κini(s, ϑ)))

+ϑ (ξ(κ̃(s, ϑ)) + ζ(κ̃(s, ϑ))− Γ(s)) = 0,(2.3)

where ϑ ∈ [0, 1] is known as the embedding parameter and the initial guess for the
solution of (2.1) by κini(s, ϑ), which satis�es the boundary conditions. It is quite easy to
note that, when ϑ = 0 and ϑ = 1 equation (2.3) holds and takes the form respectively as

(2.4) Σ (κ̃, 0) = ξ(κ̃(s, 0))− ξ(κini(s, 0)) = 0,

(2.5) Σ (κ̃, 1) = ξ(κ̃(s, 1)) + ζ(κ̃(s, 1))− Γ(s) = 0,

thus change in ϑ from zero to one, will change the trivial solution for (2.4) to the solution
of (2.5) continuously. That is, if ϑ changes from zero to one then κ̃ changes from κini.
to κ, this is known as deformation in topology. The paths ξ(κ̃(s, 0))− ξ(κini(s, 0)) and
ξ(κ̃(s, 1)) + ζ(κ̃(s, 1)) − Γ(s) are homotopic to each other. At this stage assume the
perturbation series

(2.6) κ̃(s) = κ̃0(s) + ϑ κ̃1(s) + ϑ2 κ̃2 + · · · .
For MOHPM, the nonlinear function ζ(µ̃(r, θ)) decomposes as

(2.7)
ζ (κ̃(s, ϑ)) = ζ(κ̃0(s)) + ϑ (ζ(κ̃0(s) + κ̃1(s))− ζ(κ̃0(s)))
+ϑ2 (ζ(κ̃0(s) + κ̃1(s) + κ̃2(s))− ζ(κ̃0(s) + κ̃1(s)) + · · · .

The terms ζ(κ̃0(s)), {ζ(κ̃0(s) + κ̃1(s))− ζ(κ̃0(s))}, {ζ(κ̃0(s) + κ̃1(s) + κ̃2(s))− ζ(κ̃0(s) +
κ̃1(s))} and so on, appearing in equation (2.7) on the right hand side are Daftardar-Jafari
polynomials de�ned in [19]. Equation (2.7) can be written in a more compact form if

we write ζ0 = ζ(κ̃0(s))and ζm = ζ
(∑m

i=0 κ̃i(s)
)
− ζ

(∑m−1
i=0 κ̃i(s)

)
. Thus, the expression

(2.7) reduces to

(2.8) ζ(κ̃(s, ϑ)) = ζ0 +

∞∑
j=1

ϑjζj .

putting back, equation (2.8) for equation (2.3), also by introducing a number of unknown
auxiliary functions,εi(s, ci); fori = 0, 1, 2, 3, . . . that depend on the variable s and some
constants c0, c1, c2, . . ., we get a new homotopy for (2.1) as:

(2.9)

∑
(κ̃, ϑ) = (1− ϑ)[ξ(κ̃(s, ϑ))− ξ(κini(s, ϑ))]

+ ϑ[ξ(κ̃(s, ϑ) + ε0(s, c0)ζ0 +

∞∑
k=1

εk(s, ck)ϑk ζk − Γ(s)] = 0,
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along with the boundary conditions:

∆(κ̃(s, ϑ),
∂

∂s
(κ̃(s, ϑ) )) = 0.

Now, comparing the coe�cients of similar powers of ϑ in (2.9), we get linear di�eren-
tial equations of zeroth order, �rst order, second order and so on, which can be solved
very easily.
Zeroth order problem:

(2.10) ξ(κ̃0(s)) = ξ(κini(s)), ∆

(
κ̃0,

dκ̃0

ds

)
= 0.

First order problem:

(2.11) ξ(κ̃1(s)) + ε0(s, co)ζ0 − Γ(s) = 0, ∆

(
κ̃1,

dκ̃1

ds

)
= 0.

Second order problem:

(2.12) ξ(κ̃2(s)) + ε1(s, c1)(ζ1) = 0, ∆

(
κ̃2,

dκ̃2

ds

)
= 0.

Third order problem:

(2.13) ξ(κ̃3(s)) + ε2(s, c2)(ζ2) = 0, ∆

(
κ̃3,

dκ̃3

ds

)
= 0.

and so on.
Where εi(s, ci); i = 0, 1, 2, 3, . . ., are auxiliary functions. The parameters ci's are used to
control the convergence and can itself be determined optimally. This can be done over
the domain of the problem by minimizing the residual functional. In order to get an
accurate result, solutions up to the higher order problems can be made but a solution
up to third order will be su�cient. For ϑ = 1, if the series (2.7) converges, then the
approximate solution is given by

(2.14) κ(s) = κ̃(s) = κ̃0(s) + κ̃1(s, c0) + κ̃2(s, c0, c1) + κ̃3(s, c0, c1, c2) + · · · .

The resulting residual can be obtained by backward substitution of equation (2.13) into
equation (2.1) as

(2.15) R̄(s, c0, c1, c2, . . . .) = ξ(κ̃(s)) + ζ(κ̃(s))− Γ(s).

The exact solution κ̃, will be obtained if R̄ = 0. In most of the problems usuallyR̄ 6= 0,
and a minimization is needed over the domain of the problem. This can be done by using
either least square's method, Galerkin's method or collocation method. When applying
the method of least squares, we �rst introduce the functional

(2.16) ψ(c0, c1, c2, . . .) =

∫ h

t

R̄2dx,

and then minimizing it, we obtain

(2.17)
∂ψ

∂c0
=
∂ψ

∂c1
=
∂ψ

∂c2
= · · · = 0.

For auxiliary constants we have to solve the following system, when applying Galerkin's
method:

(2.18)

∫ h

t

R̄
∂κ̃

∂c0
ds = 0,

∫ h

t

R̄
∂κ̃

∂c1
ds = 0,

∫ h

t

R̄
∂κ̃

∂c2
ds = 0, . . . ..
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3. APPLICATION OF OHPM AND MOHPM

In this section high accuracy of MOHPM is shown over the existing methods in the
literature. The proposed method is applied to some linear and non linear di�erential
equations of di�erent orders. As a result, we see that MOHPM gives best approximation
and takes very less time to produce the solution.
Problem 1. Consider �fth order linear boundary value problem [10].

(3.1)
d5u

ds5
− u+ 15 es + 10 s es = 0, 0 < s < 1,

(3.2) u(0) = 0, u (1) = 0, u′(0) = 1, u′(1) = −e, u′′(0) = 0.

The exact solution for this problem is u(s) = s(1− s)es.
To apply MOHPM, we take:

u(s, ϑ) = u0(s) + ϑu1(s) + ϑ2u2(s),(3.3)

ξ(κ̃(s, ϑ)) =
d5u(s, ϑ)

ds5
, ξ(κini(s, ϑ)) = 0, ε0(s, c0) = 1, ε1(s, c1) = 1,(3.4)

(3.5) ξ(κ̃(s, ϑ)) + ζ(κ̃(s, ϑ))− Γ(s) =
d5u

ds5
− u+ 15 es + 10 s es.

Now put the above values in (2.9) and compare the coe�cients of like powers of ϑ we get
as:
Zeroth order problem:

(3.6) (u0)(5)(s) = 0, u0(0) = 0, u0(1) = 0 , u′0(0) = 0, u′0(1) = −e , u′′0 (0) = 0.

First order problem:

(3.7)
15 es + 10 ess− s u0(s) + (u1)(5)(s) = 0,

u1(0) = 0, u1(1) = 0, u′1(0) = 0, u′1(1) = 0, u′′1 (0) = 0.

Second order problem:

(3.8)
− s u1(s) + (u2)(5)(s) = 0, u2(0) = 0, u2(1) = 0,

u′2(0) = 0, u′2(1) = 0 , u′′2 (0) = 0.

Solve the above equations we obtain: u0(s), u1(s), u2(s), put these values in (3.3) and
also ϑ = 1, we get the following solution for t = 0and h = 1 :

(3.9)

u(s) = s− 0.5 0 0 0 0 0 0 0 0 s3 − 0.3 3 3 3 3 3 3 3 3 s4 − 0.1 2 5 s5

− 0.0 3 3 3 3 3 3 3 3 s6 − 0.0069444444 s7

− 0.001190476 s8 − 0.000173611 s9 − 0.000022047s10 − 0.000002480 s11

− 2.5052× 10−7s12 − 2.2967× 10−8s13 − 1.9261× 10−9s14.

The results for problem 1 are shown in table-1 and �gure-1 as follows:

Problem 2. Fifth order non-linear boundary value problem [10].

(3.10)
d5u

ds5
− u2e−s = 0, 0 < s < 1,

(3.11) u(0) = 1, u′(0) = 1, u′′(0) = 1, u (1) = e, u′(1) = e .

Having exact solution u(s) = es. To solve this problem, we consider the second order
approximation

(3.12) u(s) = u0(s) + u1(s, c0) + u2(s, c0, c1).
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Let,u(s, ϑ) = u0(s)+ϑu1(s)+ϑ2u2(s), ξ(κ̃(s, ϑ)) = d5u(s,ϑ)

ds5
, ξ(κini(s, ϑ)) = 0,ζ(κ̃(s, ϑ)) =

u2(s)e−s ,ε0(s, c0) = c0, ε1(s, c1) = c1,ς0 = u2
0(s) , ς1 = 2u0(s)u1(s) + u2

1(s).
Put the above values in (2.9) and compare coe�cients of like powers of ϑ we get as:
Zeroth order problem:

(3.13) (u0)(5)(s) = 0, u0(0) = 1, u′0(0) = 1 , u′′0 (0) = 1, u0(1) = e , u′0(1) = e .

First order problem:

(3.14)
− e−sc0 u0(s)2 + (u1)(5)(s) = 0, u1(0) = 0,

u1(1) = 0 , u′1(0) = 0, u′1(1) = 0 , u′′1 (0) = 0.

Second order problem:

(3.15)
−2e−sc1 u0(s)u1(s)− e−sc1 u1(s)2 + (u2)(5)(s) = 0,
u2(0) = 0, u2(1) = 0 , u′2(0) = 0, u′2(1) = 0 , u′′2 (0) = 0.

Solution of the above gives u0(s), u1(s, c0), u2(s, c0, c1).
Now use (3.12) and apply the Galerkin's method consist of (2.15) and (2.18) we get

the following values of c,is for t = 0and h = 1,

c0 = 0.999999240, c1 = 0.999758960 .

The MOHPM approximate solution becomes:

(3.16)
u(s) = 1 + s+ s2

2
+ 0.16666 6 6 6 7s3 + 0.0 4 1 6 6 6 6 67s4 + s5

120
+ s6

720
+ s7

5040

+0.000024802 s8 + 0.000002756 s9 + 2.7557× 10−7s10 + 2.5050× 10−8s11

+2.0928× 10−9s12 + 1.5506× 10−10s13 + 1.4690× 10−11s14 .

Now to check the accuracy of OHPM, we apply OHPM to (3.10) and obtain

c0 = 1.000553563, c1 = −0.417820368 .

The approximate solution by OHPM is then given as

(3.17)

u(s) = 1 + s+
s2

2
+ 0.166668432s3 + 0.041661159s4 + 0.008337946s5

+ 0.00138968s6 + 0.000198523 s7 + 0.000019825 s8 + 0.000006842 s9

− 5.0613× 10−7s10 − 4.1383× 10−8s11 − 1.6480× 10−8s12

+ 1.4653× 10−8s13 − 9.8279× 10−9s14

The results for problem 2 are shown in table-2 and �gure-2 as follows:

Problem 3. Sixth order linear boundary value problem [17]

(3.18)
d6u

ds6
− (u− 6 es) = 0, 0 < s < 1,

(3.19) u(0) = 1, u(1) = 0, u′′(0) = −1, u′′(1) = −2e, u′′′′(0) = −3, u′′′′(1) = −4e .

The exact solution for this problem is:

u(s) = (1− s)es.
To apply MOHPM, we use the steps used in problem-1 and in problem-2, we obtain
approximate solution for t = 0and h = 1 as

(3.20)

u(s) = 1.− 3.5811× 10−12s− 0.5 s2 − 0.333333333 s3 − 0.125 s4 − 0.0333333333 s5

− 0.0 0 6944444 s6 − 0.0 01190476 s7 − 0.0 0 0173611 s8 − 0.0 0 0 022046 s9

− 0.000002480 s10 − 2.5052× 10−7 s11 − 2.2964× 10−8 s12

The results for problem 3 are shown in table-3 and �gure-3 as follows:
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(1) Table 3
(2) Figure 3

Problem 4. Sixth order nonlinear boundary value problem [24]

(3.21)
d6u

ds6
− u2es = 0, 0 < s < 1,

(3.22) u(0) = 1, u′(0) = −1, u′′(0) = 1, u(1) = e−1, u′(1)− e−1, u′′(1) = e−1.

The exact solution is given as u(s) = e−s.
To apply MOHPM, we consider the following second order approximationu(s) =

u0(s) + u1(s, c0) + u2(s, c0, c1).
Now we use the steps mentioned in problem-1 and problem-2.
Using the Galerkin's method which consist of (2.15) and (2.18) , we obtain the fol-

lowing values of c,isfor t = 0and h = 1 :

c0 = 0.999781503, c1 = 0.568319310 .

The approximate solution by MOHPM becomes:

(3.23)
u = 1− s+ s2

2
− 0.1666666676 s3 + 0.041666667s4 − 0.008333333 s5 + s6

720

− s7

5040
+ s8

40320
− 0.000002756 s9 + 2.7556× 10−7s10 − 2.5048× 10−8s11

+2.0862× 10−9s12 − 1.5896× 10−10s13 + 9.6037× 10−12s14.

Also when we apply OHPM, we obtain the values of c,is as

c0 = 0.999986482, c1 = 0.991801518 .

The approximate solution given by OHPM is

(3.24)

u = 1− s+ s2

2
− 0.1 6 6 6 6 6 6 6 7 s3 + 0.0 4 1 6 6 6 6 6 7 s4 − 0.0 0 8 3 3 3 3 3 4 s5

+0.001388889 s6 − 0.000198413 s7 + 0.000024802 s8 − 0.000002756 s9

+2.7561× 10−7s10 − 2.5071× 10−8s11 + 2.0905× 10−9s12

−1.5728× 10−10s13 + 7.1664× 10−12s14.

Results for problem 4 are given in table 4 and �gure 4 as follows:

(1) Table 4
(2) Figure 4

4. CONCLUSION

In this paper a new idea has been developed and e�ectively applied to four higher
order boundary value problems of �fth and sixth orders which provide very accurate
results as compared to other well known methods in practice. Our proposed method has
great potential to solve ordinary di�erential equations of any order. The same technique
can also be extended to the solutions of partial di�erential equations, integro-di�erential
equations and system of di�erential equations, the results obtained for these types of
di�erential equations will be revealed in our coming papers. The merit of MOHPM is
that it requires only a few terms to obtain accurate approximate solutions. This technique
has a great robust, to attract engineer, scientists and researchers of every �eld.
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Table 1. Table1 shows comparison of the errors obtained by
(MOHPM)(3.9), (OHAM) [10], (VIMHP) [16], (VIM) [18], (B-Spline)
[22], with the exact solution. We observe that the result of MOHPM
is better and more accurate than the above mentioned methods.

s Exact MOHPM E*
(MOHPM)

E*
(OHAM)

E*
(VIMHP)

E*
(VIM)

E* (B
Spline)

0.0 0.000000 0.000000 0. 0. 0. 0. 0.

0.1 0.099465 0.099465 5.4x10−14 9.0x10−11 -
3.0x10−11

1.0x10−09 -
7.0x10−04

0.2 0.195424 0.195424 3.7x10−13 4.0x10−10 -
2.0x10−10

2.0x10−09 -
7.2x10−04

0.3 0.283470 0.283470 1.0x10−12 5.0x10−10 -
4.0x10−10

1.0x10−09 4.1x10−04

0.4 0.358037 0.358037 1.9x10−12 2.0x10−11 -
8.0x10−10

2.0x10−09 4.6x10−04

0.5 0.412180 0.412180 2.7x10−12 1.0x10−09 -
1.0x10−09

3.1x10−08 4.7x10−04

0.6 0.43730 0.437308 3.0x10−12 2.0x10−09 -
2.0x10−09

3.7x10−08 4.8x10−04

0.7 0.422888 0.422888 2.1x10−12 2.0x10−09 -
2.0x10−09

4.1x10−08 3.9x10−04

0.8 0.356086 0.356086 3.7x10−12 1.0x10−09 -
2.0x10−09

3.1x10−08 3.1x10−04

0.9 0.221364 0.221364 -
3.2x10−11

4.0x10−10 -1.0x1-
−09

1.4x10−08 1.6x10−04

1.0 0.000000 2.5x10−8 -
1.6x10−10

0. 0. 0. 0.

[22] S.U. Islam and M.A. Khan, A numerical method based on polynomials sextic spline functions
for the solution of special �fth-order boundary value problems, Applied Mathematics and
Computation, 181 (2006) 356-361.

[23] A.M. Wazwaz, The numerical solution of sixth-order boundary value problems by the mod-
i�ed decomposition method, Applied Mathematics and Computation, 118 (2001) 311-325.

[24] M.A. Noor and S.T. Mohyud-Din, Homotopy perturbation method for solving sixth order
boundary value problems, Computers and Mathematics with Applications, 55 (2008) 2953-
2972.

Table 1

E*=Exact-Approx.
Figure 1: Dotted curve-sol: (MOHPM) and solid curve-sol: (Exact).
TABLE 2

E*=Exact-Approx.
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Table 2. Table 2 shows comparison of the solutions obtained by
MOHPM (3.16), OHPM (3.17), OHAM [10], VIM [18] and B-Spline
[22]. From the numerical results it is clear that MOHPM is more e�-
cient and more accurate.

s Exact MOHPM E*
MOHPM

E*
OHPM

E*
OHAM

E* VIM E*
B-Spline

0.0 1.000000 1.000000 0.0 0.0 0.0 0.0000 0.0000

0.1 1.105170 1.105170 3.1x10−15 1.2x10−09 1.9x10−10 -
3.0x10−11

-
8.0x10−03

0.2 1.221402 1.221402 1.9x10−14 6.8x10−09 1.2x10−09 -
2.2x10−10

-
1.2x10−03

0.3 1.349858 1.349858 5.4x10−14 1.4x10−08 3.3x10−09 -
4.0x10−10

-
5.0x10−03

0.4 1.491824 1.491824 1.0x10−13 2.0x10−08 6.3x10−09 -
8.0x10−10

3.0x10−03

0.5 1.648721 1.648721 1.4x10−13 2.1x10−08 9.3x10−09 -
1.2x10−09

8.0x10−03

0.6 1.822118 1.822118 1.6x10−13 1.7x10−08 1.1x10−08 -
209x10−09

6.0x10−03

0.7 2.013752 2.013752 1.5x10−13 1.2x10−08 1.1x10−08 -
2.2x10−09

-0.0000

0.8 2.225540 2.225540 9.9x10−14 7.0x10−09 8.2x10−09 -
1.9x10−09

9.0
10−03

0.9 2.459603 2.459603 1.1x10−14 2.0x10−09 1.9x10−09 -
1.4x10−09

-
9.0x10−03

1.0 2.718281 2.718281 1.0E-13 3.0E-09 0.00 0.000 0.0000

Figure 2: Dotted curve-sol: (MOHPM) and solid curve-sol: (Exact).

Table 3

E*=Exact-Approx.
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Table 3. Table3shows comparison of the errors obtained by MOHPM(
3.20), OHAM [10], ADM [23], VIM [18] and HPM [24], with the exact
solution. We observe that our results of MOHPM are better and more
accurate than the above mentioned methods.

s Exact MOHPM E*
MOHPM

E*
OHAM

E* ADM E* VIM E* HPM

0.0 1. 1. 0. 0. 0. 0. 0.

0.1 0.994653 0.994653 3.5x10−13 2.1x10−08 -
4.1x10−04

-
4.1x10−04

-
4.1x10−04

0.2 0.977122 0.977122 6.7x10−13 4.0x10−08 -
7.8x10−04

-
7.8x10−04

-
7.8x10−04

0.3 0.944901 0.944901 9.2x10−13 5.7x10−08 -
1.1x10−03

-
1.1x10−03

-
1.1x10−03

0.4 0.895094 0.895094 1.1x10−12 7.0x10−08 -
1.3x10−03

-
1.3x10−03

-
1.3x10−03

0.5 0.824360 0.824360 9.0x10−13 7.6x10−08 -
1.3x10−03

-
1.3x10−03

-
1.3x10−03

0.6 0.728847 0.728847 -
1.6x10−12

7.5x10−08 -
1.3x10−03

-
1.3x10−03

-
1.3x10−03

0.7 0.604125 0.604125 -
1.9x10−11

6.5x10−08 -
1.1x10−03

-
1.1x10−03

-
1.1x10−03

0.8 0.445108 0.445108 -
1.1x10−10

4.8x10−08 -
4.1x10−04

-
4.1x10−04

-
4.1x10−04

0.9 0.245960 0.245960 -
5.3x10−10

2.5x10−08 -
7.8x10−04

-
7.8x10−04

-
7.8x10−04

1.0 0. 2.0E-O9 -
2.1x10−09

-
2.1x10−09

0.0 0.0 0.0

Figure 3: Dotted curve-sol: (MOHPM) and solid curve-sol: (Exact).
Table 4

E*=Exact-Approx.
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Table 4. Table 4 shows comparison of errors obtained by MOHPM
(3.23), OHPM (3.24), OHAM [21], ADM [23], VIM [18] and HPM
[24], with the exact solution. Results indicate clearly that MOHPM
gives better and accurate approximations than the above mentioned
methods.

s Exact MOHPM E*
MOHPM

E*
OHPM

E*
OHAM

E*
VIM

E*
ADM

E*
HPM

0.0 1.000000 1.000000 0.0 0.0 0 0 0 0

0.1 0.904837 0.904837 4.1x10−15 1.2x10−09 -4.82
x10−10

-
2.3x10−07

-
1.2x10−04

-
1.2x10−04

0.2 0.818730 0.818730 2.4x10−14 6.8x10−09 -
4.92x10−10

-
1.3x10−06

-
2.3x10−04

-
2.3x10−04

0.3 0.740818 0.740818 5.5x10−14 1.4x10−08 -
2.37x10−11

-
3.3x10−06

-
3.2x10−04

-
3.2x10−04

0.4 0.670320 0.670320 8.3x10−14 2.0x10−08 5.11x10−10 -
5.2x10−06

-
3.8x10−04

-
3.8x10−04

0.5 0.606530 0.606530 9.3x10−14 2.1x10−08 6.42x10−10 -
6.1x10−06

-
4.0x10−04

-
4.0x10−04

0.6 0.548811 0.548811 8.2x10−14 1.7x10−08 2.02x10−10 -
5.7x10−06

-
3.9x10−04

-
3.9x10−04

0.7 0.496585 0.496585 5.5x10−14 1.2x10−08 -
5.37x10−10

-
4.0x10−06

-
3.3x10−04

-
3.3x10−04

0.8 0.449328 0.449328 2.9x10−14 7.0x10−09 -
1.02x10−09

-
1.9x10−06

-
2.4x10−04

-
2.4x10−04

0.9 0.406569 0.406569 3.1x10−14 2.0x10−09 -
8.23x10−10

-
3.5x10−07

-
1.2x10−04

-
1.2x10−04

1.0 0.367879 0.367879 1.1x10−13 3.0x10−09 -
2.05x10−12

-
5.0x10−10

2.0x10−09 2.0x10−09

Figure 4: Dotted curve-sol: (MOHPM) and solid curve-sol: (Exact).


