
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

1986

Application of Modified Predicate Transition Nets to Modeling and Application of Modified Predicate Transition Nets to Modeling and

Simulation of Communication Protocols Simulation of Communication Protocols

Chuang Lin

Dana Cristian Marinescu

Report Number:
86-599

Lin, Chuang and Marinescu, Dana Cristian, "Application of Modified Predicate Transition Nets to Modeling
and Simulation of Communication Protocols" (1986). Department of Computer Science Technical
Reports. Paper 518.
https://docs.lib.purdue.edu/cstech/518

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

APPLICATION OF MODIFIED PREDICATE TRANSmON NETS TO
MODELING AND SIMULATION OF COMMUNICATION PROTOCOLS

Chuang Lin
Dan Cristian Marinescu

CSD-TR-599
May 1986

Application of Modified Predicate Transition Nets to Modeling and
Simulation or Communication Protocols

Chuang Lin"

Dan Crisrian Marinescu

CompUler Sciences Department
Purdue University

West Lafayene, IN 47907, USA

ABSTRACT

The use of modified predicate transition nets for the modeling of
computer communication protocols is investigated in this paper. The
lower three layers of the OS! architecture are of primary concern. On the
Network Layer (Layer 3), fragmentation and reassembly, routing, store
and forward buffering and congestion control mechanisms are treared.
The Data-Link Layer (Layer 2) leads to window-flow control, time-out
retransmission and transmission error recovery models. These mechan
isms may repeatedly dealt with in the different layers of the computer
communication architecture.

Non-prime transitions can be embedded into the modified predicate
transition ners hence a top-down modeling is possible. The present paper
uses a hierarchical modeling approach to describe complex communica
tion mechanisms in tenns of simpler constructs. Models developed using
the modified predicate transition nelS can be automatically translated into
simulation programs. The paper presents the translation of a computer
communication model into a program, using a process oriented simulation
language, ASPOL.

1. Introduction

The Open-Systems Interconnection (OS!) reference model [l] is a framework for
defining standards for interconnection of heterogeneous computers. II panitions the com
puter communication functions into a vertical set of seven layers. Each layer provides
services to the next higher layer, and relies on the next lower layer to perfanTI more prim
itive functions. Layer n on one host carries on a conversation with layer n on another
host The rule and conventions used in this conversation are collectively known as a
(peer-tD-peer) protocol.

For computing systems and especially for systems of the complexiry of a computer
network, modeling is essential during system design, implementation and throughout the
entire system life. In connection with computer communication protocol design,

a On leave from SL:n.c Planning (;Qmmillee, Beijing, China

· 2-

modeling is necessary in order [0 predict the feasibility and the performance of the protO
cols.

Simulation can be used to evaluate the model of a system after the model has been
mapped into a computer program which describes the interesting behavior of the system.
A simulation model of a computer communication architecture emphasizes a sufficiently
precise representation of protocols and protocol hierarchies.

Some directions in the communication protocol research are:

Formal protOcol specification and validation. The objective is to prove proto
col correcmess, to avoid inconsistencies and system deadlocks [2-7].

PrOtocol perfonnance evaluation. Relevant perfonnance characteristics are the
delay of data within a layer as a function of the different values of the layer
parameters, the utilization of computer ne[v..-ork elements as a function of the
network load. etc. An imponant objective of the performance evaluation is to

provide information for the optimal strucruring of a communication architec
ture as well as implementation guidelines for example the amount of memory
space needed for protocol implemenmtion on a given host. Another objective
of the performance evaluation is to predict the network characteristics impor
tant from a user's perspective as delay, throughput, etc. The research reponed
in this paper belongs to this category.

Study of implementation methods allowing translation of the protocol models
into program structures.

Very often a hierarchical modeling is possible, a complex system can be decom
posed into subsystems. Each subsystem-can be modeled separately and irs model can be
evaluated independently. The behavior of the entire system can be investigated by com
bining !he previous results.

In recent years a considerable effon has been invested into modeling and analysis of
computer communication protocols. Two approaches to modeling, namely the finite state
automata approach [8] and the simulation language approach [9-12] have been investi
gated in the past. More recently queueing models have been also considered [13,41].
The Petri net models are used. mostly for the specification and validation of protocols
[6,7], but they seem a natural tool for protocol perfonnance analysis [14-16].

The introduction of Petri nets can be traced back to the dissenation of C.A. Petri
[17]. The theory of Petri nets has been further developed and applied to modeling and
analysis of modern computing systems [18-20]. Recent work done on General Net
Theory and related models can be found in [21], and surveys of Petri nets in [14, 15,22].

The capabilities of Petri nets to represent concurrent, conflicting, nondeterministic
and asynchronous events are their most useful properties for modeling of computer com
munication networks. Petri net models are especially suitable to describe the data
exchange aspect of the protocols being modeled. Data exchange is generally represented
as a pan of the certain token exchange in Petri nets. Petri nets can be used [Q model both
the static and the dynamic properties of computer networks. Static properties of networks
are represented by the graph pan of a Petri net. Dynamic propenies of networks can be
de;i....ed fror:::::: the Petti net graph, the initi2..! mad".ing and the firing rules.

However, Perri net models suffer from two severe limitations:

Modeling of a complex system leads to a very inrricate and quite unreadable graph.

Perfonnance evaluation of the obtained model is impractical if the time concept is
not introduced imo the Perri nets.

Petti nets have evolved over the past decade in order to provide a more compact
representation of real systems. The place-coloured nets [23] and the predicate-transition
ners [24,25] have been proposed. In both cases the size of the network representing a real
system has been reduced by increasing the power of the representation. The resulting nets
are more readable_ The validation of communication protocols [6,7] had been carried out
in the framework of these extension nets.

An imponant extension of Perri nets is related to the need to embed in the net model
the time involved in system operations by allowing timed transitions. One of the firSt
effons in this direction is represented by E-nets [26]. The main difference between E
ners and Petri nets is the fonner's introduction of a fixed time delay between enabling
and firing of every transition. Another approach proposed [27,28] is to associate with
each transition a range of :firing time values bounded by a maximum and a minimum
firing time_. There are also stochastic Perri ner models [29-31] in which a random firing
time is associated with each transition.

Time can be introduced. in the net by associating an exponentially disrributed :firing
time to some transitions so that the Petri nets may include both timed and immediate
transitions. Such nets were discussed in reference [14] and applied to the performance
evaluation of multiprocessor systems. There is correspondence between such nets and
continuous time Markov chains, so the evaluation of the systems can be achieved by
classical probabilistic analysis. Recently, the discrete rime stochastic Petri nets [32] were
proposed.

Predicate-transition nets, enhanced with stochastic transition time, are proposed as a
suitable framework for modeling the communication protocols in a computer network.
In order to illustrate this, we have considered some common mechanisms used the three
lower layer protocols for the ISO reference model. In the first section of the paper a
modified predicate-transition net is presented. In the second section, the computer net
work model based. upon the modified predicate-transition nets is analyzed. Finally, the
mapping of the network model into program structure is discussed.

2. Modified Predicate-Transition Nets

The Petti nets used in this paper are a modified version of the Predicate-Transition
Nets and Generalized Stochastic Petri Nets. The elements of the Modified Predicate
Transition Nets are the following:

(1) Token tl'pes
In the modified nets there are three types of tokens.

Type 1 Tokens with no attribute. They are used to represent the synchroni
zation operations among concurrent activities.

Type 2 Tokens with one attribute only. The attribute is an integer which
may represent for example the value of a counter.

- 4-

Type 3 Tokens with multiple amibutes. The firSt item in the attribute
record is used to identify the token subtype. Each subtype
represents a different data unit exchanged by the communication
protocols. We recognize the following subtypes: message, packet,
frame, and bit scream. A token representing a message has three
attributes, subtype=m, destination address a, and message length 1.
A token representing a packet has six attributes: subtype=p, the
packet sequence number s, the destination address a (copied from
the message), the packet length 11, the last packer in a message flag
la, and the neighbor to neighbor packet sequence number 51. A
token representing a frame has eight attributes: the subrype=f, the
data link sequence number 52, the packet type (data,ACK, NAK,
res, ref, etc.) and the last five attributes are copied from the packer.
A token conversion process occurs whenever the corresponding
data unit crosses the boundary of a communication layer and it
corresponds to the encapsulation and decapsulation process per
formed by the different prorocollayers.

(2) Places
They are the firSl type of nodes in the graphs. A place is represented by a

circle and has a name consisting of one or more upper-case characters. A
place can contain a finite number of tokens, determined by its capaciry. We
distinguish two types of places: places of the firSt type are used to represent
the queues of interest in the performance evaluation of system and they con
tain Type 3 tokens. Places of the second type are used to represent system
environments.

(3) Transitions
Transitions are the second type of nodes in the graphs. A tranSlUon is

represented by a bar or a rectangle and has a name consisting of one or more
upper-case characters. Nonprime rransitions representing model subnets are
represented graphically as rectangles. This possibility enables top-down
hierarchy structuring and information hiding. A similar structuring method for
distributed software system design has been discussed in [34]. Predicates can
be inscribed on transitions: they specify relations between variables of dif
ferent tokens from the input places of the transitions. It is possible to evaluate
the interesting performance aspects in the modelled system by introducing
"time" into the transitions [14, 33]. There are two types of rransilions: timed
and immediate. An exponentially distributed random time (possibly marking
dependent), denoted by T(), between enabling and firing of a rransition can be
associted with timed transitions only.

(4) Arcs
Arcs connect transitions and places together. The arcs are labelled with

token variables. Operations can be inscribed on outgoing arcs of transitions.
An operation performs a computation or a change of the attributes carried by
the tokens from the input places, and it forms tokens to be insened into the
output places. In our modified nets multiple arcs between a place and a rransi
tion are allowed, and the number of such arcs may vary from zero to a finite

- 5 -

value. In the followings we will show that this extension does not change the
property of the predicate-transition nets, but it makes more convenient IO

describe some mechanisms of the protocols. The variable arc is represented
graphically by an aTC crossing a small circle, and has an associated range
expressIOn.

(5) Firing rule
A transition is enabled when there is at least one token in each of its input

places and the predicate associated with the transition is satisfied. If there are
the multiple arcs between the input place and the rransition, then the transition
is enabled when the number of tokens in the input place is at least equal to the
number of arcs and the predicate is satisfied. An immediate rransition fires
immediately after being enabled. 'When the rimed transition is enabled, it fires
after a random enabling time, x. The enabling rime, x, is exponentially distri
buted and it is specified by the T(x) associated with the transition. However,
the firing of a transition is considered to be instantaneous, so the probability of
twO or more transitions firing simultaneously is zerO. The firing of a transition
consists of two steps:

a) removing Ihe tokens (satisfying the predicate) from the input places;

b) adding tokens to the oUEpllt places after performing the operations
specified on the outgoing arcs.

In our model the distribution of the time x associated with a timed transition
depends upon the system environment. The main difference between the nets used in
this paper and the predicate-transition nets are the introduction of time and of variable
arcs (a variable number of arcs may connect a place and a transition, and this number
may range from zero to a finite value).

In our paper the following notations are used: ffi stands for addition modulo the
size of the sequence number. [x,y] denotes the sel of integers from x to y, including the
lower and the upper bound while (x,y] excludes x and [x,y) excludes y. Due to the
modulo operation, it is possible that the set of sequence numbers of the messages to be
sent (received) might not be in the number value order. For example when the size of the
sequence number of the frame M 2 = 8 (three bits are used for the frame sequence
number), the following frames may be in the sender's window: 6, 7, 0, 1. To illustrate
the sequence relation, the symbol ~ is used. In the example above, we can say 6 ~ 1,7
~ 0, 6 ~ 7, etc. I{}l denotes the cardinality of a set. For example, I{a, e, d}1 is equal to
3. In addition, the relations between the element and the set are often used in the predi
cates. If a element is contained by a set, this relation is denoted by E, on the contrary, by
~ . For instance, we can say 3 E [1,4) and 4 ~ [1,4).

In our model nets, we often use a place representing a counter as an environment
state variable in order to control the probability of firing a transition. Such values are
presented in the predicates as individual token attributes. From the reference [14], we
know the bounded place marking can be tested. The value of the counter or the set ele
ment in the model can also be tested and changed, including testing for zero.

The variable-arc nets are useful to model the network protocols, for instance to
model the fragmentation of a message of a given length or to model the operation of mul
tiple elements of an entry (queue, set, etc.).

- 6-

The correspondence between a variable-arc net and a predicate transition net will be
discussed in connection with two examples used to model mechanisms of a network laver
protocol and of a data link layer protocol.

Example (1). The Fragmentation Mechanism . The network layer breaks up a
message into several packets. Two models of this fragmentation mechanisms are
presented in Figure 1. In Figure L(a) a variable-arc net is used to describe the mechan
ism. X represents the arc variable. It is assumed that the maximum length of a packer is
128 bits and the maximum message length is 384 bits hence X varies in the range 1 [Q 3.

The following transitions occur in OUT model:

US is a transition representing the arrival of a message from a user. Messages arrive
according to a Poisson distribution with average arrival rate A .

FR is a transition representing the fragmentation process. This transition fires only
once, when the message is received, hence the :fi..~g condition for transition FR
is: (jn=O)AND(O<i$.348). \Vhen ir fires, a number X of packet rokens are
created and deposited in place PS. X depends upon the actual message length, , .

SEN is a O'ansition representing the sending of the next sequential packet to the output
queueCplace OUT).

We now focus our attention upon the places present in our variable-arc net and upon
the attributes of each type of token allowed in any given place.

SQ is a place containing tokens that represent messages, and have three amibutes:
m : token subtype (message) ;
a : desrination address;
1 : message length.

PS is a place containing tokens that represent packets. Such a token has fo.ur attri
butes:

p : token subtype (packet);
a : destination address (copied from the message);
II : packet length;
1a : last packet in a message flag, used in reassembly.

A variable arc connects the rransition FR to the place PS. Consequenrly a variable
number of packet tokens are deposited in place PS when the transition FR fires.

S is a place containing tokens representing the sequence number counter. s. \Vhen
ever the transition SEN :fires, this counter is incremented modulo Mo.

FN is a place containing the counter fn of packets left in place PS. When the transi
tion FR fires, the value is set to X, the number of packets created from the incom
ing message. Whenever the transition SEN fires, the value is decreased by one.

An ~uivalent model for the same mechanism is presented in Figure L(b) but a
predicate-transition net is used instead of a variable-arc net. The complexity of this
model is considerably increased. Instead of a single transition FR now we have the set of
FRj ,i=1,2,3 . The predicate associated with FR is the combination of all predicates asso
ciated with FRj •

Exampie (2). The Frame Reject Mech<lnism. In a data link layer prmocol the
receiver of a frame with sequence number i, may infonn the sender that it does not wanr

- 7 -

to accept the frame, by sending a reject command, <nak,i>. A Go-back-N continuous
ARQ (Automatic Repeat Request) [42] technique for error canrrol is used in OUI exam
ple.

In our model, when a token representing a reject command is received, all tokens
representing frames in the sender's window and with a sequence number succeeding the
rejected. frame are deleted from the rime out queue, place TQ, in Figure 2. The possibil
ity that there is no token to be deleted, because rerransmission has already been per
formed. (e.g. the time-out has occurred) is also taken into account in our model.

The places and the associated rokens have the following meaning:

S1 is a place associred with a counter representing the sequence number of the frame.
Its current value is denoted by sl.

PR is a place holding the reject loken, "associated with the receiving of a reject com
mand. Such a token has twO attributes:

nak : token subtype;
i : the sequence number of the rejected frame.

TQ is a place holding tokens with twO atnibures:
x : the sequence number of the frame registered.
t : the rime-out associated with frame x (omitted here).

RS is a place representing the retransmission conrrol set which COntains the sequence
number of the frames that will be rerransmined.

The number of arcs from the place TQ to the transition TR is variable from zero to a
finite integer as shown in Figure 2.(a), depending upon the number of tokens contained
by the place TQ.

The equivalent model without the zero changeable arc is presented in Figure 2.(b).'
The transition TR2 occurs for all frames with a sequence number x in the range [i,s1), and
as a result, the corresponding retransmission frame tokens are deleted from the place TQ.
The variable arcs from the place TQ to the transition TR2 and those from the transition
TR2 to the place RS both are changeable from one to a finite number. The arcs connect
ing the place TQ and the rransition Th l represent the testing for place TQ, including pos
sibly zero testing, i.e., testing whether there is any token in place TQ. The enabling con
dition for the transition TR1 is the opposite condition as the one for the rransition Th2,

and the firing of TR1 has no effect upon the the place RS, where tokens representing
frames waiting to be retransmined are deposited.

3. The Computer Network System Model

The Reference Model of Open Systems Interconnection (aS!) has seven layers.
The syntax, the semantics and the timing associted with the communication between peer
entities, located at the same layer, on different systems are collectively called protocols.
Each communication layer has a different function hence the protocols for different
layers are different. Nevertheless, some of the protocol primitive functions can be
identified in more than one layer. A non exhaustive list of such functions contains frag
mentation and reassembly, encapsulation, connection control, flow control, error conlrol,
synchronization, sequencing, etc.

· 8 -

This paper is focused upon the first three layers of the OS1 Model, the Network
Layer, the Data Link Layer and the Physical Layer. The methods developed can be
extended to cover the protocols for other layers. In the network model shown in Figure
3, the concept of using non-prime rransirion for modeling of the functions related to dif
ferent network layers is illustrated. This shows that the modeling technique based upon
modified predicate rransition nets, presented in this paper, is capable to take advantage of
hierarchical modeling concepts and a [op~down modeling approach is possible.

The communication between two transport layer entities, each with multiple data
link connections is illustrated in our example. Since processes within layers operate
asynchronously, queues 3r layer interfaces are a necessary pan of the network model.
Each layer protocol entity has associted with it four queues: a send and a receive queue to
(from) the upper layer, and a corresponding pair connecting to the next lower layer. A
protocol entity is represenred as a non-prime transition, e.g the network layer entity is
represented by the Fragmentation, Reassembly, Routing, Buffering, Congestion non
prime rransition which will be examined in more detail in the next section. A queue is
represented as a place, e.g. SQj, RQj, FQi' EQi, LQj, IQ;. It is assumed that the tran
sport entities generate messages according to a Poisson distribution T(I..) with mean
arrival rate I... The distribution of the message length is reflected in the length ataibute
of the message token. The ITansitions US j , UR j represent the sending and the receiving
of messages to and from the rransport entity.

In our model, the communication between the protocol entities, (peer-to-peer), may
be full-duplex. Only the data transition phases are investigated, modeling of connection
set-up and of connection termination process have been investigated elsewhere [3,6,7]
and will be omitted here. Nevertheless ~eir effect on the performance of the system will
be taken into account by considering the firing time of the corresponding transitions.

3.1. Layer 3: Network Layer

In Figure 4. we describe the network layer model using non-prime transitions. Each
non-prime transition represents a mechanism of the protocol and it can be extended as a
subnet.

3.1.1. Fragmentation and Reassembly

The Fragmentation and its corresponding Reassembly model are presented in Figure
4. The Fragmentation model has been discussed earlier, in Example l, and we focus our
attention on the Reassembly model, namely how several packets are put together into a
message to be delivered to the upper layer. In case of Reassembly, transition REC
corresponds 10 the receiving of a packet, and it fires whenever a token is placed in the
input place ill and the receiver counter value r equal to s, the sequence number of the
packet received. This keeps the receiving packets in sending order.

The following places are presented in our model:

R is a place related 1O the sequence number of the next packet expected. The current
value of this counter is denoted by r. Whenever the transition REC fires, the
value r is incremented modulo Mo.

PR is a place containing tokens which represent packets. It is the correspondent of the
place PS in the fragmentation model. It contains tokens with four attribures

- 9 -

,
which have been described in Example (1). 'When the last packet arrives, i.e.,
when a token with 1a = 1 arrives at the place PR, then the transition RE fires.
After firing, all tokens are removed from the place PR and a token of subtype
message is put in the place RQ.

RQ is a place containing tokens which represent received messages, hence it is asso
cited with the received message queue. It is the correspondent of the place SQ,
the sent message queue, from Example (1) and contains tokens with identical
attributes.

3.1.2. Routing

Routing is an imponant function of the network layer of any packet switched net
work. Different routing strategies ranging from fixed to adaptive routing are used in
existing communication networks. In case of adaptive rouring the updates can be
periodic, or lhey can be rriggered by major load or topology changes in the network. The
selection of a route is based upon a certain performance criterion as delay, cost,
throughput. The rouring decision can be made using local information only, infonnation
from adjacent nodes, or from all nodes of the network. The routing decision can be made
for each packet individually in case of a datagram type of service or it can be made only
once, when a virtual circuit is established. The rouring decision can be made by each
node (disuibuted routing), by a cenrral node (centralized routing), or by the originating
node (source routing).

A distributed adaptive routing mechanism with updated triggered by major changes,
for a packet switched network operating internally as a datagram is embedded in the net
work model presented in Figure 4. The routing table RB is represented by a place and it
is updated at random time intervals, v, associated with firing of the transition RDU. The
routing table has N entries, one for each node of the network. Each entry consists of two
items, the destination node id and the the output line or the next node to which the packet
is to be delivered. Update vectors are received periodically by each node from irs neigh
bors. Each update vector COntains entries with the same format. The places RB and NRB
contain tokens with two atoibutes: x and y as described above. The arc label N indicates
that there are N arcs. Functions f 1 and f 2 represent the updates for an entry in the rout
ing table.

The routing table is used for every packet to decide which is the optimal route, and
then the token associ.ated with the packet is passed to the proper Buffering and Conges
tion control mechanism.

3.1.3. Store and Forward Buffering and Congestion Control

Long haul computer communication networks, and the interconnection networks,
the catanets, are multi-hop networks, operating in a store and fOI\\'ard manner. The inter
mediate nodes buffer messages, route them, and then free the buffers only when the ack
nowledgements for the buffered messages are received. Clearly, the buffer space is a
critical resource of an intermediate node whether this is an IMP (Intermediate Message
Processor) or a gateway processor. \Vhenever such a node runs out of buffer space it
starts discharging incoming packets and this may trigger a chain reaction affecting an
entire region of the network. The problem of buffer management is closely related to the

- 10-

mechanisms for traffic control in a packet switched network. The traffic control problem
has multiple aspects namely the flow control, the congestion control and the avoidance of
deadlocks. The flow control is used to regulate the traffic between two different points.
The congestion control has the objective to maintain the number of packets within the
network or within a region of the network below some critical values.

A rather simple congestion control mechanism is modeled in the graph presented in
Figure 5. An intermediate node maintains a low waler mark, M/ and a high waler mark,
Mh . Whenever the amount of used buffers reaches Mil ' the node informs its neighbors
that it v,till no longer accept any messages by sending a <ref>, REFUSE control packet.
\\Then the amount of used buffer space decreases below M1 , then the node becomes
friendly again, sends to its neighbors a <res>, RESUME control packet and starts accept
mg messages.

We focus our attention upon the congestion control mechanism sketched above. In
order to simplify the graph (Figure 5), we consider only one host and one neighbor node
connected to the node under examination. Some attributes of the tokens representing
packets are omined in the graph, for example the attributes 11, la, s, are not represl:':nred
though the tokens contain them.

The flow of the tokens representing packets is as follows: tokens are deposited by
the data link: entity in the place EQ. Depending upon the type of the packet, different
transitions take place. For example the arrival of data packets triggers the transition Tl2
and depending upon the destination address, the tokens representing packets for the local
host trigger transition T13 and end up in place IN while the tokens for the other hosts
nigger transition T14, are transmined to the place OUT and go through the routing
mechanism previously described.

The places and attributes of the tokens they contain are:

S1 is a place representing a coumer, namely the sequence number of the next packet
to be sent on the outgoing link. Its current value is denoted by s1. Note that
there is no need to represent the place S, [he end-to-end packet sequence
number.

BUF is a place representing the store and forward buffer. It contains tokens of sub
type packet, with six artribures. In addition to sl the remaining five attributes are
p, a, 11, la and s are as in the case of tokens in Place OUT of Example (1).

Be is a counter of the number of buffers in use, it reflecrs the occupancy of BUF.
Its current value is be. Il is incremented when a new packet arrives and buffer
space is allocated to ir and it is decrememed when the buffer space is released. It
has a maximum capaciry, M.

P6 is a place where tokens representing data packets are deposired.

The transitions shown in Figure 5 are described in the followings:

T2 occurs when an explicir aCknowledgment for packet i, <ack,i> is received. Then
the buffer holding packet i is released and a token is removed from the place
BUF.

T3 occurs when a negative acknowledgment for packet j, <nakj> is received. Then
the proper token is first removed, then put back in the place BUF through the
self-loop arc. In addition, when n fires a token is put in the place P3 which

- II -

contains tokens representing packers to be retransmined.

T4 occurs when the high waler mark, Mh is reached and the currem node sends a
<reb, REFUSE control packet to its neighbors.

T5 occurs when the low water mark, M[is reached and the current node sends a
<res>, RESUME control packel.

T6 if the final destination of a packet is a host connected ro the immediate neighbor
of the current node, the buffering of the packet is not under the canlTol of the
congestion mechanism and the rransirion is T6 enabled. The predicate (02=a) is
true when the immediate neighbor condition is satisfied.

T7 the enabling condition of this transition is the opposite of the enabling condition
for transition T6.

T8 occurs when the current node receives a <ref>, REFUSE control packet from its
neighbors. It shows the action of congestion canuol. In this case the transition
17 cannot fire until T9 fires (a <res> control packet is received).

T9 occurs when a <res>, RESUME control packet is received from its neighbor.

TIl occurs whenever a packet is sent on the output line. The predicate associated
with this transition represents its firing condition, where LINE is related to the
Buffering and Congestion address on the output line detemrined after checking
the routing table.

3.2. Layer 2: Data Link Layer

A model of the Data Link Layer is presented in Figure 6. A sliding window flow
control mechanism coupled with a GO-Back-N, continuous ARQ, error control mechan
ism are embedded into our model. The set of the frame sequence numbers has a size M 2 .
The sender's window is denoted by Ws and the receiver's window by Wy • Acknowledg
ments are sent in separate frames and an <ack,i> means that frame i and all frames
preceding it are acknowledged. <nak,j> requires that frame j and all succeeding frames in
the sender's window be retransmitted.

As the tokens travel across layers boundaries new attributes are added (deleted) to
(from) them. TIris process corresponds to the encapsulation (decapsulation) when data
units cross from one protocol layer to another. Header information is added when the
data units flow from higher to lower layers and ir is removed and interpreted for the
opposite direction of the flow.

In our model all tokens contained by the place FQ represent packets and they v.'ill
be convened into tokens of subtype frame. In addition to the original attributes, two new
attributes are added to each loken in the place FQ: subtype attribute f and the data link
sequence number s2. This is performed by the transition TIl in Figure 6. In order to
simplify the arcs labelling the token attributes not used by the current layer are omitted in
the graph.

In the graph represented in Figure 6 the following places can be recognized:

S2 is a place representing the data link sequence number of the next packet to be
sent. Its the current value is s2.

- 12 -

R is a place representing a counter associated with the lower limit of the sender's
window. Its value is updated every time an acknowledgment is received. Current
value is denoted by r.

RS is a place which contains the set of the sequence numbers of the packets to be
retransmitted. The element variable is denoted by I and the set variable by rs.

RC is a place containing the data link sequence number of the next packer to be
received, the current value is denoted. by rc. After receiving the packet which it
is awaiting, this lower limit of the receiver's window is updated.

PC the set of the frames which are within the receiver's window, the frame
sequence number is in the range, (rc, rc EEl "',), excluding the duplicate ele
ments.

RTQ is a place associated with the frame retransmission queue. \Vhen sending a
frame (including rerransmission), a token of subtype frame is put in this place;
when an acknowledgement is received, the proper tokens are removed from this
place.

TQ is a place associated with the time am queue. It contains tokens with twO arni
butes:

x--the frame sequence number;
tv -- the time Out associated with frame x.

The transitions present in our graph are:

T21 it represents sending frames. When a token from the higher layer arrives at the
place FQ and the predicate is satisfied, since s2 is in the sender's window, (s2 E

[r,rEf} "'s))' and there is no retransmission occurrence (rs=0), then transition
T21 can fire. After firing, the token representing a frame is delivered to the
lower layer and to the retransmission queue RTQ. In the same time a token of
ime OUt subtype is put in time out queue TQ and then s2 is incremented
(s2=s26 1 (modulo M 2))'

T22 it represents frame retransmission. When there is requirement for retTansrnis
sion, i.e., rs¢0, the transition 1'22 can fire. After firing, the action is similar with
the transition 1'21. The difference is that the value s2 is not changed and the
proper sequence number is removed from the place RS.

1'23 After receiving an acknowledgement token <ack,i>, this transition can fire. The
proper elements of the queue RTQ and TQ and me set RS are canceled if the
sequence numbers of these elements are ~ i (including i), and the value of r is
modified, r=i E!l I (modulo M 2)'

T24 After occurrence of a time out, all elements of the queue TQ are removed and
the tokens are put in the place RS.

T25 After receiving a <nakj> token, this transition can fire. The action is like that of
the transition T24.

Tt It represents time out. Every tv units of time this transition can fire if there is
any token < x, tv > in the queue TQ.

T26 When receiving a frame in error, a <nak, a> is sem if the frame sequence
number is rc=a.

- 13-

T27 'When receiving an error-free frame with the sequence number rc=b, an ack
nowledgement token <ack,b> is sent. Then rc is increased (rc = hE9 1 (modulo
M0) and the tokens representing frames with sequence numbers in the range
[b,h] are removed from the place PC, if any. After this transition fires, the tran
sition T30 is enabled.

T28 It represents the receiving of error-free frames which are in the range of
receiver's window, but which are duplicated frames. After firing, this transition
putS the frame token into the place P8 and the sequence number into the place
Pc.

T29 It represents the discard of other frames including the duplicated ones.

T30 It delivers the frames to the higher layer in sending order. After firing, it puts
the frame in the place EQ, i.e., it removes the two attributes of the token, which
were added when this token entered the data link layer at the sender's site.

3.3. Layer 1 : Physical Layer

The physical layer of a compmer communication architecture is concerned with the
rransmission of srreams of raw data bits over a communication channel. Vole model a
time division multiplexing scheme with n slots so that n streams of data can be
exchanged through the same channel. All slots are of the same length (expressed in
number of bits). The fact that the slots may not be fully occupied is reflected into the
time function of the timed transition which represents the physical propagation of data.
We assume a full duplex communication and we use twO queues to model the two propa·
gation directions on the medium. Each is a FIFO queue with n slots and it can be
described by Petri nets as in Figure 7. This subnet is replaced by the places LQ and IQ at
a higher level as shown in Figures 3 and 6 respectively. Such a subnet is fully described
in reference [7].

The places and tokens which are allowed to vist them have the following meaning:

Pf It contains tokens which represent occupied (full) slots. Such tokens have two
attributes: the first one is the subtype of stream contained by the slot and the
second one is the slot number.

Pe It contains mkens which represent empty slots. These tokens have only one attri
bute, the slot number.

The place Pq and Pr contain separately the receiving and sending streams.

The transition Ts and Tr constinlle the interface of the queue. Ts can fire, if the first
slot is empty, i.e., Pe contains the token 1 and a stream presents in Pq. After this transi
tion fires, the first slot is removed from Pe and is put in Pf with attributes <m,1>. Con
versely, Tr can fire, if the last(nth) slot is contained by Pf. After it fires, the last slot is
removed from Pf and is put in Pe with one attribute n.

The transition Tp stands for the progression of srrearn from one slot to the following
one. \Vhenever place Pe contains a token p, i.e., the slot p is empty, and the place Pf
contains a token of stream subtype c which slot number is p-l, the transition is enabled
and waiting a random time b*l, it can fire. Then the srream of subtype c is put in the slot
p, and the slot p~l becomes empty, ie., the token p·l is put in Pe. The random time
b*l(l: the stream length) denotes the the delaying time of a slot transmission.

· 14-

The transition Td stands for stream loss during transmission. Every random time w
period the transition can fire if the transmission medium is not idle. When it fires, it sim
ply discards a stream of subtype i and puts the slot occupied by the stream into the place
Pe.

The transition Te stands for corruption of stream during transmission. Every a ran
dom time u period, a token of subtype e(error) may substitute for a stream of subtype x in
the slot y.

4. Translation of Protocol Models into Simulation Programs

The models of the communication protocols developed in the previous section can
be translated into simulation programs. The target language can be any programming
language which supports concurrent processing. We have selected ASPOL since i[is a
process oriented simulation language which in addition to concurrent processing provides
an adequate suppon for simulation conSlrucrs.

The mapping of Petri netS and of extended Petri nets inlO programming Slructures
has been investigated in the literature [35-37]. In case of Petri nets a process can be, asso
ciated with a connected subnet in which every transition has at most one input arc and
one output arc from (to) any input (output) place. Other methods have been proposed
recently, [38-40J. However the method used in this paper is conceprually different, and
easier to use. It partitions the set of all places into two disjoint classes and associates with
one class synchronization primitives and with the second one processes. Vie recognize
different types of tokens and we associate with each of them a different type of process.

Two types of places can be distinguished in our previous models which are based
upon modified predicate transition nets:

a. Type e places. They may contain Type 1 or Type 2 tokens which are associated with
predicates that decide upon the opponunity of firing a transaction. The correspon
dent of such places in our simulation slructures are primitives to control the syn
chronization between the processes executing concurrently in the simulation pro
grams.

b. Type m places. They may contain only Type 3 tokens which are associated with the
transmission units exchanged by the corresponding protocols. For example. in the
data link protocol, the basic transmission units are data frames, acknowledgment,
negative acknowledgment frames. In our model they are represented by different
subtypes of Type 3 tokens. In the network layer there are: data packets and dif
ferent types of concrol packets. In this section, unless it is explicitly stated other
wise, all tokens are assumed to be Type 3 tokens. Each different loken subtype will
be associated with a process type. The number of concurrent processes of a given
type equals the number of tokens of the corresponding subtype. A process will in
fact describe the the migration of that panicular token through all the places i[visits
in the system.

Each entity at a given network layer can be conceived as consisting of two basic agents,
the sender and the receiver, and in some cases of additional auxiliary components. Each
component will be mapped into a different process. The activities of the two primary
agents consists of: interfacing with the immediate upper neighboring layer, the specific
processing associated with the current layer and interfacing with the immediate lower

· 15 -

laver. Both handle the same type of transmission units (frames, packets, etc.) but they
are concerned with the flow of transmission units in different directions. For example in
case of the network layer we recognize a packet sending and a packet receiving process
and in addition a packet retransmission process and a rouring table update process which
for the sake of simplicity will be omitted in our discussion.

To illustrate the translation technique from the modified predicate transition net
model to the simulation program, we present in Figure 8, the basic types of processes, the
packet sending, packet receiving and packet retransmission. Each Smlcture identifies the
range of the corresponding process activities and the path followed by the respective
token type. A type m place is associated with a sequential code in the corresponding pro
cess. When a process (remember that a process is associated with a Type 3 token) visits
such a place the program counter is position to execute the next sequence of instructions.
The firing of a rransition determines the execution of the next sequential code section,
Whether the transition can fire or not, this depends upon the predicate associated with the
transition, if any. IT a predicate is associated with the transition then it should be checked
according to the label variables of the input arcs associated with the transition. Then the
sequential code is executed. Usually it will compme some environment variables and
modify some attributes of tokens, These operations are shown by the labels of the output
arcs associated with that transition.

In ASPOL, a process description specifies the behavior of a type of processes and
defines variables and events unique to each process of that type. Each process is a panic
ular and independent instance of a execution of a process description.

In Appendix, we give three process descriptions of packet type, which were wrinen
in ASPOL. The sendp (send packet) process executes first the operations associated with
transition TIl from Fig.5. These operations are: routing table lookup to detennine the
output line and checking the availability of that line, by evaluating the predicate associ
ated with TIL If the predicate which is related to buffer occupanc), on the selected Out

put line is not satisfied, the process waits until the predicate becomes true. If the predi
cate is true, then the transition fires and it triggers the execution of subsequent opera
tions: computation of the sequence number and the buffer counter, addition of the packet
sequence number into token attribute record, creation of a retrap (rerransmit packet) pro
cess, and decision whether to create a sref (sending refuse) process. The place P3 is a
decision place because it has multiple output arcs. The program branchs at this place
according to the attribute value of the destination address. If the predicate associated
with the transition 17 is satisfied and the variable P4 is held, i.e., the refuse command is
not received, the only operation associated the transition 17 (including T6) is to hold the
process for a random time interval,! If P4 is empty, i.e., the refuse command has been
received, the process waitS until the receiving resume process wakes 'it up. Finally, the
process arrives at the place FQ, it is substituted for a sending frame process, send! The
retrap process and the recep (receive packet) process are simpler and their description
will be left as an exercise for the reader. The creation, termination and synchronization
of processes will be discussed later.

The Type m places are in turn classified into three groups:

a) Places which accept as input tokens of two or more different subtypes. In the graph,
such places are nodes with two or more input arcs labelled with token variables of
different subtypes. For example places P3 and FQ in Figure 5 belong ro this group.

- 16 -

Tokens of two differenr subtypes are also in place P3 since a retransmitted packet is
specially identified. Place FQ comains different types of tokens corresponding to,
ref, res, ack, nack control packets and the data packet, p. This indicates that dif
ferent type of processes may execute the same operations in steps to follow. At
these places, we may combine such processes into a new process, since they execute
the same sequence of operations and this reduces the complexity of our simulation
programs.

b) Places which allow as output two or more different subtypes of tokens. In the
graph, there are two or more output arcs emerging from such a node, labelled with
roken variables of different subtype. The places EQ in Figure 5 and IQ in Figure 6
are examples. These places are decision nodes of the programs. Tne tokens of dif
ferent subtypes contained by the place can cause that the different transitions are
executed. At these places, it is possible to substitute several types of process for the
original one.

c) Places where no transformation of the process rype can occur.

The transitions associated with process creation and termination are of special con
cern for the generation of simulation programs from modified predicale rransition nets
models. The following types of transitions can be recognized:

Fork The cransitions for which the number of output arcs (labelled by token vari
ables of type 3, the following is the same denoration) is larger than that of input
ones correspond to a fork operation. For example, referring to Figure 5., the
transition TIl corresponds to a fork operation. When this transition fires, some
new processes are created. The number of the new processes created is the
difference between the number of oUlput and input arcs. The transition T3 is
another example. VVhenever T3 is executed, the packer process is created
while the original one still exists.

Join The transitions with more input arcs than output arcs correspond to a join
operation. When such a transition fires, some processes terminate their execu
tion. The number of terminating processes is the difference between the
number of input and output arcs. For instance, whenever the transition 1'2 is
executed, the receiving ack process and the certain retransmitting frame pro
cess are terminated.

Synchronization among processes is represented by transitions to or from places of
Type e. If a transition is associated with a predicate concerning with the attributes of
tokens of type 2 contained by its input places or if a input place of a transition can con
tain a token of type 1, generally we can identify a synchronization topology. For example
referring to Figure 5, the input place P4 of transition 17 can contain a Type 1 token. This
is not true for transition T6 since the predicate associated with it contains only Type 3
tokens. For transition TIl the predicate is concerned in the value of token bc contained
by the place Be. When a process executes such a transition, it should decide whether it
waits or not. If the predicate is not satisfied the process wailS, else it continues.

If a transition is associated with updating Type 1 or Type 2 token variables then one
may identify a synchronization topology. In Figure 6, the place R connects the transition
T21 and 1'23. When a process executes the transition 123, the process would like to

update the token variable r contained by the place R. It is possible this process wakes-up

- 17 -

other processes which wait to execute transition T21. In Figure 5, the place P4 connects
the transitions n and T8. There is synchronization between the sending packet process
and the receiving packet process, because the receiving ref process would like to remove
the token contained by the place P4.

Most of the synchronization problems can be treated in the framework of Perri nets
or modified Petri nets. As two examples in last paragraph, the fanner is a classical
producer-consumer synchronization, the latter is a mutual exclusion problem.

5. Conclusion

A significant pan of the perfonnance analysis of a computer communication archi
tecture is related to the modeling of communication protocols supported by the architec
ture. The communication architecture investigated in this paper is based upon the OS1 _
Reference Model. Queuing models and analytical methods [41] have been used for this
purpose.

In this paper we take a different approach. We define modified predicate transition
nets and use them to model the mechanisms built into differem protocols. \Vhile Perri
nets have been used in the past to prove the correcmess of protocols, by introducing the
time concept and the variable arc concept, we are able to use modified predicate transi
tion nets for the performance analysis of communication protocols. A twO step approach
is presented, first we built the graphs which model the protocol behavior and then we
translate these graphs into simulation programs.

Since our models can include non-prime transitions we are capable to represent
inuicate communication mechanisms using simpler ones as building blocks. Using this
hierarchical modeling approach we model first mechanisms like frame rejection, dara
link: flow control, fragmentation and reassembly, etc., then we model the function of an
entire layer, for example the network and the data link layers.

We believe that the modified predicate transition nets can be successfully used as a
framework for the study of communication protocols and that they can be applied to the
performance evaluation, specification, validation and implementation phases.

Reference
[1]. Data Processing-Open Systems Interconnecrion·Basic Reference Model, Drafl Proposal ISO/DP

7498 International Organization for Standardization, 1982

[2]. A.A.S. Danthine, ''Petri NelS for Prorocol Modelling Ql/d Verifican·on," Proc. computer Networks
and Teleprocess. Symp., PP. 663·685, Oct 1977

(3). A.A.S. Danlhine. "Protocol Representation wilh Finite-State Models." IEEE Trans Comm., Vol.
COM-28. PP. 632-643, AJl'. 1980

[4]. P. Estallier and C. Girault, "Petri Nets Specification ofa New Protocol for Controlling a DistribUled
System Organizalion," Third International Conference on DistribUied Computing System, Miami,
Florida, 1982

(5). G. Bachmann and C. Sunshine, "Formal Melhods in CommunicaTion Pr%col Design," IEEE Trans.
Commun.• Vol. COM·28, PP. 624·631, Apr. 1980 .

[6]. M. Diaz, "Model/ing and Analysis of CommU/licalion and Cooperation PrOlOCOls using Petri Net
Based Models," Camp. Nelworks, Vol. 6, PP. 419-441, Jun. 1982

- 18 .

[7). G. BerthelOt and R. Terral, "Petri Nets Theory for the Correctncss of Prolocols," IEEE Trans. Com
moo., Vol. COM·30, No. 12, PP. 2497-2505, Dec. 1982

[8]. B. Wolfinger and O. Drobnik, "Simulation oj ProIOCO/ Laycrs of Conununicarion in Complucr Nel.
works," Compuler Networks and Simulation II S. Schoemaker(ed.) North-Holland Publishing com
pany, PP. 141-165, 1982

L9]. H. Kleine, '1\ Survey ojUsers' Vicws ofDiscretc Simulation Languages," Simulation, Vol. 14, No.5,
PP. 225·229, May 1970

[10]. J.O. Henriksen, 'The Developmem ojGPSSI85," SimulaLion Symposium 1985, PP. 61-77,1985

[11]. E.C. Russell, "Building Simulation Models with SIMSCRIPT II5," CACI, Inc., 12011 San VicenLe
Blvd., Los Angeles, CA 90049, 1982

[12]. W. Fischer, K.P. Sauer and W. Denzel, '1\ Simulation Techniquejor Distribured Systems Bascd on a
Fonnal Specification by SDL" Proc. InL Sem. on Compuler Networking and Perfonnance Evalua
tion, Tokyo,PP. 11-4-1--4-10, Sep. 1985

(13). C.H. Sauer and E.A. 11acNair, "Simulation oj Computer Communicalion Systcms," PrenLice-Hall,
INC., 1983

[I4]. J.L. Peterson, "Petri Net Theory and the Modelling ojSystems," PrenLice·Hall, INC., 1981

[I5). W. Brauer, G. Rozenberg and A. Salomaa, "Petri Nets - An Introduction," Springer-Verlag, Berlin
Heidelberg, New York, Tokyo, 1985

[I6]. M.A. Marsan, G. Conte and G. Balbo, "A Class of Generalized StochaSlic Petri Nelsfor the Perfor
mance Evaluation oj Mulnprocessor systems," ACM Trans. Compo Systems, Vol. 2, No.2, PP. 93
122, May 1984

[I7]. C.A. Perri, "Kommunikfltion Mit Auromalen," (ph. D. Thesis in German) TranslaLion by C.F. Greene,
Supplement 1 to RADC·TR-65·337, Vol. I, Rome Air De\'. Center, Griffiss AFB, !\'Y, 1965

[I8]. A.W. Holt, "Final Report of lhe Information System Thcory Projecr," RADC-1R-68-305, Rome· Air
Dey. Center, Griffiss AFB, r-.,ry, Sep. 1968

[19]. A.W. Holt and F. Commoner, "Events and Condirions," Record of lhe Project MAC ConL on Can
currenl Systems and Parallcl CompulaLion, PP. 3-52, 1970

[20]. LB. Dennis, "Modular Asynchronous Control Structures for a High Performance Processor,"
Record of lhe Project MAC Conf. on Concurrenl Systems and Parallel CompulaLion, PP. 55-80, 1970

[21]. W. Brauer, "Net Theory and Applications," Lecture Notes in Compo ScL, Vol. 84, Springer-Verlag,
1980

[22). LL. Peterson, "Petri NelS," Camp. Surveys, Vol. 9, No.3, Sep. 1977

[23]. K. Jensen, "Coloured Perri Nets and the Invarit:mt-Melhod," ThcoreLical Compo SeL, Vol. 14, PP.
317-336. 1981

[24). J.H. Genrich and K. Lautenbach, 'The Analysis 0/ Distributed Systems by Means of
PredicateITransition-Nets,"Lecture Notes on Compo Sci., Vol. 70, PP. 123·146, 1978

[25). J.H. Genrich and K. Lautenbach, "System Modelling with High-Level Petri NelS," ThcoreLical Compo
Sci" Vol. 13. PP. 109·136, 1981

[26]. J.D. Noe and GJ. Nun, "Macro E-Nels Reprcsentation of Parallel Systems," IEEE Trans. Camp.
C·22,PP. 718-727, Aug. 1973

[27). P.M. Merlin, "A Methodology for the Design and implementarion of Communication Protocols,"
IEEE Trans. Commun., Vol. COM·24, PP. 614-621, Jun. 1976

[28). P.M. Merlin and DJ. Farber, "Recoverabiliry of Commllllication Protocols: implications of a
Theoretical Study," IEEE Trans. Commun., Vol. COM.24, PP. 1036-1043, Sep. 1976

129]. EJ.W. Symons, '1ntroducn·on 10 Numerical Pelri Nets, a General Graphical Model o/Concurrent
Processing Systems," A.T.R., 14, 1, PP. 28-33, Jan. 1980

(30). S. Natkin, "Reseaux de Petri Siochastiques," Ph.D. DissenaLion, CNAM-PARIS, Jun. 1980

- 19 .

[31]. M.K. Molloy, "Perfomulnce Analysis Using Slochastic Petri Nels," IEEE Trans. Camp. C·3l, 9, PP.
913·917,Sep.1982

[32]. M.K. Molloy, "Discrete Time SlochaSlic Pelri Nets," IEEE Trans. SoflWare Eng. Vol. SE·11, No.4,
PP.417-423,1985

[33). J. Magoll, "Performance Evaluation ofConcurrenr Systems Using Pelri Nels," Information Process
ingLetlers, Vol. l8,No.l,PP. 7·13,]984

[34) S.S. Van and M.U. Caglayan, "DislribUied Sofrware Syslem Design Represenration Using Modified
Perri NelS:' IEEE Trans. on Software Eng. Vol. 6, PP. 733-745, No\'. 1983

[35]. R. Janicki "An Algebraic StruCture of Pelri NelS," Lecture NoLes in Camp. Sci .. Vol. 83, PP.]77
192, 1980

[36]. U. Goltz and W. Reising. "Processes of Place/Transition·Nels," Lecture NOles in Camp. Sci., Vol.
154. PP. 264·277. 1983

[37]. R. Janicki, "Nets, Sequenlial Components and Concurrency Relarions" Theoretical Camp. Sci. 29,
PP. 87-121, 19&4-

[38). G. Bruno and G. Marchetto, ''Rapid Proloryping of Control Systems Using High Level Pelr; NelS," in
Proc. ConL '85 IEEE Sofrv.'are Engineering, PP. 230-235, 1985

[39). P. Azema, G. Juanole, E. Sanchis and M. Mombemard, "Specification and Veriji~Qtion ofDisrribwed
Syslems Using PROLOG lnterpreled Petri Nets," in Proc. Coof. '84 IEEE Software Engineering, PP.
510-518, 1984

[40]. R.A. Nelson, LM. Haibt and P.B. Sheridan, "Casn·ng Perri Nets into Programs," IEEE Trans.
Software Eng. Vol. 8E-9, No.5, PP. 590-602, 1983

[41). Martin Reiser "Communication Syslem Models Embedded in lhe OS/-Reference Model, A survey"
Imemational Seminar on Computer Networking and Performance Evaluation, Tokio, SepLember
1985, PP 3.1.1 ·3.1.26

[42). William Stallings "Data and Computer ConvnWlicalions" Macmillan, 1985

- 20·

Appendix: Examples of Program Structures

sim net; comment simulation program of the network;

integer sl(line);
integer bc(line);
integer pl(line);
integer p2(line);
integer p4(line);
integer ad(nod,line);
integer rtq(line,rnl);

end block;
endmacroj

def (norl=5); comment number of the node;
def (line=4)j comment maximum line number ~ith a node;
def (011=16); comment modulo of packet sequence number;
def (01=10); comment huITeT maximum capacit~·;

def (01h=8); comment buffer high 'water mark;
event QntOine); comment event set of output queue;
event con(line); comment congeslion semaphore;
event rq(ml); comment event set of retransmission queue;
macro em; comment defining a referencing block's;

block com; comment defining a storage space shared;
integer rb(nod,nod,2); comment ronting table, each row contains

destination and line Dumber;
comment counter of packet sequence number;
comment buffer capacit}, counler;
comment sending ref control flag;
comment sending res control flag;
comment receiving ref control flag;
comment post neighbor table;
comment retransmission state \'ariable;

end simj

comment the meaning of the following arguments in processes
a: destination address, sou: source address,
s: sequence number of packet(end-to-end),
slU) or ssl: sequence number of packet(point-lo-point),
j: the number of output line;

comment send packet process description;

process sendp(a,s,sou);
integer i,j,a,s,sou,tlj
cm; comment introducing the common data space;

comment checking the routing table to decide output line;
i=Oj
while(i.U.nod)do

begin
if(rb(sou,i,l).eq.a)lhen

goto gi
i=i+lj

end;
g: j=rb(sou,i,2);

·21 -

comment deciding whether or Dot buffer is full;
if(bcG).ge.m)then

queue(out(j»;

comment computing the counters;
slG)=mod(ml,slG)+1);
bcU)=bcU)+l;

comment deciding whether to create sref process;
if(bc(j).eq.mh)then

if(plG).eq.l)then
begin

plU)=O; p2U)=1;
initiate srer(sou,j);

end;

comment creating retrap process;
initiate retrap(a,s,sIG),souJ);

comment deciding congestion;
if(a .ne.ad(sou,j»then

if(p4(j).ne.l)then
queue(conU»;

comment delaying time of interface and connection;
hold(random(1.,5.)* .001);

comment substituting send frame process for this onej
t1=1; comment setting frame type;
initiate sendf(t1,a,s.sI(j),soU,j)i

end process;

comment retransmit packet process description;

process retrap(a,s,ssl,sou,j)j
integer a,s,ssl,sou,j,t1;
cmj comment introducing the common data space;

comment waiting for being wokej
queue(rq(ssl+l»j

comment deciding whether ack or oak has been received;
if(rtqG,ssl).eq.l)then gota Vj

comment creating retransmit packet process;
initiate retrap(a.s,ssl,sou,j)j

comment the following is same \\ith that of sendp process;
if(a.ne.ad(souJ))then

if(p4(j).ne.1)tben
queue(con(j»i

hold(random(1.,5.)* .001)j
t1=li
initiate sendp(tl,a,s,ssl,sou,j);

v: Tlq(j,ssl)=O;

end process;

comment reset the ack flag;

- 22 •

comment recei\'e packet process;

process recep(a,s,ssl,sou,j,me);
integer a,s,ssl,sou,j,mei
em; comment introducing tbe common data space;

comment creating sending ack process;
initiate sack(ssl,sou,j);
b01 d(ran dom(0.,3.)'".001);

comment deciding whether the packet is mine;
if(a.ne.me)then

initiate sendf(a.s.sou);
else initiate recem(s,sou);

end process;

comment delivering itj
comment receiving it;

Tp.)--,---
<In,a,!>

SQ

us T(A)'--~-- US

<m,a,l>

SQ

<m,a,]>

__-...L~~ FR: (fn=O) A(0<1<348)

X"'<p,tl,II,la>

PS

sGl
<p,a,II,la>

<p,n,l1,1a,s>

<p,n,]I,I;:]>

PS

<[1,a,II,la>

<111,a,1>
<m,a,l>

fn-1

m.n,!>

fn

fn=3

FN

X=INT(I/128)
where lNT is a funcLion of
Inmcmioll 10 nCrlfcsl iIHcgcr

noL smnllcr tholl the argument

1.(<1) fo'rangrncnt.1lion modeling
\Ising a vnriablc arc nel

<p,a.l1,1a,~>

DU,

111('. following predicates associate
Wilh [he [[1I11Si[iol1 PRj (i=I,2,3):

foRI: ([11=0) 1\ (0<1::; 128)
r:R2: Cfn=O) 1\ (12Ikl~S(j)

FI'{3: Cfn=O) fI (256<1$;3R4)

I.Ch) r-mllgmclllatioll modeling
llsing a prcdicatc-lr;lI1sition net

Figure 1. Modeling of the fragmenlalion Illceh;1I1i.~rn

51

sl

Y=I(xlx E [i,sl))1

R5

TQ

Y'x

PR

<nak,i>

TQ

Y'x

TR,
"---'LL.,-L--"--

3 x E [i,51)

Y=]{xlx E [i,sl)}1 y ..x

R5

51 PR

<nak,i>

-,(3ZE [i,sl))

(a) The model using variable arcs
with zero changing

(b) The model using yariable arcs
without zero changing

Figure 2. Modeling of the frame reject mechanism

Fragmentation, Reassembly
Routing

Bufffering,Congestion

I FQ,.z EQ",

Window
Error reco....ery

• rej
• time-out

URI
----.:--

Window
Error re:overy

• reJ
• time-out

SQI

US]
T(AI)-~-

Window
Error recovery

• rej
• Lime-om

2

~
Layer

4-7

t
3

t

-+-
I

i'

LQIj I IQ'i

Y
Window

Error recover)'
• rej
• lime-om

Window
Error recovery

• rej
• time-out

Fragmentation, Reassembly
Routing

Bufffcring,Congestioll

UR2
---':L-

SQ2

US2
-...L-TO-,l

Figure 3. A model of compmcr nelwQrk using non-prime transition

REC
'""s

r@ 1 r<p,ll,la,s>
Fragmentation
Reassembly

s6 1<p,aJl,la>

T(). us UR
<m,a,l> <m»

SQ RQ

<m.a,l> <m,l>

RE
X*<p,a,ll,la> yljo<p,ll,la,S> 3 <f,n,la,i>IIIa= 1

PR
R Y=I{sls->i)1

NR

<P.a,Il,la,S>
T(v) ----'---,-'--RDU

N"'f 1«x,Y»

<p,11,]a,5>

RB
ROLJling

OTIT,......._

Buffering, Congestion
1

Buffering, Congestion
2

BuITcring,Congestion
3

FQ2 EQ3

Figure 4. The network layer model wilh non-prime lraflsition

OUT IN

<p,'" P
Sl <x,y> ,Y3 <p,'"

Tl4 T13
51 e 1 a:;l!:mc a=me

<p,a> <p,'"
(bc<M)l\(a=x)"(y=LINE)

P6
T4 <p,aj> 1"3

be=M}; <p,aj>
<p,aJ> <p,'"

T(d)
Tl2

P3
<p,aJ> 1'2

PI be-!

c
T6

P5
1'9T5

a=D2bc=M j

T(Q 1'8

<p,a,sl> <osces
<p,a,sl> <ack,i>

<ack,m> cef <nakj>
<of <p,a,m>

FQ

Figure 5. Store and forward buffering and congeslion control model

1'2S

FQ EQ

T23v,kl,k2e [r,il,
E=1[r,ilFG+F

~,

Pk2

E*v G*kl
u e [x,s2)
Z=[lx$2) P7

T24 x

~ x¥/[T('.L _T' TIOz~ re
'u <X,f.. >

~s2 /~ If «p ,,"'"
R TQ <aek,i> reTe Aeepe

f-' , .A·ql 'Sy <f.e> !.
s- , ,

FCC) pg" 'i.-l--"" " <nakj>
"I RS(A'q re I I I

- RC I." I. I
52

~
1"25

j)~ f.b> 1" Ii, e q e [j,s2)
rV' r--~. ~ Y"'d iN I X=IU,52)[r r ~ e"-

t;.~ ~\%.~ /71"26 ~ I. 1"27T(k)
1'21 I T(k) 1'22 I m <m,l", > a no (b=;c)"{de Cr.:,h]

r,rEB W...) <s2,1... 2>
<nak,a> t<e,a> Y=[C;c,hJ[

'5=0 <aek h>
<r,m;:

1'29
<f,b>

<f,s2> t others I <f,e>

)LQ 0 IQ

Q. e [
A

Figure 6. The data link layer model

P,

n
p-l

T, T, P T, T,

m a

P, P,
T(w)

<i,lD <c,P>

<m.l>

<R,n>

<X,y PI ~c.y>
T, T(n)

Figure 7. The model of the transmission medium

OUT BUF EQ

Til-+--- 1'3 --+- TI2-+_

P3 P3 P6

Tl3 ---'r---

IN

<c)

OUT

-t-- TI4 -+--

FQ

(b)

-t-- T6 -f-n

FQ

<al

T6 -+--

Packel-send process Packet-retransmission process Packet-receive process

Figure 8. The primitive processes involved in packet handling

	Application of Modified Predicate Transition Nets to Modeling and Simulation of Communication Protocols
	Report Number:
	

	tmp.1307986960.pdf.WYaII

