Purdue University

Purdue e-Pubs

Department of Computer Science Technical

Reports Department of Computer Science

1986

Application of Modified Predicate Transition Nets to Modeling and
Simulation of Communication Protocols

Chuang Lin

Dana Cristian Marinescu

Report Number:
86-599

Lin, Chuang and Marinescu, Dana Cristian, "Application of Modified Predicate Transition Nets to Modeling
and Simulation of Communication Protocols" (1986). Department of Computer Science Technical
Reports. Paper 518.

https://docs.lib.purdue.edu/cstech/518

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

APPLICATION OF MODIFIED PREDICATE TRANSITION NETS TO
MODELING AND SIMULATION OF COMMUNICATION PROTOCOLS

Chuang Lin
Dan Cristian Marinescu

CSD-TR-599
May 1986

Application of Modified Predicate Transition Nets to Modeling and
Simulation of Communication Protocols

Chuang Lin*
Dan Cristian Marinescu

Computer Sciences Department
Purdue University
West Lafayetie, IN 47907, USA

ABSTRACT

The use of modified predicate transition nets for the modeling of
computer communication protocols is investigated in this paper. The
lower three layers of the OSI architecture are of primary concern. On the
Network Layer (Layer 3), fragmentation and reassembly, routing, store
and forward buffering and congestion control mechanisms are weated.
The Data-Link Layer (Layer 2) leads to window-flow control, time-out
retransmission and transmission error recovery models. These mechan-
isms may repeatedly dealt with in the different layers of the computer
comrnunication architecture.

Non-prime transitions can be embedded into the modified predicate
ransition nets hence a top-down modeling is possible. The present paper
uses a hierarchical modeling approach to describe complex communica-
tion mechanisms in terms of simpler constructs. Models developed using
the modified predicate transidon nets can be automatically translated into
simulation programs. The paper presents the translation of a computer
communication model Into a program, using a process oriented simulatio
langnage, ASPOL. '

1. Introduction

The Open-Systems Interconnection (OSI) reference model [1] is a framework for
defining standards for interconnection of heterogeneous computers. It partitions the com-
puter communication functions into a vertical set of seven layers. Each layer provides
services to the next higher Iayer, and relies on the next lower layer to perform more prim-
idve functons. Layer n on one host camries on a conversation with layer » on another
host The rule and conventions used in this conversation are collectively known as a
(peer-to-peer) protocol.

For computing systems and especially for sysiems of the complexiry of a computer

network, modeling is essential during systern design, implementation and throughout the
entire system life. In connection with computer communication protocol design,

* On Jeave from State Planning Commitee, Beijing, China

modeling is necessary in order o predict the feastbility and the performance of the prowo-
cols.

Simulation can be used to evaluate the model of a system afier the model has been
mapped into a computer program which describes the interesting behavior of the system.
A simulation model of a computer communication architecture emphasizes a sufficiently
precise representation of protocols and protocol hierarchies.

Some directons in the communication protocol research are:

- Formal protocol specificanon ang validation. The objective is o prove proto-
col correciness, to avoid inconsistencies and system deadlocks [2-7].

- Protocol performance evaluation. Relevant performance characteristics are the
delay of data within a layer as a function of the different values of the layer
pararneters, the utilization of compuler network elements as a functon of the
network load, etc. An imporiant objectve of the performance evaluation is 1o
provide information for the optimal strucmring of a communication architec-
ture as well as implementation guidelines for example the amount of memory
space needed for protocol implemen:aton on a given host. Another objective
of the performance evaluation is 1o predict the nerwork characteristcs impor-
tant from a user’s perspective as delay, throughput, etc. The research reported
in this paper belongs to this category.

- Study of implementation methods allowing translation of the protocol models
into program structures.

Very often a hierarchical modeling is possible, a complex system can be decom-
posed into subsysterns. Each subsystem-can be modeled separately and irs model can be
evaluated independently. The behavior of the entire system can be investigated by com-
bining the previous results.

In recent years a considerable effort has been invested into modeling and analysis of
computer communication protocols. Two approaches to modeling, namely the finite state
automata approach [8} and the simulation language approach [9-12] have been investi-
gated in the past. More recently queueing models have been also considered [13.41].
The Pemi net models are used mostly for the specification and validation of protocols
[6,7], but they seem a natural tool for protocol performance aralysis [14-16].

The introduction of Petri nets can be traced back to the dissertadon of C.A. Peti
{17]. The theory of Petl nets has been further developed and applied 10 modeling and
analysis of modemn computing systems [18-20]. Recent work done on General Net
Theory and related models can be found in [21], and surveys of Petri nets in [14, 15, 22].

The capabilities of Petri nets to represent concurrent, conflicting, nondeterministic
and asynchronous events are their most useful properties for modeling of computer com-
munication networks. Petri net models are especially suvitable to describe the dara
exchange aspect of the protocols being modeled. Data exchange is generally represented
as a part of the certain token exchange in Petrl nets. Petn nets can be used 1o model both
the static and the dynamic properties of computer networks. Static properties of networks
are represented by the graph part of a Petri net. Dynamic properties of networks can be
derived from the Peid net graph, the ininal marking and the firing rules.

1
)
]

However, Petri net models soffer from two severe limitations:
- Modeling of a complex system leads to a very intricate and quite unreadable graph.

- Performance evaluation of the obtained model is impractical if the time concept is
not inroduced into the Petri nets.

Petri nets have evolved over the past decade in order to provide a more compact
representation of real systems. The place-coloured nets [23] and the predicate-transition
nets [24,25] have been proposed. In both cases the size of the network representing a real
system has been reduced by increasing the power of the representation. The resulting nets
are more readable. The validaton of communication protocols [6,7] had been carried out
in the framework of these extension nets.

An important extension of Pemi nets is related to the need to embed in the net model
the time involved in system operations by allowing timed transitions. One of the first
efforts in this directon is represented by E-nets [26]. The main difference berween E-
ners and Pewi ness is the former’s introduction of a fixed time delay between enabling
and firing of every transidon. Another approach proposed [27,28] is to associate with
each transition a range of fining time values bounded by 2 maximum and 2 minimum
firing dme. There are also stochastic Petri net models [29-31] in which a random firing
time is associated with each transition.

Time can be introduced in the net by associating an exponendally disiributed firing
rime to some transidons so that the Petri nets may include both timed and irnmediate
ransitions. Such nets were discussed in reference [14] and applied to the performance
evaluauon of muloprocessor systems. There is correspondence berween such nets and
continuous time Markov chains, so the evaluation of the systems can be achieved by
classical probabilistic analysis. Recently, the discrete time stochastic Petri nets [32] were
proposed.

Predicate-mransition nets, enhanced with stochastic transiton time, are proposed as a
suitable framework for modeling the communication protocols in a computer network.
In order to illustrate this, we have considered some common mechanisms used the three
lower layer protocols for the ISO reference model. In the first section of the paper a
modified predicate-transition net is presented. In the second section, the computer net-
work model based upon the modified predicate-transition nets is analyzed. Finally, the
mapping of the network mode] into program structure is discussed.

2. Modified Predicate-Transition Nets

The Pem nets used in this paper are 2 modified version of the Predicate-Transition
Nets and Generalized Stochastic Petri Nets. The elements of the Modified Predicate-
Transition Nets are the following:

(1) Token types

In the modified nets there are three types of tokens.
Type 1 Tokens with no attribute. They are used to represent the synchroni-
zation operations among concurrent activites.
Type 2 Tokens with one aftribute only. The attribute is an integer which
may represent for example the value of a counter.

(2}

(3)

@

-4-

Type 3 Tokens with multple atoibutes. The first item in the atribute
record is used to identify the token subtype. Each subtype
represents a different data unit exchanged by the communication
protocols. We recognize the following subtypes: message, packet,
frame, and bit soeam. A token representing a message has three
atiributes, subtype=m, destination address a, and message length 1.
A token representing a packet has six attributes: subtype=p, the
packet sequence number s, the destination address a (copied from
the message), the packet length 1I, the last packet in a message flag
la, and the neighbor to neighbor packet sequence number s1. A
token representng a frame has eight attributes: the subtype=f, the
data link sequence number s2, the packet type (data,ACK, NAK,
tes, Tef, ete.) and the last five attributes are copied from the packet.
A token conversion process occurs whenever the corresponding
data uvnit crosses the boundary of a communicadon layer and it
corresponds to the encapsulation and decapsulation process per-
formed by the different proiocol layers.

Places

They are the first type of nodes in the graphs. A place is represented by a
circle and has 2 name consisting of one or more upper-case characters. A
place can contain a finite number of tokens, determined by its capacity. We
disunguish two types of places: places of the first type are used to represent
the queues of interest in the performance evaluation of system and they con-
tain Type 3 tokens. Places of the second type are used to represent sysiem
€nvironments.

Transitions

Transidons are the second type of nodes in the graphs. A transition is
represented by a bar or a rectangle and has a name consisting of one or more
upper-case characters. Nonprime iransitions representing model subnets are
represented graphically as rectangles. This possibility enables top-down
hierarchy structuring and information hiding. A similar structuring method for
distributed software system design has been discussed in [34]). Predicates can
be inscribed on wansitions: they specify relations berween variables of dif-
ferent tokens from the input places of the transitions. It is possible to evaluate
the interesting performance aspects in the modelled system by introducing
"time" into the wansitions [14, 33]. There are two types of mansitions: timed
and immediate. An exponentally distributed random time (possibly marking-
dependent), denoted by T(), between enabling and finng of a wansition can be
associted with timed transinons only.

Arcs

Arcs connect transitions and places 1ogether. The arcs are labelled with
token variables. Operations can be inscribed on outgoing arcs of transitions.
An operation performs a computaton or a change of the attributes carried by
the tokens from the input places, and it forms tokens to be inserted into the
output places. In our modified nets multiple arcs between a place and a wansi-
tion are allowed, and the number of such arcs may vary from zero 10 a finite

-5.

value. In the followings we will show that this extension does not change the
property of the predicate-transition nets, but it makes more convenient 1o
describe some mechanisms of the protocols. The variable arc is represented
graphically by an arc crossing a small circle, and has an associated range
expression.

(5) Firing rule

A transition is enabled when there is at least one token in each of its input
places and the predicate associated with the transition is satisfied. If there are
the multiple arcs between the input place and the wansition, then the ransidon
is enabled when the number of tokens in the input place is at least equal to the
number of arcs and the predicate is satisfied. An immediate wansition fires
immediately after being enabled. When the timed wransition is enabled, it fires
after a random enabling time, x. The enabling time, x, is exponendally distri-
buted and it is specified by the T(x) associated with the transition. However,
the firing of a wransition is considered to be instantaneous, so the probability of
two or more transinons firing simultaneously is zero. The firing of a ransition
consists of two steps:

a) removing the tokens (satisfying the predicate) from the input places;

b) adding tokens to the outpui places after performing the operations
specified on the outgoing arcs.

In our model the distribution of the time x associated with a timed transitdon
depends upon the system environment. The main difference between the nets used in
this paper and the predicate-transition nets are the introduction of time and of variable
arcs (a variable number of arcs may connect 2 place and a transition, and this number
may range from zero to a finite value).

In our paper the following notations are used: @ stands for addirion modulo the
size of the sequence number. [x,y] denotes the set of integers from x to y, including the
lower and the upper bound while (x,y] excludes x and {x,y} excludes y. Due to the
modulo operadon, it is possible that the set of sequence numbers of the messages to be
sent (recetved) might not be in the number value order. For example when the size of the
sequence number of the frame M, =8 (three bits are used for the frame sequence
number), the following frames may be in the sender’s window: 6, 7, 0, 1. To illustrate
the sequence relation, the symbol — is used. In the example above, we can say 6 — 1,7
— 0,6 = 7, etc. { } denotes the cardinality of a set. For example, I{a, e, d}!is equal to
3. In addioon, the relations between the element and the set are often used in the predi-
cates. If a element is contained by a set, this relation is denoted by €, on the contrary, by
¢ . Forinstance, we can say 3 € [1,4)and 4 ¢ [1,4).

In our model nets, we often use a place representing a counter as an environment
state variable in order to control the probability of firing a wansition. Such values are
presented in the predicates as individual token attributes. From the reference [14], we
know the bounded place marking can be tested. The value of the counter or the set ele-
ment in the model can also be tested and changed, including testing for zero.

The variable-arc nets are useful 1o model the network protocols, for instance to
model the fragmentation of a message of a given length or to model the operation of mul-
tiple elements of an entry (queue, set, etc.).

-6-

The comrespondence between a variable-arc net and a predicate transidon net will be
discussed in connection with two examples used to model mechanisms of a network layer
protocol and of a darta link layer protocol.

Example (1). The Fragmentation Mechanism . The network layer breaks up a
message Into several packets. Two models of this fragmentation mechanisms are
presented in Figure 1. In Figure 1.(a) a variable-arc net is used to describe the mechan-
ism. X represents the arc variable. It is assumed that the maximum length of a packet is
128 bits and the maximum message length is 384 bits hence X varies in the range 1 1o 3.

The following transitions occur in our model:

US is a ransiton representing the armival of a message from a user. Messages arrive
according 1o a Poisson distribution with average arrival rate A .

FR is a transition representing the fragmentation process. This transition fires only
once, when the message is received, hence the firing condition for transition FR
18: ('n=0AND (0</<348) . When 1 fires, a number X of packet tokens are
created and deposited in place PS. X depends upon the actual message leneth, / .

SEN is a mransition representing the sending of the next sequential packet to the output
quene(place QUT).

We now focus our attention upon the places present in our variable-arc net and upon
the attributes of each type of token allowed in any given place.

SQ is aplace containing tokens that represent messages, and have three attributes:
m : token subtype (message) ;
a : destrnation address;
| : message length.

PS is a place containing tokens that represent packets. Such a token has four attri-
butes: T :
p :token subtype (packet); _
a : destination address {copied from the message);
1t : packet length;
la : last packet in a message flag, used in reassembly.

A variable arc connects the wansition FR to the place PS. Consequenily a variable
number of packet tokens are deposited in place PS when the wansition FR fires.

S 15 a place containing tokens representing the sequence number counter, s. 'When-
ever the transition SEN fires, this counter is incremented modulo M.

FN 1s a place containing the counter fn of packets left in place PS. When the transi-
tion FR fires, the value is set to X, the nhumber of packets created from the incom-
ing message. Whenever the mransition SEN fires, the value is decreased by one.

An equivalent model for the same mechanism is presented in Figure 1.(b) but a
predicate-transiion net is used instead of a variable-arc net. The complexity of this
model] is considerably increased. Instead of a single transiton FR now we have the set of
FR;,i=1,2,3 . The predicate associated with FR is the combination of all predicates asso-
ciated with FR; .

Exampie (2). The Frame Reject Mechanism. In a data link layer protwocol the
receiver of a frame with sequence number 1, may inform the sender that it does not want

-7-

to accept the frame, by sending a reject command, <nak,i>. A Go-back-N continuous
ARQ (Automatic Repeat Request) [42] technique for error conmol is used in our exam-
ple.

In our model, when a token representing a reject command is received, all tokens
representing frames in the sender’s window and with a sequence number succeeding the
rejected frame are deleted from the tme out queue, place TQ, in Figure 2. The possibil-
ity that there is no token to be deleted, because rewansmission has already been per-
formed (e.g. the ime-out has occurred) is also taken into account in our model.

The places and the associated tokens have the following meaning:

S1 is a place associted with a counter representing the sequence number of the frame.
Its current valoe is denoted by s1.

PR 1s a place holding the reject token, ‘associated with the receiving of a reject com-
mand. Such a token has two attributes:
nak : token subtype;
i :the sequence number of the rejected frame.

TQ is aplace holding tokens with two atributes:
X :the sequence number of the frame registered.
t :the dme-out associated with frame x (omitted here).

RS is a place representing the retransmission control set which conrains the sequence
number of the frames that will be retransmined.

The number of arcs from the place TQ to the transition TR is variable from zero 1o a
finite integer as shown in Figure 2.(a}, depending upon the number of tokens contained
by the place TQ.

The equivalent model without the zero changeable arc is presented in Figure 2.(b). -
The transition TR, occurs for all frames with 2 sequence number x in the range [i,s1), and
as a result, the corresponding retransmission frame tokens are deleted from the place TQ.
The variable arcs from the place TQ to the transidon TR, and those from the wansition
TR, to the place RS both are changeable from one to a finite number. The arcs connect-
ing the place TQ and the mransition TR, represent the testing for place TQ, including pos-
sibly zero tesung, i.e., testing whether there is any token in place TQ. The enabling con-
dinon for the transidon TR, is the opposite condition as the one for the mansiton TR,,
and the finng of TR; has no effect upon the the place RS, where tokens representing
frames waiting 1o be retransmitied are deposited.

3. The Computer Network System Model

The Reference Model of Open Sysiems Interconnection (OSI) has seven layers.
The syntax, the semantics and the timing associted with the communication between peer
ennues, located at the same layer, on different systems are colleciively called protocols.
Each communication layer has a different function hence the protocols for different
layers are different. Nevertheless, some of the protocol primitve functions can be
identified in more than one layer. A non exhaustive list of such functions contains frag-
mentation and reassembly, encapsulation, connection control, flow control, error control,
synchronization, sequencing, etc.

-8-

This paper is focused upon the first three layers of the OSI Model, the Nerwork
Layer, the Data Link Layer and the Physical Layer. The methods developed can be
extended to cover the protocols for other layers. In the network model shown in Figure
3, the concept of using non-prime wansiton for modeling of the functions related to dif-
ferent network layers is illustrated. This shows that the modeling technique based upon
modified predicate transition nets, presented in this paper, is capable to take advantage of
hierarchical modeling concepts and a top-down modeling approach is possible.

The communication between two transport layer entties, each with muldple data
link connections is illustrated in our example. Since processes within layers operate
asynchronously, queues at layer interfaces are a necessary part of the network model.
Each layer protocol entity has associted with it four queves: a send and a receive queue 1o
(from) the upper layer, and a corresponding pair connecting to the next lower layer. A
protocol entity is represented as a non-prime transition, e.g the network layer entity is
represented by the Fragmentadon, Reassembly, Rouring, Buffering, Congestion non-
prime transition which will be examined in more detzil in the next section. A queue is
represented as a place, e.g. SO;, RQ;, FQ;, EQ;, LO;, I(Q;. It is assumed that the tran-
Sport entines generate messages according to a Poisson distribution T(2.) with mean
arrival rate A . The distribution of the message length is reflected in the length atuibute
of the message token. The mansidons US;, UR; represent the sending and the receiving
of messages o0 and from the mansport entity.

In our model, the communication berween the protocol entities, (peer-to-peer), may
be full-duplex. Only the data transition phases are investigated, modeling of connection
set-up and of connection termination process have been investigated elsewhere [3,6,7]
and will be ominted here. Nevertheless their effect on the performance of the system will
be taken into account by considering the firing time of the corresponding transitions.

3.1. Layer 3: Network Layer -

In Figure 4. we describe the network layer model using non-prime transitions. Each
non-prime transition represents a mechanism of the protocol and it can be extended as a
subnet.

3.1.1. Fragmentation and Reassembly

The Fragmentation and its corresponding Reassembly model are presented in Figure
4. The Fragmentaton model has been discussed earlier, in Example 1, and we focus our
attention on the Reassembly model, namely how several packets are purt together into a
message to be delivered to the upper layer. In case of Reassembly, transition REC
corresponds to the receiving of a packet, and it fires whenever a token is placed in the
input place IN and the receiver counter value r equal Lo s, the sequence number of the
packet received. This keeps the receiving packets in sending order.

The following places are presented in our model:

R is a place related to the sequence number of the next packet expected. The current
value of this counter is denoted by r. Whenever the transition REC fires, the
value 1 1s incremented modulo M,

PR is a place containing tokens which represent packets. It is the correspondent of the
place PS in the fragmentation model. It contains tokens with four attribuies

-9-

which have been described in Example (1). When the last packet arrives, i.e.,
when a token with la = 1 arrives at the place PR, then the transinion RE fires.
After firing, all tokens are removed from the place PR and a token of subtype
message is put in the place RQ.

RQ 1is a place containing 1okens which represent received messages, hence it is asso-
cited with the received message queue. It is the correspondent of the place SQ,
the sent message queue, from Example (1) and contains tokens with identical
attmibutes.

3.1.2. Routing

Routing is an important function of the network layer of any packet switched net-
work. Different routing strategies ranging from fixed to adaptive routng are used in
existng communication networks. In case of adapnve routing the updates can be
pericdic, or they can be miggered by major load or topology changes in the network., The
selection of a route is based upon a certain performance criterion as delay, cost,
throughput. The routing decision can be made using local information only, information
from adjacent nodes, or from al! nodes of the network. The routing decision can be made
for each packet individually in case of a datagram type of service or it can be made only
once, when a virtual circuit is established. The rounng decision can be made by each
node (dismibuted routing), by a central node (centralized routing), or by the originating
node (source routing).

A distributed adaptive routing mechanism with updated triggered by major changes,
for a packet switched network operating internally as a datagram is embedded in the net-
work model] presented in Figure 4. The routing table RB is represented by a place and it
is updated at random time intervals, ¥, associated with firing of the transition RDU. The
routing table has N entries, one for each node of the network. Each entry consists of two
items, the destination node id and the the output line or the next node to which the packet
1s 10 be delivered. Update vectors are received periodically by each node from its neigh-
bors. Each update vector contains entries with the same format. The places RB and NRB
contain tokens with two attributes: x and y as described above. The arc label N indicates
that there are N arcs. Funcoons f and f , represent the updates for an entry in the rout-

ing table.

The routing table is used for every packet to decide which is the oprimal route, and
then the oken associated with the packet is passed to the proper Buffering and Conges-
ton control mechanism.

3.1.3. Store and Forward Buffering and Congestion Control

Long haul computer communication networks, and the interconnection networks,
the catanets, are multi-hop networks, operating in a store and forward manner. The inter-
mediate nodes buffer messages, route them, and then free the buffers only when the ack-
nowledgements for the buffered messages are received. Clearly, the buffer space is a
criical resource of an intermediate node whether this is an IMP (Intermediate Message
Processor) or a gateway processor. Whenever such a node runs out of buffer space it
starts discharging incoming packets and this may trigger a chain reaction affecting an
entire region of the network. The problem of buffer management is closely related to the

-10 -

mechanisms for maffic control in a packet switched nerwork. The traffic control problem
has multiple aspects namely the flow control, the congestion control and the avoidance of
deadlocks. The flow control is used to regulate the maffic between two different points.
The congestion control has the objective to maintain the number of packets within the
network or within a region of the network below some critical values.

A rather simple congestion control mechanism is modeled in the graph presented in
Figure 5. An intermediate nede maintains a low water mark, M; and a high water mark,
M, . Whenever the amount of used buffers reaches M, , the node informs its neighbors
that 1t will no longer accept any messages by sending a <ref>, REFUSE control packet.
When the amount of used buffer space decreases below M, , then the node becomes
friendly again, sends to its neighbors a <res>, RESUME contro! packet and starts accept-
ing messages.

We focus our attenton upon the congestion conwol mechanism skeiched above. In
order to simplify the graph (Figure 5), we consider only one host 2nd one neighbor node
connected to the node under examination. Some attributes of the tokens representing
packets are omitted in the graph, for example the atmibutes 11, la, s, are not represented
though the tokens contain them.

The flow of the tokens representing packets is as follows: tokens are deposited by
the data link entity in the place EQ. Depending upon the type of the packet, different
ransinons take place. For example the arrival of daia packets triggers the transition T12
and depending upon the destination address, the 1okens representing packets for the local
host trigger transition T13 and end up in place IN while the tokens for the other hosis
trigger ransiton T14, are transmitted to the place OUT and go through the routing
mechanism previously described.

The places and ataibutes of the tokens they contain are:

S1 1s a place representing a counter, namely the sequence number of the next packet
to be sent on the ontgoing link. Its current value is denoted by sl. Note that
there is no need to represent the place S, the end-to-end packet sequence
number.

BUF is a place representing the store and forward buffer. It contains tokens of sub-
type packet, with six attribuies. In additon to 51 the remaining five atributes are
P. &, 11, 1a and s are as in the case of tokens in Place OUT of Example (1).

BC is a counter of the number of buffers in use, it reflects the occupancy of BUF.
Its current value is be. It is incremented when a new packet arrives and buffer
space is allocated to it and it is decremented when the buffer space is released. It
has a maximum capacity, M.

Pé 1s a place where tokens representing data packets are deposited.
The transitons shown in Figure 5 are described in the followings:
T2 occurs when an explicit acknowledgment for packet 1, <ack,i> is received. Then
the buffer holding packet i is released and a token is removed from the place
BUF.
T3 occurs when a negative acknowledgment for packet), <nak,j> is received. Then

the proper token 1s first removed, then put back in the place BUF through the
self-loop arc. In addition, when T3 fires a token is put in the place P3 which

-11-

contains tokens representing packets to be retransmited.

T4 occurs when the high water mark, M, is reached and the current node sends a
<ref>, REFUSE control packet to its neighbors.

T5 occurs when the Jow water mark, M, is reached and the current node sends 2
<res>, RESUME control packel.

T6 if the final destination of a packet is a host connected 1o the immediare neighbor

of the cumrent node, the buffering of the packet is not under the conirol of the
congestion mechanism and the ransition is T6 enabled. The predicate (D2=a) is
true when the immediate neighbor condiuon is satisfied.

T7 the enabling condition of this transirion is the opposite of the enabling condition
for transition T6.
T8 occurs when the current node receives a <ref>, REFUSE control packet from its

neighbors. It shows the action of congestdon conwol. In this case the transition
T7 cannot fire untl T9Y fires (a <res> control packet is received).

T9 occurs when a <res>, RESUME control packet is received from its neighbor.

T11 occurs whenever a packet is sent on the output line. The predicate associated
with this transition represents its firing condition, where LINE is related to the
Buffering and Congestion address on the ourput line determined after checking
the routing table.

3.2. Layer 2: Data Link Layer

A model of the Data Link Layer is presented in Figure 6. A sliding window fiow
contol mechanism coupled with a GO-Back-N, continuous ARQ, error control mechan-
ism are embedded into our model. The set of the frame sequence numbers has a size M, .
The sender’s window is denoted by W and the receiver’s window by W,. Acknowleds-
ments are Sent in separate frames and an <ack,i> means that frame i and all frames
preceding it are acknowledged. <nak.,j> requires that frame j and all sncceeding frames in
the sender’s window be retransmitted.

As the tokens ravel across layers boundaries new attributes are added (deleted) to
(from) them. This process corresponds to the encapsulation (decapsulation) when data
units cross from one protocol layer to another. Header information is added when the
data umts flow from higher 1o lower layers and it is removed and interpreted for the
opposite direction of the flow.

In our model all tokens contained by the place FQ represent packets and they will
be converted into tokens of subtype frame. In addition to the original atributes, two new
atributes are added to each token in the place FQ: subtype attribute f and the data link
sequence number s2. This 1s performed by the transition T21 in Figure 6. In order to
simplify the arcs labelling the token attribuies not used by the current layer are omitied in
the graph.

In the graph represented in Figure 6 the following places can be recognized:

S2 is a place representing the data link sequence number of the next packet to be
sent. Its the current value is s2.

-12-

R 15 a place representing a counter associated with the lower limit of the sender’s
window. Its value is updated every time an acknowledgment is received. Current
value is denoted by r.

RS is a place which contains the set of the sequence numbers of the packets o be
retransmitted. The element variable is denoted by 1 and the set variable by rs.

RC is a place containing the data link sequence number of the next packet to be
received, the current value is denoted by re. After receiving the packet which it
is awaiting, this lower limit of the receiver’s window is updated.

PC the set of the frames which are within the receiver's window, the frame
sequence number is in the range, (rc, rc @ W,), excluding the duplicate ele-
ments.

RTQ 1s a place associated with the frame reransmission queve. When sending a
frame (mcluding retransmission), a token of subrype frame is put in this placs;
when an acknowledgement is received, the proper tokens are removed from this
place.

TQ is a place associated with the time our queue. It contains tokens with rwo atii-
butes:
x--the frame sequence number;
r,-- the nme out associated with frame x.

The transidons present in our graph are:

T21 it represents sending frames. When a 1oken from the higher laver arrives at the
place FQ and the predicate is satisfied, since s2 is in the sender’s window, (s2 ¢
[rr® W.)), and there is no retransmission occurrence (rs=@), then transiton
T21 can fire. After firing, the token representing a frame is delivered to the
lower layer and to the retransmission queue RTQ. In the same time a token of
ime out subtype is put in time out queue TQ and then s2 is incremented
(s2=s2@ 1 {modulo M5)).

T22 it represents frame retransmission. When there is requirement for reransmis-
sion, i.e., rs#@, the wansiton T22 can fire. After firing, the action is similar with
the transition T21. The difference is that the valve s2 is not changed and the
proper sequence number is removed from the place RS.

T23 After receiving an acknowledgement token <ack,i>, this transition can fire. The
proper elements of the quene RTQ and TQ and the set RS are canceled if the
sequence numbers of these elements are — 1 (including i), and the value of r is
modified, =1®@ 1 (modulo M,).

T24 After occurrence of a time out, all elements of the queue TQ are removed and
the tokens are put in the place RS.

T25 After receiving a <nak,j> token, this transition can fire. The action is like that of
the transidon T24.

Tt It represents time out. Every 1, units of time this ransition can fire if there is
any token < x, 1, > in the queue TQ.

T26 When receiving a frame in error, a <nak, a> is semt if the frame sequence
number is rc=a.

-15-

T27 When receiving an error-free frame with the sequence number rc=b, an ack-
nowledgement token <ack,b> is sent. Then rc is increased (rc = h@ 1 (modulo
Mj)) and the tokens representing frames with sequence numbers in the range
[b,h] are removed from the place PC, if any. Afier this transition fires, the wan-
sition T30 is enabled.

T28 It represents the receiving of error-free frames which are in the range of
receiver’s window, but which are duplicated frames. After firing, this wansition
puts the frame token into the place P8 and the sequence number into the place
PC.

T29 It represents the discard of other frames including the duplicated ones.

T30 It delivers the frames to the higher layer in sending order. After firing, it puts
the frame in the place EQ), i.e., it removes the two attributes of the token, which
were added when this token entered the data Iink layer art the sender’s site.

3.3. Layer 1 : Physical Layer

The physical layer of a computer communication architecture is concemned with the
ransmission of sweams of raw data bits over a communication channel. We model a
time division multiplexing scheme with n slots so that n streams of data can be
exchanged through the same channel. All slots are of the same length (expressed in
number of bits). The fact that the slots may not be fully occupied is reflected into the
nme funcdon of the timed transidon which represents the physical propagaton of data.
We assume a full duplex communication and we use two queues to model the two propa-
gation directions on the medium. Each is a FIFO gqueue with n slots and it can be
described by Petri nets as in Figure 7. This subnet is replaced by the places LQ and IQ at
a higher level as shown in Figures 3 and 6 respectively. Such a subnet is fully described
in reference [7].

The places and tokens which are allowed to vist them have the following meaning:

Pf It contains tokens which represent occupied (full) slots. Such tokens have two
attributes: the first one is the subtype of stream contained by the slor and the
second one is the slot number.

Pe It contains tokens which represent empty slots. These tokens have only one attri-
bute, the slot number.

The place Pq and Pr contain separately the receiving and sending streams.

The transition Ts and Tr constitte the interface of the queve. Ts can fire, if the first
slot is empty, i.e., Pe contains the ioken 1 and a stream presents in Pq. Afier this mansi-
fion fires, the first slot is removed from Pe and is put in Pf with attributes <m,1>. Con-
versely, Tr can fire, if the last(nth) slot is contained by Pf. After it fires, the last slot is
removed from Pf and is put in Pe with one attribute n.

The wransition Tp stands for the progression of soeam from one slot to the following
one. Whenever place Pe contains a token p, i.e., the slot p is empty, and the place Pf
contains a token of stream subtype ¢ which slot number is p-1, the transition is enabled
and waiting a random time b*], it can fire. Then the stream of subtype ¢ is put in the slot
p, and the slot p-1 becomes empty, i.e., the token p-1 is put in Pe. The random time
b*1(1: the stream length) denotes the the delaying time of a slot ransmission.

-14 -

The ransition Td stands for stream loss during transmission. Every random time w
period the transition can fire if the transmission medium is not idle. When it fires, it sim-
ply discards a stream of subtype i and puts the slot occupied by the stream into the place
Pe.

The transiton Te stands for corruption of stream during transmission. Every a ran-
dom time 1 period, a token of subtype e(error) may substitute for a stream of subtype x in
the slot y. -

4. Translation of Protocol Models into Simulation Programs

The models of the communication protocols developed in the previous section can
be translated into simulation programs. The target language can be any programming
language which supporis concurrent processing. We have selected ASPOL since it is a
process oniented simulation langnage which in addition to concurrent processing provides
an adequate support for simulation constructs.

The mapping of Petri nets and of extended Perri nets into programming strucrures
has been investigated in the hiterature [35-37]. In case of Petri nets a process can be asso-
ciated with a connected subnet in which every transition has at most one input arc and
one output arc from (to) any input (outpur) place. Other methods have been proposed
recently, [38-40]. However the method used in this paper is conceprually different, and
easier 1o use. It partitions the set of all places into two disjoint classes and associates with
one class synchronization primitives and with the second one processes. We recognize
different types of tokens and we associate with each of them a different type of process.

Two types of places can be disringuished in our previous models which are based
upon modified predicate transition nets:

a. Type e places. They may contain Type 1 or Type 2 tokens which are associated with
predicates that decide upon the opportunity of firing a transaction. The correspon-
dent of such places in our simulation structures are primitives to control the syn-
chronizanon between the processes executing concurrently in the simulation pro-
grams.

b. Type m places. They may contain only Type 3 tokens which are associated with the
transmission vnits exchanged by the corresponding protocols. For example. in the
data link protocol, the basic transmission units are data frames, acknowledgment,
neganve acknowledgment frames. In our model they are represented by different
subtypes of Type 3 tokens. In the network layer there are: data packets and dif-
ferent types of conrrol packets. In this section, unless it is explicitly stated other-
wise, all tokens are assumed to be Type 3 tokens. Each different token subtype will
be associated with a process type. The number of concurrent processes of a given
type equals the number of tokens of the corresponding subtype. A process will in
fact describe the the migration of that particular token through all the places it visits
in the system.

Each entity at a given network layer can be conceived as consisting of two basic agents,
the sender and the receiver, and in some cases of additional auxiliary components. Each
component will be mapped into a different process. The activities of the two primary
agents consists of: interfacing with the immediate upper neighboring layer, the specific
processing associated with the current layer and interfacing with the immediate lower

-15-

layer. Both handle the same type of ransmission units (frames, packets, eic.) but they
are concemed with the flow of wransmission units in different directions. For example in
case of the network layer we recognize a packet sending and a packet receiving process
and in addition a packet retransmission process and a rounng table update process which
for the sake of simpliciry will be omitted in our discussion.

To illustrate the translation technique from the modified predicate transition net
model to the simulation program, we present in Figure 8, the basic types of processes, the
packet sending, packet receiving and packet retransmission. Each structure identifies the
range of the corresponding process activities and the path followed by the respective
token type. A rype m place is associated with a sequential code in the corresponding pro-
cess. When a process (remember that a process is associated with a Type 3 token) visits
such a place the program counter is position to execute the next sequence of instructions.
The fining of a Tansinon determines the execution of the next sequential code section.
Whether the ransidon can fire or not, this depends upon the predicate associated with the
transinon, if any, If a predicate 15 associated with the transiton then it should be checked
according 1o the label variables of the input arcs associaied with the mansiton. Then the
sequential code is executed. Usually it will compute some environment variables and
modify some auributes of tokens. These operations are shown by the labels of the output
arcs associated with that mansidon.

In ASPOL, a process description specifies the behavior of a type of processes and
defines variables and events unique to each process of that type. Each process is a partic-
ular and independent instance of a execution of a process description.

In Appendix, we give three process descriptions of packet type, which were written
in ASPOL. The sendp (send packet) process executes first the operations associated with
transition T11 from Fig.5. These operations are: routing table lookup 1o determine the
output line and checking the availability of that line, by evaluating the predicate associ-
ated with T11. If the predicate which is related to buffer occupancy on the selected oui-
put line is not satisfied, the process waits until the predicate becomes true. If the predi-
cate is true, then the transition fires and it triggers the execution of subsequent opera-
tons: computation of the sequence number and the buffer counter, addition of the packet
sequence number into token attribute record, creation of a retrap (reransmit packet) pro-
cess, and decision whether to create a sref (sending refuse) process. The place P3 is a
decision place because it has muluple output arcs. The program branchs at this place
according to the atiribute value of the destination address. If the predicate associated
with the transidon T7 1is satisfied and the variable P4 is held, i.e., the refuse command is
not received, the only operation associated the transition T7 (including T6) is 1o hold the
process for a random time interval, f. If P4 is empty, i.e., the refuse command has been
received, the process waits until the receiving resume process wakes it up. Finally, the
process arrives at the place FQ, it is substituted for a sending frame process, sendf. The
retrap process and the recep (receive packet) process are simpler and their description
will be left as an exercise for the reader. The creation, termination and synchronization
of processes will be discussed later.

The Type m places are in turn classified into three groups:

a) Places which accept as input tokens of two or more different subtypes. In the graph,
such places are nodes with two or more input arcs labelled with token vanables of
different subtypes. For example places P3 and FQ in Figure 3 belong to this group.

-16-

Tokens of two different subtypes are also in place P3 since a rewransmitted packet is
specially identified. Place FQ contains different types of tokens corresponding to,
ref, res, ack, nack control packets and the data packet, p. This indicates that dif-
ferent type of processes may execute the same operations in sieps to follow. At
these places, we may combine such processes into a new process, since they execute
the same sequence of operations and this reduces the complexiry of our simuladon
programs.

b) Places which allow as output two or more different subrypes of tokens. In the
graph, there are two or more output arcs emerging from such a node, labelled with
token variables of different subtype. The places EQ in Figure 5 and IQ in Figure 6
are examples. These places are decision nodes of the programs. The tokens of dif-
ferent subtypes contained by the place can cause that the different transitions are
executed. At these places, it is possible to substitute several types of process for the
original one.

c) Places where no transformation of the process type can occur.

The wansitons associated with process creation and termination are of special con-
cem for the generation of simulation programs from modified predicate ansition nets
models. The following types of wansitions can be recognized:

Fork The mansitions for which the number of output arcs (labelled by token vari-
ables of type 3, the following is the same denotation) is larger than that of input
ones correspond to a fork operadon. For example, referring to Figure 5., the
transition T11 corresponds to a fork operation. When this transition fires, some
new processes are created. The number of the new processes created is the
difference berween the number of ourput and input arcs. The transitdon T3 is
another example. Whenever T3 is executed, the packet process is created
while the original one still exists.

Join The transitdons with more input arcs than output arcs correspond to a join
operadon. When such a wansition fires, some processes terminaie their execu-
ton. The number of terminating processes is the difference berween the
number of input and output arcs. For instance, whenever the transition T2 is
executed, the receiving ack process and the certain retransmitting frame pro-
cess are terminated.

Synchronization among processes is represented by mansitions to or from places of
Type e. If a transition is associated with a predicaie concerning with the attmbutes of
tokens of type 2 contained by its input places or if a input place of a transition can con-
tain a token of 1ype 1, generally we can identify a synchronization topology. For example
referring to Figure 5, the input place P4 of wansition T7 can contain a Type 1 token. This
is not true for transition T6 since the predicate associated with it contains only Type 3
tokens. For transition T11 the predicate is concemed in the value of token bc contained
by the place BC. When a process executes such a transition, it should decide whether it
waits or not. If the predicate is not satisfied the process waits, else it continues.

If a transitdon is associated with updating Type 1 or Type 2 token variables then one
may identify a synchronization topology. In Figure 6, the place R connects the transition
T21 and T23. When a process executes the transition T23, the process would like to
updare the token variable r contained by the place R. It is possible this process wakes-up

-17 -

other processes which wait to execute transition T21. In Figure 5, the place P4 connects
the transidons T7 and T8. There is synchronization between the sending packet process
and the recetving packet process, because the receiving ref process would like to remove
the token contained by the place P4.

Most of the synchronization problems can be treated in the framework of Perrd nets
or modified Petri nets. As two examples in last paragraph, the former is a classical
producer-consumer synchronization, the latter is a mutual exclusion problem.

5. Conclusion

A significant part of the performance analysis of a computer communication archi-
tecture 1s related to the modeling of communication protocols supported by the architec-
ture. The communication architecture investigated in this paper is based upon the QSI -
Reference Model. Queuing modeils and analytical methods [41] have been used for this
purpose.

In this paper we take a different approach. We define modified predicate transition
nets and use them 1o model the mechanisms built into different protocols. While Petri
nets have been used in the past to prove the correctness of protocols, by inroducing the
time concept and the variable arc concept, we are able to use modified predicate transi-
ton nets for the performance analysis of communication protocols. A two step approach
is presented, first we built the graphs which model the protocol behavior and then we
translate these graphs into simulation programs.

Since our models can include non-prime transidons we are capable to represent
intricate communication mechanisms using simpler ones as building blocks. Using this
hierarchical modeling approach we model first mechanisms like frame rejection, data
link flow control, fragmentation and reassembly, etc., then we model the function of an
entre layer, for example the network and the data link layers.

We believe that the modified predicate transition nets can be successfully used as a
framework for the study of communication protocols and that they can be applied to the
performance evalvation, specification, validation and implementation phases.

Reference
[1). Data Processing-Open Systems Interconnection-Basic Reference Model, Draft Proposal ISO/DP
7498 International Orpanization for Standardization, 1982

[2]. A.AS. Danthine, "Petri Nets for Protocol Modeliing and Verificarion,” Proc. computer Networks
and Teleprocess. Symp., PP. 663-685, Oct. 1977

[3). A.A.S. Danthine, "Profocol Representation with Finite-State Models,” TEEE Trans Comm., Vol.
COM-28, PP. 632-643, Apr, 1980

[4]. P. Estallier and C. Girauh, "Petri Nets Specification of a New Protocol for Controlling a Distributed
System Organization,” Third Iniemational Conference on Distributed Computing Sysiem, Miami,
Florida, 1982

[5). G.Bochmann and C. Sunshine, “Formal Methods in Communicarion Protocol Design,” IFTEE Trans.
Commun., Vol. COM-28, PP. 624-631, Apr. 1980

[6]. M. Dijaz, “Modelling and Analysis of Communication and Coaperation Protocols using Petri Net
Based Models,” Comp. Networks, Vol. 6, PP. 419-441, Jun. 1982

[71.

[8].

[9].

[10].
[11].

[12).

[13].

[14]).
[15].

(16].

[17).
[18).
[19).
[20).
[21).

[22]).
[23).

[24].

[25]).

[26].

[27].

[28).

[29].

[30].

-18 -

G. Berthelot and R. Terral, “Perri Nets Theory for the Correctness of Protocols,” IEEE Trans. Com-
mun., Vol, COM-30, No. 12, PP, 2497-2505, Dec. 1952

B. Wollinger and Q. Drobnik, "Simulation of Protocol Layers of Communication in Computer Net-
works,” Computer Networks and Simulation II S. Schosmaker{ed.) North-Holiand Publishing com-
pany, PP. 141-165, 1982

H. Kleine, "A Survey of Users’ Views of Discrete Simulation Langrages,” Simulation, Vol. 14, No.5,
PP, 225-229, May 1970

J.O. Henriksen, “The Development of GPSS5/85,” Simuladon Symposium 1985, PP. 61-77, 1985

E.C. Russell, "Bujiding Simularion Models with SIMSCRIPT 11.5," CACI, Inc., 12011 Sar Vicenle
Blvd., Los Angeles, CA 90049, 1982

W. Fischer, K.P. Sauer and W. Denzel, "A Simulation Technigue jor Disiribuied Systems Based on a
Format Spectfcation by SDL" Prec. Int. Sem. on Computer Networking and Performance Evalua-
tion, Tokyo, PP. 11-4-1-4-10, Sep. 1985

C.H. Sauver and E.A. MacNair, “Simulation of Computer Communication Systems,” Prentice-Hall,
INC,, 1983

LL. Peterson, "Petri Net Theory and the Modelling of Systems.” Prentice-Hall, INC., 1981

W. Brauer, G. Rozenberg and A. Salomaa, "Petri Nets - An Iniroduction,” Springer-Verlag, Berlin
Heidelberg, New Yark, Tokyo, 1985

M.A. Marsan, G. Conte and G. Balbo, “A Class of Generalized Stochastic Petri Nets for the Perfor-
mance Evaluation of Multiprocessor systems,” ACM Trans. Comp. Systems, Vol. 2, No. 2, PP, 93-
122, May 1984

C.A. Pem, "Kommunikation Mit Auromater,” (Ph. D. Thesis in German) Translation by C.F. Greene,
Supplement 1 to RADC-TR-65-337, Vol. 1, Rome Air Dev, Center, Griffiss AFB, NY, 1965

AW Hol, “Final Report of the Information System Theory Projec,” RADC-TR-68-305, Rome: Air
Dev. Center, Griffiss AFB, NY, Sep. 1968

AW, Holt and F. Commoner, “Events and Condirions,” Record of the Project MAC Conf. on Con-
current Systems and Paraflel Computation, PP. 3-52, 1970

1.B. Dennis, "Modular Asyiichronous Ceontrol Structures for @ High Performance Processor.”
Record of the Project MAC Contf. on Concurrent Systems and Parallel Computation, PP. 55-80, 1970

W. Brauer, "Ner Theory and Applications,” Lecture Notes in Comp. Sci., Vol. 84, Springer-Verlag,
1980

I.L. Peterson, “Petri Nets,” Comp. Surveys, Yol. 9, No. 3, Sep. 1977

K. lensen, "Coloured Peiri Nets and the Invariant-Method,” Theoretical Comp. Sci., Vol. 14, PP.
317-336, 1981

JH. Genrich and K. Lauienbach, ‘The Analysis of Distributed Systems by Means of
PredicatelTransiiion-Neis,” Leciure Notes on Comp. Sci., Vol, 70, PP. 123-146, 1578

J.H. Genrich and K. Lautenbach, “Sysrem Modelling with High-Level Petri Nets,” Theoretical Comp.
Sci., Vol. 13, PP. 109-136, 1981

J.D. Noe and GJ. Nutt, "Macro E-Nets Representation of Parallel Sysiems,” IEEE Trans. Comp.
C-22 PP. 718-727, Aug. 1973

P.M. Merlin, "A Methodology for the Design and Implementation of Communication Protocols,”
IEEE Trans. Commun., Vol. COM-24, PP. 614-621, Jun. 1976

PM. Merlin and DJ. Farber, "Recoverability of Communication Protocols: Implications of a
Theoretical Study,” TEEE Trans. Commun., Vol. COM-24, PP, 1036-1043, Scp. 1976

F.I.W. Symons, "Introducrion to Numerical Petri Nets, a General Graphical Model of Concurrent
Processing Systers,” AT.R., 14, 1, PP. 28-33, Jan. 1980

S. Natkin, "Reseaux de Perri Stochastigues,” Ph.D. Dissertation, CNAM-PARIS, Jun. 1980

{311.
[32].

[33).

[36].
[37].
[38).

[39].

[40]).

[41).

[42].

-19-

M.K. Molloy, “Performance Analysis Using Stochastic Peiri Neis,” IEEE Trans, Comp, C-31, 9, PP.
913-917, Sep. 1982

M.K. Molloy, "Discrete Time Siochastic Peiri Nets," TEEE Trans. Software Eng, Vol, SE-11, No. 4,
PP.417-423, 1985

J. Magout, “Performance Evaluation of Concurrent Systems Using Petri Neis,” Informalion Process-
ing Letiers, Vol. 18§, No. 1, PP. 7-13, 1984

S.5. Yan and M.U. Caglayan, “Disiribuied Software System Design Representation Using Modified
Petri Nets," IEEE Trans. on Software Eng. Vol. 6, PP. 733-745, Nov. 1983

. R. Janicki "An Algebraic Structure of Peiri Nets,” Lecture Notes in Comp, Sci., Vol. 83, PP. 177-

192, 1980

1. Goltz and W. Reising, "Processes of Place/Transition-Nets,” Lecture Notes in Comp, Sci., Vol.
154, PP. 264-277, 1983

R. Janicki, "Nets, Sequeniial Components and Concurrency Relations” Theoretical Comp. Sci. 29,
PP. 87-121, 1984

G. Bruno and G. Marchetto, "Rapid Protoryping of Control Systems Using High Level Petri Nets,” in
Proc. Conf. "85 IEEE Software Enginecring, PP. 230-235, 1985

P. Azema, G, Juanole, E. Sanchis and M. Montbemard, “Specification and Verification of Distribuied
Sysiems Using PROLOG Interpreted Petri Nets,” in Proc. Conf. *84 [EEE Software Enginecring, PP.
510-518, 1984

R.A, Nelsen, L M. Haibt and P.B. Sherdan, “Casiing Petri Neis into Programs,” IEEE Trans.
Software Eng. Vol. SE-9, No. 5, PP. 580-602, 1983

Martin Reiser “Communicarion Sysiem Models Embedded in the OSI-Reference Model, A survey”
Iniernational Seminar on Computer Networking and Performance Evaluation, Tokio, Seplember
1985,PP3.1.1-3.1.26

William Stallings "Dara and Computer Contnunications” Macmillan, 1985

-20-

Appendix: Examples of Program Structures

sim net;

del (nod=5);
defl (line=4});
del (m1=16);
del (m=10);
del (mh=8);
event out(line);
event con(line);
event rg{m1);
macro ¢m;
block com;
inteper rb(nod,nod,?);

integer s1(linej;
integer be(line);
integer pl(line);
integer p2(line);
integer p4{ine);
integer ad(nod,line);
integer rtg{line,m1};
end block;
endmacro;

end sim;

comment simutation program of the network;

comment number of the node;

comment maximum fing number with a node;

comment modulo of packet sequence number;

comment bulfer maximum capacity;

comment bulTer high water mark;

comment event set of output guene;

comment congestion semaphore;

comment event set of retransmission queue;

comment defining a referencing biock’s;

comment defining a storage space shared;

comment routing table, each row contains
destination and Line number;

comment counter of packet sequence number;

comment buller capacity counter;

comment sending ref control flag;

comment sending res control flag,;

comment receiving ref control flag;

comment post neighbor tzble;

comment retransmission state variable;

comment the meaning of the following arguments in processes
a: destination address, sou; source address,
s: sequence number of packet{end-to-end),
51(j) or ss1: sequence number of packei(point-to-point),
j: the number of cutput line;

comment send packet process description;

process sendp(a,s,sou);
integer i,j,a,s,sou,t1;

cm; comment introeducing ithe common data space;
comment checking the routing table to decide output line;

i=0;
while(i.lt.nod)do
begin

if(rb(sou,i,I}.eq.a)ihen

goto g;
i=i+1;
end;
g: j=rb(sou,i,2);

~21 -

comment deciding whether or not buffer is full;
if(bc(j).ge.m)then
queue(out(j));

comment coimputing the counters;
s1{(j}=mod(m1,s1(f)+1);
be(j)=be(j)+1;
comment deciding whether {o create sref process;
if(be(i).eq.mh)then
il(p1(j).eq.1)then
begin
p1()=0; p2()=1;
initiate sref(sou,j);
end;

comment creating retrap process;
initiate retrap(a,s.s1(j},s0u,j};

comment deciding congestion;
if{a.ne.ad(sou,j)}then
if(p4(j}.ne.I)then
quene{con(j));
commment delaying time of inlerface and connection;
hold(random(1.,5.)*.001);
comment substituting send frame process for this one;
ti=1; comment setting {rame type;
initiate sendf(t1,a,s.s1(j}.s0u,]);

end process;

comment retransmit packet process description;

process retrap(a,s,ssi,sou,j);
integer a,s,s51,50u,j,t1;
cm; comment introducing the common data space;

comment waiting for being woke;
queue(rq(ssl+1));
comment deciding whether ack or nak has been received;
if(rtq(j,ss1).eq.I}then goio v;)
comment creating retransmit packet process;
initiate retrap(a,s,ssl,son,j);
comment the following is same with that of sendp process;
if{a.ne.ad(sou,j))then
if{pd(j).ne.I)then
queue(con(j));
hold(random(1.,5.)*.001);
tl=1;
initiate sendp(tl,a,s,ss1,s0u,j);

v: riq(j,ss1)=0; comment reset the ack flag;

end process;

-2,

comment receive packe! process;

process recep(a,s,ssl,sou,j,me);
integer a,s,s551,50u,j,Ine;
cm; comment introducing the commaon data space;

comment creating sending ack process;
initiate sack(ss1,sou,j);
hold(random(0.,3.}*.001);

comment deciding whether the packet is mine;
if(a.ne.me)then
initiate sendf(a.ssou); comment defivering jt;
else initiate recem(s,sou); comment receiving it;

end process;

nen: us
<in,a,l>

SQ

<m,a,l>

FR: (fn=0) A (0<1<348)

X=INT(1/128)
where INT is a funclion of
trruncation (o ncarest integer
not smaller than the argument

1.(a} Irangmentation modeling
using a variable arc net

T(A) Us

<m,a,l>

<p,allla s>

The following predicates associate
with the trangition FR; (i=1,2,3):
Ry (Mn=0) A (0<I1<128)

[z, (In=0) A (128<1<256)
FRy: (Mm=0} A (256<1<384)

1.{1») Frangmeniation modeling
using a predicate-transition net

Figure 1. Modeling of the fragmentation mechanism

51 TQ PR

D

sy sl Y*x <nak,i>

TR i

Y=lixlx e s} ¥ 3x € [is1) —~(3z¢e fsl))
Y*x Y=l{xix e fish} [¥
RSO RS
(a) The model using variable arcs (b} The model using variable arcs
witk zero changing withoul zero changing

Figure 2. Modeling of the frame reject mechanism

USs1 UR1
) —
5Q1 RQ1

, |
Fragmentation, Reassembly
3 Routing
Bufffering, Congestion
-y
i
FQ;; \ EQy; FQ; EQyy | FQi2 1\ EQ:2
Y ! Y
Window Window Window
2 Error recovery Error recovery Emor recovery
. rej * 1ej . rej
* lime-out ' time-out * time-out
i | i
\ LQy,; | IQu; LQ,; 1o, LQ, 110,
h (:
1
] | ' (Qa.) (LQ25) 1Qu, 1Qq.
Window Window
Emor recovery Error recovery
* 1ej > 1ej
» lime-oul * time-out
QZ.] Q2,1 QEJ: QZJ:
Fragmentation, Reassembly
Routing
Bufffering,Congestion
’ RQ2 sQ2
UR2 Us2
Y TOY)

Figure 3. A model of computer network using non-prime transition

T(A Us y UR
<m,a,l> <m,l>
SQ RQC
' <m,l>
RE
Y*<p,ll,)a,5s> 3 «fl1,1a,i>Ma=1
Y=[{s[s—i}|

PR

. <p.ll,Ja,s>
Fragmentation REC
Reassembly £ =5
NR
N7 (<x,y> N*<x v
<pa,llla,s> <p,li,l2,5>
TO) Y _ _RDU P

Buffering, Congestion
1

N*f{<x,y>)

. RB
Routinp

Buffering, Congestion
2

Buffering, Congestion
3

AW \ , I W7
FQI EQl FQz ()EQ FQ3 ()EQ3

Figure 4. The network layer model with non-prime transition

RB ouT

<p.a> P
81 v >
T14 TI13
1@ | a#me a=me D>
'a> 1
T11 (be<M W a=x)\(y=LINE) P P6
,3.51> (]J.,a,j>])
<p,aji>
<p,a,j> <p.a>
S o
<p.a.i> '
be-1 J
BT
- <p,a,sl>
—"16 & 1p
TS5
bc=M ! a:D2 P4
T T7
azD2
res <p,a,sl> .
<p,a,s1> <ack,i> |
<ack,m> ref <nak j»
ref / _\ f <pam>
FQ EQ

Figure 5. Store and forward buffering and congestion control model

Y

T2 x1k2 € [ri]
r . .
e =T > EAILilEG+E
4 > FR
e -
E*v G*k1 ue [xs2) N

mZ=l[§.52)

T21
2 [rr® W)
=@

T30
ZIC

£z ce e W)
A ce pe

('f.C) T28

,-k{ _{<nakj> I
<0]
o f‘
qe [j.52) <P v
X=|[.s2) o
| TK) 127
w / (b=rc)Mde (rc,h])
<nak7a_> \ e > Y=|(rc,h]|
<ackh> \
<{,b>

e

LQ

Figure 6. The data link layer model

Figure 7. The model of the transmission medium

OUT BUF EQ

T —¥ T3 r TI2 — ¥

P3 y P6

P3
Té6 © TS T7 T4 T13
FQ

FQ OUT IN
(a) (b) (c)

Packet-send process Packel-retransmission process Packel-receive process

Figure 8. The primilive processes involved in packet handling

	Application of Modified Predicate Transition Nets to Modeling and Simulation of Communication Protocols
	Report Number:
	

	tmp.1307986960.pdf.WYaII

