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Abstract

Effective clinical trials for neuroprotective interventions for Parkinson’s disease (PD) require a 

way to quantify an individual’s motor symptoms and analyze the change in these symptoms over 

time. Clinical scales provide a global picture of function but cannot precisely measure specific 

aspects of motor control. We have used commercially available sensors to create a protocol called 

Advanced Sensing for Assessment of Parkinson’s disease (ASAP) to obtain a quantitative and 

reliable measure of motor impairment in early to moderate PD. The ASAP protocol measures grip 

force as an individual tracks a sinusoidal or pseudorandom target force under three conditions of 

increasing cognitive load. Thirty individuals with PD have completed the ASAP protocol. The 

ASAP data for 26 of these individuals were summarized in terms of 36 variables, and modified 

regression techniques were used to predict an individual’s score on the Unified Parkinson Disease 

Rating Scale based on ASAP data. We observed a mean prediction error of approximately 3.5 

UPDRS points, and the predicted score accounted for approximately 76% of the variability of the 

UPDRS. These results demonstrate that the ASAP protocol can measure differences for 

individuals who are clinically different. This indicates that the ASAP protocol may be able to 

measure changes with time in the motor signs of an individual with PD.

Introduction

TREATMENTS such as medication and exercise [1] are being developed in an attempt to 

slow or halt the progress of Parkinson’s disease (PD); such interventions are termed 

neuroprotective. However, the evaluation of potential neuroprotective interventions for PD 

requires sensitive measures to quantify the progress of the disease. A precise measure of 

disease progression shortens the time period needed to determine whether a given 
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therapeutic intervention is slowing or stopping the disease process. Various types of PET and 

SPECT imaging that measure the deterioration of the nigrostriatal dopaminergic system have 

been widely researched as potential diagnostic and progression biomarkers for PD [2], [3], 

[4]. However, while the nigrostriatal damage measured by imaging methods is often 

correlated with functional decline, this correlation predicts less than half the variability 

observed in motor impairment as measured by the motor subscale of the Unified Parkinson 

Disease Rating Scale (UPDRS), the standard clinical assessment for PD [5]. The correlation 

between imaging and function is particularly poor early in the disease process [6]. The 

disconnect between damage in the brain and clinical functional impairment is also 

emphasized by the fact that more than 60% of the neurons in the basal ganglia are destroyed 

before clinical signs of PD are observed [2]. This indicates that the functional effects of 

neuroprotective intervention cannot be measured by current imaging techniques.

The Unified Parkinson Disease Rating Scale (UPDRS) is the scale most often used to assess 

the clinical symptoms of PD, including motor symptoms. This scale contains 42 questions 

and has a maximum score of 147 (a higher score indicates more severe PD) [7]. The UPDRS 

is divided into four sections: mentation, behavior, and mood; activities of daily living 

(ADL); motor examination; and complications of therapy. For individuals with early PD, the 

test–retest reliability of the UPDRS is 0.92 and the reliabilities of the ADL and motor 

subscales are 0.85 and 0.90, respectively [8]. The UPDRS is a useful tool to obtain a global 

picture of an individual’s Parkinsonian symptoms, but it is primarily valuable after an 

individual demonstrates clear signs of PD. Early in the disease process, the utility of the 

UPDRS is limited by a floor effect. In addition, three of the sections of the UPDRS rely on 

patient self-report, which may limit the objectivity of this assessment. The Grooved 

Pegboard Test is an alternative clinical measure that can also be used for individuals with 

and without PD [9]. The Grooved Pegboard Test measures the time required to rotate and 

insert 25 pegs into holes of various orientations. This test is a complex motor task involving 

spatial perception and precision grip, and a correlation with PET imaging has been measured 

for the less affected hand of individuals with PD [10]. However, the results of the test 

provide no indication as to why a given individual performed well or poorly.

The goal of our work is to develop an objective, quantitative clinical assessment to measure 

the progression of early to moderate PD. We have created a protocol that uses sensing 

technology to obtain a quantitative measure of motor impairment in early to moderate PD. 

We incorporate the performance of multiple, simultaneous tasks in order to magnify the 

motor deficits of PD [11], [12], [13]. We use the abbreviation ASAP (Advanced Sensing for 

Assessment of Parkinson’s disease) to collectively refer to our experimental environment 

and the assessment protocol that individuals complete in this environment. Our previous 

work has demonstrated significant differences in performance on the ASAP protocol 

between individuals with PD and age-matched controls [11]; in particular, the performance 

of individuals with PD deteriorated more than that of age-matched controls when the 

subjects performed a simultaneous cognitive task in addition to the required motor task.

The ASAP protocol collects a large amount of data for each individual; to be interpreted 

easily, this data must be combined to generate a single “score” for the assessment. In this 

paper, we describe the use of three modified regression techniques to combine the data 
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collected by the ASAP protocol into a single ASAP score. We show that the ASAP score can 

predict an individual’s UPDRS score, and we examine those parts of the ASAP protocol that 

contribute most to this prediction. While the UPDRS is not a perfect assessment, it is a 

widely used and accepted measure of the signs and symptoms of PD. Comparison with the 

UPDRS establishes that the ASAP protocol can measure different scores for individuals in 

different clinical stages of PD. This indicates that the ASAP protocol is measuring the 

construct it is designed to measure, namely the signs of Parkinson’s disease, and it indicates 

that the ASAP protocol may be able to measure motor changes over time for individuals 

with PD.

Methods

A. Subjects

Thirty individuals with PD participated in this experiment. All subjects remained off 

medication for 12 h before the testing session. All subjects had ratings between I and III on 

the Hoehn-Yahr scale when off medication for 12 h (median H-Y score of 2, mean H-Y 

score of 2.03) [14]. Each subject chose whether he or she preferred to be tested at the 

University of Pittsburgh or at home. The inclusion/exclusion criteria for this experiment are 

presented in Table I. All procedures were approved by the Institutional Review Board of the 

University of Pittsburgh, and all subjects provided informed consent. Of the 30 individuals 

who completed the experiment, four individuals with UPDRS scores greater than 40 were 

excluded from the regression analyses because the data were too sparse in this region to 

allow effective prediction. Thus, 26 individuals were included in the analyses reported here.

B. Experimental Protocol

The experimental environment for this experiment is shown in Fig. 1(a). Two Nano17 6-axis 

force/torque sensors from ATI Industrial Automation were mounted on a custom-made, 

portable platform that was clamped to a table. Each sensor measured six axes of force and 

torque with resolutions of 0.003 N and 0.01 N-mm, respectively. Subjects used the index 

finger and thumb to exert force on the sensors, and the mean of the forces exerted on the two 

sensors was displayed on a computer screen [Fig. 1(b)]. Subjects attempted to modulate the 

exerted force in order to track a target waveform. Two target waveforms were used, a sine 

wave with a period of 7.5 s and pseudorandom waveform. The target wave scrolled 

continuously across the screen so that at each time point, the current target force and the 

current force exerted by the thumb and index finger were displayed in the center of the 

computer screen. In addition, the subject was shown a 12.5 s history of his or her 

performance relative to the target wave. In the case of the sine target, the subject was also 

shown the upcoming 12.5 s of the target wave. No information about the upcoming wave 

was given for the pseudorandom target.

The subject tracked each waveform for three minutes while force and torque data were 

recorded at 100 Hz. During the first minute, the subject tracked the target force with no 

external cognitive load. During the second minute, the subject tracked the target force while 

simultaneously counting down from 100 by 1. During the third minute, the subject tracked 

the target force while simultaneously counting down from 100 by 3. Each subject tracked 
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each target waveform (sine or pseudorandom) with both the right and left hands. Thus, each 

subject completed a total of four trials. Before completing these trials, each subject was 

given 2 min of training with the system using a target waveform that included periods of 

constant and ramping force. During each testing session, the physical therapist conducting 

the session also administered the UPDRS. The UPDRS was administered before the ASAP 

protocol.

C. Data Analysis

To examine whether the data measured during our testing protocol could be used to predict 

an individual’s UPDRS score, we computed three summary variables for each trial and 

cognitive load condition. The first summary variable was the tremor integral; we quantified 

the tremor exhibited by an individual by computing the power spectral density and 

calculating the area under this curve between 2 and 8 Hz. This range includes the 4–5 Hz 

window that typically bounds Parkinsonian tremor [15]. After computing the tremor integral, 

the data was filtered with a low-pass second-order dual-pass Butterworth filter with a cutoff 

frequency of 2 Hz. The filtered data was used to calculate the remaining summary variables. 

The second summary variable was the root-mean-square error (RMSE) between the target 

wave and the subject’s force response. The third summary variable was the lag between the 

target waveform and the subject’s force response, which was calculated as the time interval 

that maximized the cross-covariance between the two waves. The lag was bounded at 2 s for 

the sine target and 5 s for the pseudorandom target. If the covariance was less than 0.35, the 

lag was automatically set to the maximum value. These heuristic values were chosen as the 

maximum lag and minimum covariance at which any relationship was visually apparent 

between the target waveform and the subject response.

Each variable was calculated for each cognitive load condition for each trial. For each 

variable, the value of that variable in minute 1 (no external cognitive load) was subtracted 

from the values for minute 2 (counting down by 1) and minute 3 (counting down by 3). 

Thus, we obtained a total of 36 predictor variables for each individual (2 hands ×2 

waveforms ×3 cognitive load conditions ×3 summary variables). Many of our participants 

had asymmetrical motor symptoms of PD. For this reason, we divided the data collected for 

both hands based on the side of better/worse performance, rather than based on the right/left 

side. The side of better performance was defined as the side with the lower RMSE error 

averaged over the sine and pseudorandom trials.

Because many of our variables were correlated with one another, standard least-squares 

linear regression was a poor choice for examining the relationship between the predictor 

variables and the subject’s UPDRS score. One alternative to traditional linear regression is to 

reduce the dimensionality of the data using principal component analysis. Principal 

component analysis represents a large number of correlated variables using a smaller 

number of uncorrelated variables that account for most of the variance in the original data 

set [16]. We performed principal component analysis on our data set, extracting all 

components corresponding to an eigenvalue greater than 1 (Kaiser’s criterion [17]). We then 

used the extracted components as the predictors in standard linear regression. We estimated 

the prediction error using leave-one-out cross-validation [16]. This means that data from a 

Brewer et al. Page 4

IEEE Trans Neural Syst Rehabil Eng. Author manuscript; available in PMC 2016 June 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



single individual was removed from the data set, and the regression coefficients relating the 

extracted principal components to the UPDRS score were computed using the remaining 

data. These coefficients were then used to estimate the UPDRS score of the removed 

individual, and this estimate was compared to his or her actual UPDRS score. This process 

was repeated for each subject, and we computed the mean absolute prediction error.

As alternatives to standard regression using the principal components, we considered ridge 

regression and lasso regression, two modifications of standard least-squares regression that 

were designed to be used with correlated predictor variables. Like standard regression, each 

of these methods calculates a set of coefficients that corresponds to the linear combination of 

predictor variables that best predicts the outcome variable (the UPDRS score). However, 

ridge and lasso regression differ from standard regression in the details of the optimization 

that determines these coefficients. Ridge and lasso regression were used with all 36 original 

predictor variables, not the extracted principal components. Ridge and lasso regression were 

not used in combination with principal component analysis because the principal 

components are uncorrelated; since ridge and lasso regressions were designed to reduce the 

problem of correlated predictors, the use of either in combination with principal component 

analysis is somewhat redundant.

Ridge regression finds the coefficients β̂ridge that minimize the quantity ||y − β̂ridge X||2 + λ ||

β̂ridge||2 where X is an n × p matrix corresponding to p predictors measured for each of n data 

points and y is a vector of length n containing the known outcome for each point in X [16], 

[18]. X and y are known as the training set for the ridge regression. Because the training data 

is used to determine the coefficients, the success of the regression must be determined based 

on an independent test set. Ridge regression relies upon a parameter λ that is supplied by the 

experimenter. This parameter acts to shrink the regression coefficients by imposing a penalty 

for large coefficients; this shrinkage reduces the amount of variance in the coefficients at the 

cost of an increase in bias. A large value for λ increases the amount of shrinkage but also 

increases the amount of bias in the coefficients [18].

We estimated the prediction error of ridge regression for our data using leave-one-out cross-

validation [16]. Each individual in turn was considered as the test set, with the remaining 25 

individuals serving as the training set. Within the training set, we then chose a value for λ 

using five-fold cross-validation [16]. We considered λ = 0, 0.001, 0.002, …, 1 [18]. The 

training set was partitioned into five subsets. A subset was removed from the training set and 

ridge regression (Matlab “ridge” function) was used with the remaining data to find, for 

every value of λ, the linear combination of predictor variables that best fit the UPDRS 

scores. The resulting coefficients were then used to estimate the UPDRS scores of the 

individuals in the removed subset, and the error in these predictions was computed as a 

function of λ. This process was repeated for each of the five subsets of the training set, and 

the mean absolute prediction error was computed as a function of λ. Because a larger value 

of λ increases the bias of ridge regression [18], we chose the smallest value of λ such that 

the prediction error was within one standard error of the minimum mean prediction error. 

After choosing a value for λ, we used this value and the entire training set to generate the 

coefficients β̂ridge. These coefficients were then used to predict the UPDRS score for the 

individual in the test set. A coefficient with a 95% confidence interval that did not include 0 
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was considered to be significantly different from 0, which indicates that the predictor 

variable corresponding to that coefficient has a meaningful effect on prediction of the 

UPDRS score. The coefficients β̂ridge were computed after standardizing each predictor 

variable to have a mean of 0 and a standard deviation of 1; thus, the values of the ridge 

regression coefficients can be used to assess the contribution of each variable to the 

prediction.

Lasso regression is a regression technique that computes the coefficients β̂lasso minimize the 

quantity ||y − β̂lasso X||2 subject to , where the βj are elements of β̂lasso. Lasso 

regression requires a parameter s that is between 0 and s0, where s0 is the sum of the 

absolute values of the coefficients found using standard linear regression. Lasso regression 

has the effect of setting equal to 0 the coefficients of variables with the least predictive value. 

Lasso regression is similar to ridge regression in that it acts to shrink the regression 

coefficients; the difference between the two methods is in the form of the optimization 

function. We used a set of Matlab functions implementing lasso regression that were written 

by Mark Schmidt.1 We estimated the prediction error of lasso regression for our data using 

leave-one-out cross-validation, as described above. We chose s using five-fold cross-

validation with the training set; the values of s considered were s = 0.05s0, 0.1s0, 0.15s0, …, 

s0. We then used the chosen value of s and the entire training set to calculate β̂lasso. These 

coefficients were used to predict the UPDRS score of the individual not included in the 

training set. A coefficient with a 95% confidence interval that did not include 0 was 

considered to be significantly different from 0. Because the coefficients β̂lasso are for the 

unstandardized data, the magnitudes of the coefficients do not necessarily indicate the 

relative importance of the predictors.

For comparison, we also computed the mean prediction error of standard linear regression 

for the entire data set using leave-one-out cross-validation.

Results

Principal component analysis with the Kaiser criterion resulted in nine extracted components 

that were used as the predictor variables for standard regression. The predicted and actual 

UPDRS scores for every subject in the data set are shown in Fig. 2(a). The predicted 

UPDRS score was significantly correlated with the actual UPDRS score (p = 0.004) with R 
= 0.54. The mean absolute prediction error was 7.06 ± 1.37 UPDRS points (mean ± standard 

error).

We consider next the results for ridge regression. Fig. 3(a) shows an example of the average 

prediction error for the training set as a function of λ. The value of λ selected by five-fold 

cross-validation was 0.001 for this example, though the curve is relatively flat except for a 

sudden increase when λ = 0. The mean value of λ selected by five-fold cross-validation 

was0.0036 ± 0.0022. The mean absolute prediction error of ridge regression for the entire 

data set was 3.58 ± 0.69 UPDRS points [Fig. 2(b)]. The correlation between the predicted 

and actual UPDRS scores was highly significant (p < 0.001) with R = 0.87.

Brewer et al. Page 6

IEEE Trans Neural Syst Rehabil Eng. Author manuscript; available in PMC 2016 June 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Twenty-two variables were found to have coefficients more than two standard deviations 

from zero; details of the variables corresponding to the 10 largest coefficients are found in 

Table II.

For lasso regression, Fig. 3(b) shows an example of the mean prediction error for the 

training set as a function of s. For this example, the chosen value of s was 0.4s0. The mean 

value of s for our data set was 0.31s0 ± 0.020s0. For lasso regression, the mean absolute 

prediction error for the entire data set was 4.57 ± 0.84 UPDRS points. The predicted 

UPDRS score as a function of actual UPDRS score is shown in Fig. 2(c) for the entire data 

set. The correlation between the actual and predicted scores was significant (p < 0.001)) with 

R = 0.78. For lasso regression, six variables had coefficients that were more than two 

standard deviations from zero. These variables and their corresponding coefficients are 

detailed in Table III.

For comparison, Fig. 2(d) shows the UPDRS score predicted by standard linear least-squares 

regression as a function of actual UPDRS score. The mean prediction error was 167.1 ± 85.4 

UPDRS points. The predicted and actual UPDRS scores were not significantly correlated (R 
= 0.23, p = 0.26).

Discussion

The application of high-precision sensors to the assessment of PD can enable investigators to 

quantify minute changes in the motor signs of this disease. Such a quantitative measure, in 

combination with brain imaging techniques, will be extremely valuable for clinical trials of 

potential neuroprotective interventions for PD. In addition, a quantitative measure of motor 

signs would enable physicians to more easily optimize the medication regime for a specific 

patient. Such a quantitative measure is not intended as a replacement for the UPDRS; the 

UPDRS is an inexpensive, well-studied, and easily administered test of the symptoms of PD. 

Our goal is the supplement the UPDRS with a precise, objective assessment to quantify fine 

motor signs of PD.

A variety of systems have been investigated for the assessment of motor symptoms of PD. 

For example, Cleveland Medical Devices, Inc., has developed the Kinesia system, a wireless 

wearable system that measures Parkinsonian tremor [19]; they measured good correlation 

between tremor measurements made by their system and clinician ratings of tremor. 

Montgomery et al. [20], [21] used a manipulandum and an LED display to measure wrist 

flexion as a part of a larger diagnostic test battery, but the specificity and sensitivity of this 

subtest were only 38% and 67.5%, respectively, for a group of individuals with probable PD. 

Other proposed assessment tools utilize target tracking, an established paradigm for 

measuring differences between individuals with and without PD [22], [23]. For example, 

Allen et al. [24] used a joystick and steering wheel designed for video games to measure the 

ability of individuals to track pseudorandom or sinusoidal waveforms; they measured a 

significant between-group difference for individuals with and without PD. Digitizing tablets 

have also been used to quantify performance by individuals with PD while tracing a target 

spiral [25] or other waveforms [23]. Saunders–Pullman et al. [26] showed that several 
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variables derived from spiral analysis are significantly correlated with UPDRS score and 

several subscales of the UPDRS for individuals with early PD.

Though a variety of technologies have been explored for PD assessment, few have been used 

to measure early motor changes in individuals with PD, which is the goal of our research. In 

addition, our work utilizes a simultaneous task paradigm; performance of a simultaneous 

cognitive task magnifies the motor deficits of individuals with PD [11], [12], [13]. We 

believe this will make it easier for us to quantify early deficits and changes in early 

symptoms. In the work presented here, we compare the ASAP protocol to the UPDRS, the 

standard clinical scale for PD. We found that there exists a linear combination of ASAP 

variables that has a strong correlation with the UPDRS score. The UPDRS scores predicted 

by ridge regression account for 76% of the variance in the actual UPDRS scores. This is 

somewhat surprising, given that the UPDRS measures a wide range of symptoms of PD 

while our test focuses only on fine motor control and the change in fine motor control due to 

cognitive load. However, the ASAP protocol does measure how the major motor signs of 

PD, particularly bradykinesia and tremor, affect fine motor control. The effects of these 

signs on fine motor control are likely to be highly correlated with their effects on other 

motor activities examined by the UPDRS, such as gait and speech. In addition, many signs 

and symptoms of the disease will be correlated with one another because they are all related 

to disease progression. This may explain why the ASAP score can explain more than 75% of 

the variance in the UPDRS even though its focus is fine motor control.

These results show that the ASAP protocol does yield different scores for individuals with 

divergent clinical scores and indicates that the ASAP protocol may be useful for measuring 

the progression of an individual’s Parkinsonian symptoms. The fact that the ASAP protocol 

can be highly correlated with the UPDRS also begins to establish the construct validity of 

the ASAP protocol by demonstrating that this assessment does measure the construct it is 

designed to measure, namely the motor signs of Parkinson’s disease. We anticipate that the 

ASAP protocol will have performance superior to the UPDRS in some areas, specifically in 

the quantification of fine motor control in the early stages of the disease process. However, 

we feel that the comparison of the ASAP protocol to established clinical measures is an 

important step in the creation of this novel assessment. Construct validity is an essential step 

in the formation of traditional clinical assessments, and this step should not be neglected for 

assessments utilizing technology.

The application of technology to assessment of disease often results in large quantities of 

correlated data. In this work, the sensors used to quantify deficits in fine motor control 

enabled us to collect a great deal of data, approximately 18000 measurements of force per 

trial. We summarized this data in terms of three variables with each variable calculated for 

each hand, waveform, and cognitive load condition for every subject. However, even after 

this data reduction, we were left with 36 correlated variables; less dramatic data reduction 

could lead to hundreds of variables. Clinicians cannot sort through large numbers of 

variables in order to track patient performance and to compare individuals. To interpret the 

information in a clinically meaningful way, the data must be synthesized into a single 

“score” that summarizes an individual’s performance on the assessment. The correlations 

between variables and the number of variables relative to the number of subjects necessitate 
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the use of modified regression techniques to performance this synthesis. In this work, we 

utilized standard regression after principal component analysis, ridge regression, and lasso 

regression to create a linear combination of variables that predicts an individual’s UPDRS 

score. Principal component analysis has been used in previous applications of technology to 

assessment of PD [27]. Ridge regression has been applied to regression problems with 

correlated predictors for decades [28]; it has been shown to perform well for automatic 

ICD-9 coding of patient records [29] and predictions from gene expression data [30]. Lasso 

regression is a newer technique [16]that has also been used with success with gene 

expression data [30]. These techniques were chosen because they are popular techniques that 

are intuitively similar to standard linear regression and have been applied with success to 

comparable problems.

For our data, ridge regression performed best, with a prediction error of about 3.5 UPDRS 

points. Lasso regression had a prediction error of approximately 4.5 UPDRS points. These 

two methods are conceptually similar, in that both act to shrink the regression coefficients. 

Standard regression after principal component analysis performed worst with a prediction 

error of about 7 UPDRS points. However, all results were far superior to the enormous 

prediction error for standard linear regression; this demonstrates the inadequacy of standard 

regression for data sets with highly correlated predictors and the importance of applying 

appropriate data mining techniques to data-intensive projects such as this one. Such 

approaches will only become more important as we look at additional variables or examine 

each variable over smaller time intervals.

Variables identified as important predictors consisted primarily of tremor and lag variables 

for ridge regression. These correspond to the tremor and bradykinesia symptoms assessed by 

the UPDRS. Lasso regression identified tremor and RMSE variables as most important. 

RMSE is dominated by the degree to which individuals undershoot the target wave; it is 

similar to the micrographia (abnormally small handwriting) observed in individuals with PD. 

Important predictors were primarily variables from the more affected arm for ridge 

regression and the less affected arm for lasso regression. The reason for the differences in 

the variables chosen by ridge and lasso regression is unknown. However, because the 

prediction error of ridge regression was lower, we have greater confidence in the variables 

selected by ridge regression. Most of the important predictors for both methods were based 

on data taken as the user performed a motor and a cognitive task simultaneously. This is an 

interesting contrast to the results of Cordell et al. [27], who found that measures of 

performance in driving (an activity inherently involving simultaneous tasks) showed little 

correlation with standard clinical measures for PD, including the UPDRS. This may be 

because Cordell used principal component analysis (without regression) to combine multiple 

driving variables into a single score. This is an equally valid approach, but we chose to use a 

regression technique because we were most interested here in determining whether it was 

possible to accurately predict UPDRS score using ASAP data.

One limitation of this work is our relatively small sample size (data from 26 individuals used 

in this analysis). This sample size was appropriate given the preliminary nature of this study, 

but limits the ability of our results to generalize to the larger population of individuals with 

early PD. Relative to our sample size, we considered a large number of predictor variables; 
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this may lead to overfitting of the regression function to the training data. This problem is 

mitigated somewhat by using principal component analysis (with Kaiser’s criterion) or lasso 

regression, which reduce the number of predictors used. Similarly, ridge regression assigns 

very small coefficients to many variables, thus reducing their influence. In order to 

investigate the possibility of overfitting, we utilized leave-one-out cross-validation, in which 

the regression function is tested using an independent test set. Based on our results, 

overfitting does not seem to negatively affect our analysis, but this possibility remains a 

major limitation of this work. We plan to address this concern in our future work by 

recruiting larger samples and through the investigation of other methods of feature selection 

to reduce the number of predictor variables considered.

It is important to note that our assessment will not measure all aspects of PD, particularly 

nonmotor manifestations of the disease. We anticipate that our assessment will be used in 

conjunction with imaging and other clinical evaluations. However, this work shows that 

ASAP data can be combined to produce a score that shows a strong correlation with the 

clinical UPDRS score. This begins the process of validating our assessment and shows that 

we can measure different ASAP scores for individuals who are clinically different. This 

indicates that we may be able to track important clinical changes using our test. However, 

before using our assessment to evaluate the success of neuroprotective interventions for PD, 

we must establish that this test is reliable and can measure longitudinal change. To this end, 

the test–retest reliability of the ASAP protocol is currently being measured, and we plan to 

follow individuals over time to examine the progression of PD using the ASAP protocol.
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Fig. 1. 
Experimental setup. The individual used the index finger and thumb to isometrically exert 

force on the force/torque sensors. He or she modulated the force exerted in order to track a 

target wave shown on the computer screen. The target wave scrolled continuously across the 

screen. The current subject force and target force were shown at the center of the screen. A 

12.5 s history of the subject’s performance relative to the target was also displayed. For the 

sine target, the upcoming 12.5 s of the target was also displayed.
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Fig. 2. 
(a) Standard regression after principal component analysis. The UPDRS score predicted by 

standard regression after principal component analysis is plotted as a function of the actual 

UPDRS score for each individual with PD. The line has a slope of 1; if standard regression 

after principal component analysis perfectly predicted actual UPDRS score, all points would 

lay directly on this line. The predicted UPDRS score was significantly correlated with the 

actual UPDRS score (p = 0.004) and the mean absolute prediction error was 7.06 ± 1.37 

UPDRS points (mean ± standard error). (b) Ridge regression. The predicted UPDRS score 

was significantly correlated with the actual UPDRS score (p < 0.001) and the mean absolute 

prediction error was 3.58 ± 0.69 UPDRS points. (c) Lasso regression. The predicted UPDRS 

score was significantly correlated with the actual UPDRS score (p < 0.001) and the 

prediction error was 4.57 ± 0.84 UPDRS points. (d) Standard least -squares regression. The 

predicted UPDRS was not correlated with the actual UPDRS score (p = 0.26), and the 

prediction error was 167.1 ± 85.4 UPDRS points. A. Regression after PCA. B. Ridge 

regression. C. Lasso regression. D. Standard regression.
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Fig. 3. 
(a) Ridge regression. An example of the mean prediction error for the training set as a 

function of λ. The standard error is shown for selected points. This curve was computed 

using five-fold cross-validation over the training set. The ridge parameter λ was selected as 

the smallest λ such that the prediction error was within one standard error of the minimum 

prediction error. (b) Lasso regression. An example of the mean prediction error for the 

training set as a function of s. The standard error is shown for each point. This curve was 

computed using five-fold cross-validation over the training set. The lasso parameter s was 

selected as the largest s such that the prediction error was within one standard error of the 

minimum prediction error. A. Ridge regression. B. Lasso regression.
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Table 1

Inclusion Criteria Exclusion Criteria

1. Previously established diagnosis of Parkinson’s disease (noted by a 
physician) and a reported history of symptoms of slowed movement, 
tremor, or difficulty initiating movement for a minimum of one year and/or 
Hoehn-Yahr scale rating documented by the participant’s physician.

1. Restriction of movement in the upper extremities.

2. 18 years of age or older. 2. Sensory loss in the hand as determined by superficial sensory 
testing.

3. Score of 27 or greater on the Mini Mental State Exam. 3. Loss of vibration in the hand.

4. No history of concurrent CNS disease. 4. Subject unable to stay off medications 12 hours prior to the 
appointment.

5. Inability to come to the testing site accompanied by a friend or 
family member or unwilling to be tested at their home.

6. Presence of dyskinesia.
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Table 2

Twenty-two variables had ridge regression coefficients that were more than 2 standard deviations from zero. 

This table gives the details of the ten variables with the largest coefficients. The mean and standard deviation 

for each coefficient are given.

Variable Trial Affected Arm Time Coefficient

Tremor integral Sine More Min 1 3.30 ± 0.50

Lag Sine More Min 1 3.16 ± 0.62

Tremor integral Sine More Min 2 – Min 1 2.38 ± 0.63

Lag Sine More Min 2 – Min 1 2.81 ± 0.68

Tremor integral Pseudorandom More Min 2 – Min 1 5.00 ± 0.44

RMSE Pseudorandom More Min 2 – Min 1 −2.43 ± 0.24

Lag Sine More Min 3 – Min 1 −2.71 ± 0.48

Lag Pseudorandom More Min 3 – Min 1 2.41 ± 0.46

Lag Pseudorandom Less Min 2 – Min 1 −3.98 ± 0.29

Tremor integral Pseudorandom Less Min 3 – Min 1 −5.51 ± 0.35
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Table 3

This table gives the details of the six variables whose coefficients for lasso regression were more than 2 

standard deviations from zero. The mean and standard deviation for each coefficient are given.

Variable Trial Affected Arm Time Coefficient

Tremor integral Sine More Min 2 – Min 1 2.20 ± 0.85

RMSE Pseudorandom More Min 2 – Min 1 2.48 ± 0.17

RMSE Sine Less Min 1 −0.27 ± 0.12

Tremor integral Sine Less Min 3 – Min 1 −1.77 ± 0.28

RMSE Sine Less Min 3 – Min 1 −0.33 ± 0.16

RMSE Pseudorandom Less Min 3 – Min 1 −1.35 ± 0.22
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