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ABSTRACT The effect of training a neural net-
work secondary structure prediction algorithm with
different types of multiple sequence alignment pro-
files derived from the same sequences, is shown to
provide a range of accuracy from 70.5% to 76.4%. The
best accuracy of 76.4% (standard deviation 8.4%), is
3.1% (Q3) and 4.4% (SOV2) better than the PHD
algorithm run on the same set of 406 sequence
non-redundant proteins that were not used to train
either method. Residues predicted by the new
method with a confidence value of 5 or greater, have
an average Q3 accuracy of 84%, and cover 68% of the
residues. Relative solvent accessibility based on a
two state model, for 25, 5, and 0% accessibility are
predicted at 76.2, 79.8, and 86.6% accuracy respec-
tively. The source of the improvements obtained
from training with different representations of the
same alignment data are described in detail. The
new Jnet prediction method resulting from this
study is available in the Jpred secondary structure
prediction server, and as a stand-alone computer
program from: http://barton.ebi.ac.uk/. Proteins 2000;
40:502–511. © 2000 Wiley-Liss, Inc.
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INTRODUCTION

Methods for predicting protein secondary structure pro-
vide information that is useful both in ab initio structure
prediction and as additional restraints for fold recognition
algorithms.1–5 Secondary structure predictions may also
be used to guide the design of site directed mutagenesis
studies, and to locate potential functionally important
residues.6 However, for these applications, it is essential
that the predictions are accurate, or at the very least, that
reliability information can be obtained for each residue’s
predicted secondary structure state. Many approaches
have been devised for predicting the secondary structure
from the protein sequence alone. Different core algorithms
or heuristics have been applied. Simple linear statis-
tics,7–11 physicochemical properties12 linear discrimina-
tion,13 machine learning,14,15 neural networks,16–22 k-way
nearest neighbors,23–28 evolutionary trees,29,30 simple resi-
due substitution matrices31 and combinations of different
methods with consensus approaches.32–36 The most suc-
cessful methods for protein secondary structure predic-

tions exploit the evolutionary information that is available
from protein families.17,25,23,13,6

In our previous study of algorithms that use multiple
sequences as the basis for prediction, neural network
prediction methods were found to be the most accurate.34

However, a detailed comparison of methods was made
difficult due to each algorithm having different training
sets.34 In the recent CASP (Critical Assessment of Struc-
ture Prediction) experiments37,38 neural network methods
also generated the most accurate predictions. Although
the sample size was small, the best performance in CAS-
PIII was from a new neural network prediction method,
PSIPRED.39 PSIPRED exploited the ability of PSI-
BLAST40 to build alignment profiles that include se-
quences with more remote similarities than can be found
by conventional pairwise sequence searching methods.41

In this article, we systematically investigate the effect of
presenting alternative representations of the aligned se-
quences to a new two-level neural network algorithm
similar to that applied in PHD.17 Since combining differ-
ent prediction methods can improve the average accuracy
of prediction34,28,13 we also investigate the effect on accu-
racy of different consensus methods.

METHODS
Training and Testing Protein Sets

For development of the methods, 513 proteins from a
previous study34 were screened to remove proteins that
were shorter than 30 residues, and those from families
that contained only two sequences and so did not generate
valid PSIBLAST alignment profiles. This left 480 proteins
to use for cross-validated training of the new methods.
Removing the sequence orphans may extend the overall
average accuracy of any prediction method. However, all
the prediction methods studied here were tested on the
same multiple sequence alignments that were not used in
training the methods. As a consequence, unlike in earlier
work34 a direct comparison of performance between meth-
ods was possible.

The 480 training proteins were selected by a stringent
definition of sequence similarity.34 As such, these proteins
may be split to generate training and testing sets for
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prediction, with minimal concern that the test and train-
ing sets will be contaminated with proteins of similar
sequence. In this work, the data were split randomly into
seven sets to perform cross-validation tests.

Blind Test

Given the complexity of the network ensemble used for
the final predictions (Fig. 1), it was essential that the
prediction method was “blind tested” on a new set of
proteins. The CASP3 proteins would have made for a good
blind test. However, at the time this work was completed,
the CASP3 experiment was six months old and the align-
ments would have contained new sequences. In addition,
the CASP3 set only contained 17 structures and so has
limited statistical value.

The 480 proteins used to test and train the new predic-
tion method were derived from the 1996 version of the
PDB databank. Since then, more than 3,378 new protein
structures have been released. This new set of structures
provides the base for a separate non-redundant test set.
Chains from the 3,378 proteins were compared pairwise by
AMPS42 and the set screened such that no pair of se-
quences shared more than 5SD significance score. The new
non-redundant sequences of known structure were then
compared to the 480 proteins used to train the prediction

method. The same 5SD score cutoff was applied. This
resulted in a set of 406 protein sequences with which to
blind test the prediction methods.

Alignments

For each of the 480 training-set sequences, a multiple
sequence alignment was constructed. For comparison,
both BLAST and PSIBLAST were used to search the
SWALL43 non-redundant protein sequence database, with
a P-value cutoff of 0.0001. For PSIBLAST, three iterations
were applied to search the sequence database. For each of
the sequences found, the method described previously34

was applied to generate multiple sequence alignments. To
compare the effect of different multiple sequence align-
ment methods, AMPS42 and CLUSTALW44 were both
used. CLUSTALW44 was executed with default parame-
ters while for AMPS,42 a BLOSUM62 matrix, and gap
penalty of 10 were applied.

The alignments were represented as profiles for input to
the neural network and the profiles were scored in three
ways:

1. As frequency counts for each amino acid down a column
in the alignment, expressed as a percentage of the total
for a given column. This is the same approach as used
by the PHD algorithm.17

2. Each residue in an alignment column was scored by its
corresponding BLOSUM62 matrix score. The scores
were then averaged based on the number of sequences
in that column as in (1). This stopped each residue
having an equal weight, instead using a weight based
on that residue’s mutation score.

3. As a position specific profile, generated by the HM-
MER245 package. The multiple sequence alignment is
represented as a profile HMM,46,47 with position-
specific scores to represent amino acids in the align-
ment.

Figure 2 summarizes an attempt to improve the align-
ments obtained from PSI-BLAST by post-processing the
result of the PSIBLAST search. As shown in Figure 2 full
length sequences were taken from the PSIBLAST search,
the alignment was then constructed by making successive
global alignments to the profile by adding sequences in the
order determined by the P-value scores from the initial
PSIBLAST sequence search. At each iteration the ends of
the alignment were trimmed, to force the global alignment
method to represent the query sequence.

In addition to the method summarized in Figure 2 each
of the PSIBLAST alignments were also represented by the
profiles in the PSIBLAST report file. Two profiles were
extracted, the simple frequency counts (denoted in the
PSIBLAST report as position characters, multiplied by 10
and rounded), and that denoted as the position-based
scoring matrix (PSSM).

Filtered Sequence Database

PSIBLAST is an iterative searching method. During
each iteration, it is possible for the searching profile to

Fig. 1. Outline of the final neural network method incorporated into the
Jnet method.
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become polluted with sequences that although show signifi-
cant similarity to the query, ought not be included. This
can be caused by low complexity sequence matching the
query, or by matching sequences of biased composition. We
applied SEG,48 to filter the search database, and so
“masked out” regions of low complexity sequence. Coiled
coil regions and transmembrane helices (TM’s) were also
masked out from the database. Masking these regions was
performed using HELIXFILT. HELIXFILT looks for hep-
tad repeats for coils and also uses the membrane poten-
tials from MEMSTAT49 to mask coils and transmembrane
spans. HELIXFILT was kindly made available by Dr. D.
Jones, and is also used as part of the PSIPRED39 method.

The Neural Network

In this work, the SNNS neural network package50 from
Stuttgart University was applied. SNNS allows for rapid
prototyping of neural networks, while also allowing incor-
poration of the resulting networks into an ANSI C function
for use in stand-alone code.

The network ensemble consisted of two artificial neural
networks. The first was a network with a sliding window of
17 residues over each amino acid in the alignment, plus
the addition of a conservation number6 as the input nodes.
The network then comprised a further nine hidden nodes
and three output nodes. The output from this network was
windowed into 19 residues, plus a conservation number,6

which formed the input to the second network. This second
network also had nine hidden nodes and three output
nodes. Two hundred and fifty (250) epochs of Scaled
Conjugate Gradient (SCC) training51 were applied, from
an initial random weighting of node values of between
0.005 and 20.005. No optimization was carried out for the
number of training cycles.

For the PSIBLAST profiles and the HMMER profiles,
only the windowed values for the profiles were applied, no
conservation number was added.

Consensus Combination of Prediction Methods

The process of assessing the prediction methods resulted
in different neural networks that were trained with differ-
ent alignment data. Each of the networks were combined
and the average taken for each predicted state, be it helix
strand or coil.

The outputs from each of the networks trained previ-
ously, were also taken and positions examined where the
predicted state was identical in all methods. For positions
where there was a “jury agreement” (identical predictions
by all methods), the average Q3 accuracy was 82%. Resi-
dues where the predictions did not all agree were classified
as “no jury” positions (see Fig. 3). Positions where there
was a full agreement in the predicted state between the
different neural network methods were taken as the final
prediction. Positions where there was “no jury” were used
to train a separate neural network. The final prediction
was obtained by replacing the original “no jury” positions
with the predictions from this network.

Solvent Accessibility Prediction

The alignments were also used to predict 2-state (ex-
posed/buried) relative solvent accessible residues. Predic-
tion accuracy was based on DSSP solvent accessibility
definitions.52 Relative accessibility was calculated by divid-
ing the DSSP accessibility by the accessibility for a Gly-X-
Gly tripeptide given by the method of Rose and Dworkin.53

Three categories of relative accessibility were chosen for
prediction: 25%, 5%, and 0% accessible. Neural networks
were trained with profiles from the HMMER2 profiles and

Fig. 2. Outline of the progressive alignment method to align distantly related proteins from a profile based
search.
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the PSSM (Position Specific Scoring Matrix) matrices from
the PSIBLAST reports. The HMMER and PSIBLAST
trained networks were also combined to give an average
relative accessibility prediction.

Confidence

The highest scoring state from the outputs from the
neural network was taken, and the score of the next
highest predicted state subtracted:

Confidence 5 integer~10 3 ~outmax 2 outnext!! (1)

This is similar to the method exploited by PHD.17

Assessment of Secondary Structure Prediction
Accuracy

The accuracy of prediction was assessed by comparison
to DSSP.52 The same 8- to 3-state reduction scheme was
applied throughout the analysis to ensure that all relative
changes in accuracy were consistent. This is important
since application of different 8- to 3-state reduction meth-
ods can lead to apparent differences in accuracy of over 3%
for the same predictions.34 E and B were taken as strand,
H as helix and all other states were taken as coil. This
removes the 310-helix state from the definition, but given
that the 310-helix state represents a weak 1 kcal/mol
hydrogen bond, this seems reasonable, as it does not

normally represent core secondary structure. Single resi-
due b-bridges (B) were included, as they do form part of
core structures, however these structures are typically
difficult to predict accurately. Removing single residue
b-bridges improves the apparent average Q3 prediction
accuracy by at least 1% (data not shown).

RESULTS AND DISCUSSION

Two types of testing were performed. Seven (7) fold
cross-validated predictions on 480 proteins are discussed
first, then the results of “blind” tests on 406 new proteins
not used in the development of the methods.

Effect of Searching Method on Accuracy

Table I shows the improvement obtained with a single
two layer network and PSI-BLAST alignments from search-
ing the filtered database, as opposed to that of BLAST
against an un-filtered database. The improvement is of the
order of 1%, for the 7-fold cross-validated experiment. This
effect is not reflected in the “older” methods [DSC,13

PREDATOR,25 NNSSP,23 PHD17] (data not shown), as
these methods were not trained with alignments extended
by the sequences that are found using PSIBLAST.

Effect of Alignment Method on Accuracy

The effect of two different alignment methods, CLUST-
ALW and AMPS42 is summarised in Table II. AMPS may

Fig. 3. Positions where there is
“no jury” (predictions do not all agree)
are marked with a (*). These posi-
tions are re-predicted with a further
neural network (the jury network (see
Fig. 1). This network has only been
trained with positions where there is
“no jury.” Also shown is the relative
solvent accessibility prediction at 25,
5, and 0% relative accessibility. “B”
corresponds to buried residues, with
“2” corresponding to exposed resi-
dues. Protein shown is Ribonucle-
ase A (PDB57 code, 7rse58). DSSP52

relative solvent accessibility and sec-
ondary structure definitions are
shown. Cross-validated prediction
accuracy is 72.5% for this protein.
(For reference PHD17 predicts this
protein at 68.5% accuracy).
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be run in several different modes but in this study we used
normalized alignment scores to generate the tree order,
and the corresponding alignment. For the same sequences,
predictions from alignments for CLUSTALW were 1.1%
more accurate for the same cross-validated test than those
for AMPS. This test shows CLUSTALW to be more favor-
able for generating multiple sequence alignments for
secondary structure prediction. However, AMPS align-
ments are improved42 when randomization is performed to
generate SD scores to define the sequence similarities,
which can then be used to order the tree for the subsequent
alignment. As this process is particularly computationally
intensive it was not investigated here.

Table II also summarizes the effect of two different
methods for scoring the alignment profiles; simple fre-
quency counting of residues in the alignment, and scoring
positions by their BLOSUM62 matrix scores. The fre-
quency matrix was 1% more accurate than the matrix
scored by BLOSUM62 mutation scores regardless of the
alignment method.

Effect of Removing Gaps From Query Sequence

All alignments discussed so far had gaps in the query
sequence and residues in the corresponding column below
each gap removed. Although this appears severe, it was
standard practice for earlier prediction methods such as

NNSSP.23 As shown in Table II, including gaps in the
query sequence during training and testing reduced the
accuracy of prediction by 1.1%. This result was calculated
based upon the ungapped sequence length, this way the
ungapped and gapped alignments may be compared di-
rectly.

This behavior may be explained, because regions where
there are gaps in the query sequence, are most likely to be
in the coil state, and as such have no effect on the
prediction. The gapped alignments have another signifi-
cant draw back in that the profiles are considerably larger
than the profiles with the gaps removed, and as such take
much longer to train.

Effect of Training on PSIBLAST Profiles

The same neural network architecture was trained with
PSIBLAST profiles. PSIBLAST generates two types of
profile, a simple frequency, and a position-based scoring
matrix. Both were examined, and the results are shown in
Table IV.

The predictions based on the PSIBLAST alignments
were 0.5% more accurate on average, than the predictions
from the CLUSTALW alignment method (see Table III).
When both predictions were combined in an arithmetic
sum, the average accuracy rose to 73.4%, Table III. How-
ever, when the position specific scoring matrix of PSI-
BLAST was applied, the accuracy improved from 72.1%
to 75.2%.

The HMMER245 package was then used to re-score the
CLUSTALW alignments. This raised the accuracy to 74.4%
over 71.6%. The scoring schemes used in both PSIBLAST
PSSM profile and the HMMER2 profiles are more sensi-
tive than using simple frequency counts, as both apply

TABLE III. All Values Are for 7-Fold Cross-validation
on 480 Proteins

Network Q3 accuracy

Frequency profile alignments from CLUSTALW 71.6%
BLOSUM62 scored profile alignments from

CLUSTALW
70.8%

PSIBLAST alignment profiles 72.1%
Arithmetic sum based on the above three networks 73.4%

TABLE IV. Improving the Jnet Method Through the Use
of Different Scoring Methods and Alignment Approaches†

Matrix scoring and alignment method Q3 accuracy (%)

BLOSUM62 profile CLUSTALW 70.8
Frequency profile CLUSTALW 71.6
Frequency profile PSIBLAST 72.1
HMMER Profile CLUSTALW 74.4
HMMER Profile Iterative Alignment (see

Figure 2)
74.3

PSSM PSIBLAST 75.2
Numerical average of HMMER and PSSM

PSIBLAST
76.5

Jury/No Jury network (see Figs. 3 and 1) 76.9
†These figures were generated from cross-validated predictions of the
480 non-redundant test set proteins.

TABLE I. Comparison of BLAST Alignments Against
Those Generated From a PSIBLAST of the SWALL43

Database, Compared to Those for a Database Filtered to
Remove Coiled-coils, Low Complexity Segments and

Transmembrane Helices (See Text)†

Sequence searching method
Q3

accuracy

CLUSTALW alignments for BLAST against SWALL
un-filtered database

70.5%

CLUSTALW alignments for PSIBLAST against
a filtered database

71.6%

†Figures are for Q3 accuracies based on a 7-fold cross-validated test on
480 proteins for the neural network prediction method.

TABLE II. Comparison of Profiles for Training
Neural Networks†

Method used to generate alignment profile
Q3

accuracy

Simple frequency profiles, alignments from
CLUSTALW

71.6%

Simple frequency profiles, alignments from AMPS 69.5%
Blosum62 profiles, alignments from CLUSTALW 70.6%
Alignments with gaps (frequency profiles scored from

CLUSTALW)
70.5%

†Based on 480 proteins, cross-validated. AMPS42 was run with trees
generated using the normalized alignment score from the pairwise
sequence comparisons. All alignments have gaps in the primary
sequence and any data directly below that gap in the alignment
removed. For primary sequence and any data directly below that gap
in the alignment removed. For the “Alignments with gaps” run, the
alignments were left unmodified. This run was no more accurate, and
took twice as long to train the networks for prediction.
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scoring methods that use prior knowledge of amino acid
relationships, derived from the BLOSUM62 matrix. In
addition, the sequences are weighted by the amount of
information they carry.40,45,47 This has the effect of remov-
ing redundancy in the alignments which has previously
been shown to improve prediction accuracy.34 Position
specific scoring schemes have also previously been shown
to be more successful in sequence searching.42

The alignments from PSIBLAST gave more accurate
predictions (75.2%) than those derived by the CLUSTALW
alignments, re-scored as HMM profiles (74.4%). The align-
ment approach described in the Methods section (Fig. 2),
was applied to retain the divergent sequences found by
PSIBLAST. The predictions from these “progressive” align-
ments were compared to the original predictions derived
from the CLUSTALW alignments. No significant improve-
ment was found. The alignment method applied internally
by PSIBLAST could not be improved upon in this work, as
assessed by secondary structure prediction accuracy.

Effect of Re-training “No Jury” Positions

Table IV shows that keeping “jury positions” (positions
where all neural network methods agree on a given
predicted state) as the final prediction, and using a third
neural network trained only on “no jury” positions (no
agreement between all methods) improves the cross-
validated accuracy by 0.4% to 76.9%.

Prediction of Solvent Accessibility

Relative solvent accessibility predictions for the differ-
ent profiles are shown in Table VI. The results are for
7-fold cross validation experiments. Again the jury predic-
tions based on an arithmetic sum between the PSIBLAST
and HMMER profiles were more accurate (76.2%) than
any single method. For reference, PHDacc achieved 75%
average cross-validated accuracy for 2-states based on a
25% relative accessibility model.54

Blind Test of Prediction Methods

The results of a blind test of the new Jnet and other
prediction methods that apply multiple sequence align-
ments for prediction are shown in Table V, and Figure 4.
Predictions were made for 406 proteins not used to develop
the methods (see Methods). On this set of 406 proteins,
Jnet gave an average accuracy of 76.4%. This is 3.1%
better than the best previous method (PHD, 73.3%) and

1.8% better than the Jpred34 consensus method. These
figures were generated by application of the original PHD
method, as described in Rost and Sander.17 As such the
real accuracy of the modern day PHD method may well be
higher.

Table VII summarizes a closer investigation of the
differences between PHD and the Jnet method. From
these figures is is clear that while the Jnet method is more

TABLE V. Comparison of Prediction Methods†

Prediction method Q3 accuracy (%)

Zpred6 62.0
DSC13 70.6
PREDATOR25 70.7
NNSSP23 72.3
PHD17 73.3
Jpred34 74.6
Jnet (this work) 76.4

†Tested on the 406 new protein structures not used in the development
of the Jnet method (see Methods).

TABLE VI. Average Prediction Accuracies From 7-Fold
Cross-Validation Experiments (Based on the 480 Protein

Set) for 2-State Solvent Accessibility†

Rel. Acc. (%) PSIBLAST (%) HMMER2 (%)
Combined

[change] (%)

25% 75.0 74.2 76.2 [11.2]
5% 79.0 78.8 79.8 [10.8]
0% 86.6 86.3 86.5 [20.1]

†“Rel. Acc.” corresponds to three thresholds of solvent accessibility,
25%, 5%, and 0% accessibility. For the combined method, a simple
arithmetic sum between the PSIBLAST and HMMER2 network
outputs was applied.

TABLE VII. Improvement Assessment Between Jnet (This
Work) and PHD,17 Broken Down into Helix, Strand, Coil,
and SOV Accuracies. Predictions are for the 406 Proteins

Not Used to Develop the Jnet Method

Measurement of accuracy
Jnet
(%)

PHD
(%)

Improvement
(%)

Q3 76.4 73.3 13.1
a-Helix accuracy 78.4 76.8 11.6
b-Strand accuracy 63.9 63.8 10.1
Coil accuracy 80.6 76.5 14.1
Sov256 74.2 69.8 14.4
SOV (d 5 0%)54 61.6 57.8 13.8
SOV (d 5 50%)54 82.9 79.6 13.3

Fig. 4. Boxplots59 of per protein average secondary structure predic-
tion accuracy (Q3) for each of the secondary structure prediction methods.
Predictions are for the 406 blind test set. Boxplots show the variability of
the median (white line), the dark box shows the limits of the middle half of
the data. The upper and lower brackets mark the upper and lower
quartiles. In this case the extreme data (outliers) have been removed for
clarity.
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accurate than PHD, the b-strand state is not predicted any
more accurately by Jnet than PHD (0.1%). Most of the
improvement comes from the clearer delineation of the
helix and coil states, (1.6 and 4.1% respectively).

A direct comparison to PSIPRED39 was not possible
since PSIPRED was trained with over 1,300 protein struc-
tures, including test set proteins in the current study. For
this reason, any PSIPRED predictions for the 406 proteins
applied in this test would be biased. A true evaluation of
PSIPRED and JNet will have to await protein structures
not used to train either method.

Reliability Scoring

Figure 5 illustrates the results of reliability scoring
scheme applied in the Jnet method. Those residues pre-
dicted with a confidence of 5 or greater had an average Q3

accuracy of 84%, and covered 68% of the total residues.
Figures 6 and 7 show a comparison of the reliability scores
for Jnet and the PHD prediction algorithm. The greatest
benefits in accuracy for the new Jnet method arise for
those positions assigned to reliability scores below 5.

CONCLUSIONS

In this paper, the effect of training a two-level neural
network algorithm for protein secondary structure predic-

tion with the same sequences presented as different
alignment profiles has been investigated. The general
conclusions are:

1. By appropriate selection of database searching
method, alignment algorithm and scoring scheme,

Fig. 7. Jnet residue coverage against reliability compared to PHD.
The dashed line corresponds to PHD reliability. Average percentage of
amino acids covered are compared to the corresponding residues with a
confidence of greater or equal to the values shown on the x axis.

Fig. 5. Average secondary structure prediction accuracy (Q3), and
percentage of residues against cumulative reliability score from the Jnet
method. For example, for residues with reliability scores of greater or
equal to 9, the average accuracy is 92.9%, and the percentage of
residues with this score is 20.8%. Predictions are for the 406 blind test set
proteins.

Fig. 6. Jnet reliabilities compared to PHD reliabilities. The dashed line
corresponds to PHD reliability. Average accuracies are compared to the
corresponding residues with a confidence of greater or equal to the values
shown on the x axis.
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the prediction accuracy for the same sequences using
the same basic algorithm is improved by 7% points
from 69.5% to 76.4%. Although the value of 76.4%
accuracy is respectable, the final value of prediciton
accuracy for this and other methods may only be
obtained by future validation with further blind
predictions.

2. Solvent accessibility prediction accuracy has been im-
proved by 1.2% to 76.2% for a two state model, and also
includes specific prediction of the 25, 5, and 0% relative
accessibility states.

3. Confidence in prediction has been improved. Residues
predicted with a confidence of 5 and greater, will be on
average 84% accurate and cover 68% of residues. The
average prediction accuracy per protein is 76.4% with a
standard deviation of 8.4%.

4. In the years from 1993 to 1999, prediction accuracy has
improved from 70.6%17 to over 76% (this work). Most of
this improvement has come from more sophisticated
use of sequence alignments, and improvements in data-
base size rather than enhancements to the neural
network algorithm.

5. The most dramatic improvements in prediction accu-
racy have come from the use of PSIBLAST and the
application of position specific scoring profiles in prefer-
ence to profiles derived from global multiple alignment
methods such as CLUSTALW and AMPS.

Given the expansion of structural genomics projects,
which aim to solve protein structures much more rapidly,
the exploitation of these data will only extend the ability to
predict protein structure ever more accurately.

Fig. 8. Predictions from the improved Jpred2 server. Jpred2 predic-
tion showing coiled coil predictions along side the improved Jnet predic-
tions for the Manose binding lectin protein (PDB code 1afa). The multiple
sequence alignment was generated from sequences found by PSIBLAST.

Transmembrane prediction by PHDhtm is also included. Also shown are
relative solvent accessibility predictions by both PHD and Jnet, and coiled
coil predictions by COILS60 and MultiCoil.61
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AVAILABILITY

ANSI C source code for the neural network prediction
method (Jnet) designed as part of this work is available
from http://barton.ebi.ac.uk/ and as down-loadable bina-
ries for all the major UNIX platforms. The Jnet method
has been incorporated into an improved version of the
Jpred55 consensus secondary structure prediction server
as shown in Figure 8. The improved consensus prediction
server is also accessible from http://barton.ebi.ac.uk/.
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