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ABSTRACT

This work demonstrates the use of Sobol’s sensitivity analysis framework to examine multivariate input–

output relationships in dynamical systems. The methodology allows simultaneous exploration of the effect of

changes in multiple inputs, and accommodates nonlinear interaction effects among parameters in a compu-

tationally affordable way. The concept is illustrated via computation of the sensitivities of atmospheric

general circulation model (AGCM)-simulated tropical cyclones to changes in model initial conditions.

Specifically, Sobol’s variance-based sensitivity analysis is used to examine the response of cyclone intensity,

cloud radiative forcing, cloud content, and precipitation rate to changes in initial conditions in an idealized

AGCM-simulated tropical cyclone (TC). Control factors of interest include the following: initial vortex size

and intensity, environmental sea surface temperature, vertical lapse rate, and midlevel relative humidity. The

sensitivity analysis demonstrates systematic increases in TC intensity with increasing sea surface temperature

and atmospheric temperature lapse rates, consistent with many previous studies. However, there are non-

linear interactions among control factors that affect the response of the precipitation rate, cloud content, and

radiative forcing. In addition, sensitivities to control factors differ significantly when the model is run at

different resolution, and coarse-resolution simulations are unable to produce a realistic TC. The results

demonstrate the effectiveness of a quantitative sensitivity analysis framework for the exploration of dynamic

system responses to perturbations, and have implications for the generation of ensembles.

1. Introduction

Understanding the response of weather extremes

(e.g., tropical cyclone, extratropical cyclone, tornado,

flood, etc.) to changes in multiple factors (e.g., atmo-

spheric instability, sea surface temperature, atmospheric

moisture, etc.) is one of the most challenging problems

in the analysis of Earth’s weather and climate. Analysis

of one factor at a time provides, at best, limited infor-

mation on system sensitivity, as interactions among

multiple factors may mitigate or amplify the response.

Statistical quantitative sensitivity analysis algorithms

have become powerful tools for the multivariate analy-

sis of numerical models in uncertainty quantification

(Hegstad and Henning 2001; O’Hagan et al. 1999;
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Murphy et al. 2004; Posselt and Vukicevic 2010; Posselt

2016; Zarzycki and Ullrich 2017), sensitivity analysis

(Sobol 2005; Tushaus et al. 2015; Posselt 2016), data

assimilation (Frolov et al. 2009), parameter estimation

(Strounine et al. 2010; Posselt and Bishop 2012; Posselt

et al. 2014), model calibration (Kennedy and O’Hagan

2001; Higdon et al. 2004; Habib et al. 2007; Sanso and

Forest 2009), and prediction (Poole and Raftery 2000).

In addition, the adjoint of a numerical model (Errico

1997), which computes linear sensitivity of the output

of a numerical model to changes in one or more inputs,

can be effectively used to assess sensitivity (e.g., Daescu

and Todling 2010; Doyle et al. 2012, 2014; Reynolds

et al. 2016). Ensemble forecasting is now the norm at

most operational weather and climate prediction cen-

ters, and several studies have demonstrated the effec-

tiveness of ensembles for sensitivity analysis as well

(e.g., Ancell and Hakim 2007; Tong and Xue 2008; Torn

and Hakim 2008; Boyle et al. 2015; McLay and Liu 2014;

Hacker and Lei 2015; Hill et al. 2016).

Many modern sensitivity analysis studies combine

random or quasi-random sampling of model inputs

with a statistical approximation of the full model re-

sponse (e.g., statistical emulators, response surface

methodologies, or surrogate models). Emulation of the

model is often necessary in cases for which 1) the

number of variable parameters is large, 2) the model is

computationally expensive, or both. With input settings

selected using Monte Carlo random sampling or Latin

hypercube sampling (LHS;Mckay et al. 2000), statistical

emulators can mimic the input–output relationships

with a highly reduced computational burden, and thus

enable deep exploration of model sensitivity (�Zivković

et al. 1995; Helton and Davis 2003; Zhao et al. 2013;

Iooss and Lema ı̂tre 2015). Applications of these

methods have spanned a wide range of Earth sys-

tem analyses. For example, van der Merwe et al. (2007)

used a neural network surrogate model to successfully

emulate behaviors of the Columbia River and near-

ocean regions. Habib et al. (2007) used a Gaussian

process-based emulator for cosmic background radia-

tion calibration. Sanso and Forest (2009) used statistical

emulation to approximate climate models and calibrate

climate system properties. Logemann et al. (2004) used

simple regression models to represent the northeast

Atlantic circulation. Lee et al. (2011) used a Gaussian

process methodology to emulate the behavior of a

complex global aerosol model, and to quantify sensi-

tivity to uncertain parameters. Other studies that have

used statistical emulators to approximate the behavior

of complex numerical models include, but are not lim-

ited to the following: Bowman et al. (1993), Higdon et al.

(2004), Williams et al. (2006), Sanso et al. (2008),

Tokmakian et al. (2012), and Lee et al. (2013). The

choice of emulator depends on the complexity of the

model parameter – response relationship. In cases for

which responses are known to be approximately lin-

ear, a regression model may be sufficient. In cases with

nonlinear relationships, more complex emulators are

required.

The application of statistical emulators and quantita-

tive sensitivity analysis methods to complex computa-

tional models has the following advantages: 1) the

experiment design allows identification of the main ef-

fects of individual parameters, as well as the interaction

effects among multiple parameters; 2) the statistical

emulator allows a far more complete analysis of the

model response than is possible with the numerical

model itself, as emulators can produce thousands of

surrogate simulations in a short period of time; and 3)

the sensitivity analysis framework produces quantitative

information on the relative importance of individual

parameters and the interactions among them in a com-

putationally affordable manner.

While statistical sensitivity analysis techniques have

been applied to a wide range of topics, they have not yet

been widely used to explore the behavior of simulated

dynamic weather systems. Atmospheric dynamical sys-

tems, such as tropical cyclones, extratropical cyclones,

mesoscale convective systems, etc., are the primary

causes of weather-related economic damage and loss of

life (Ranson et al. 2014). The growth and decay of these

systems are strongly influenced by atmospheric dynamic

and thermodynamic conditions, such as preexisting

atmospheric disturbances, sea surface temperature, land

surface vegetation, temperature, and soil moisture,

atmospheric stability, relative humidity, etc. The sensi-

tivity of dynamic systems to changes in their context,

along with the interaction among scales and processes,

has long been of interest.

While regression and other statistical techniques have

been used to infer the sensitivity of tropical cyclones to

changes in their environment (e.g., Saunders and Lea

2008; Villarini et al. 2010; Robbins et al. 2011), numer-

ical models with varying levels of complexity are the

primary tools used to understand the influence of envi-

ronmental factors on weather systems. Sensitivity anal-

ysis is essentially a process of characterizing two types

of relationships: 1) model input–output relationships

(controls on model responses), and 2) model output–

output relationships (correlations among responses). In

this study, we use a response surface methodology to

illustrate how proven statistical techniques may be used

to examine dynamical systems. Specifically, we examine

the sensitivity of tropical cyclone dynamics, precipita-

tion, and cloud radiative effects to changes in cyclone
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initial conditions and environment, using an idealized

tropical storm in an atmospheric general circulation

model (AGCM). This idealized tropical cyclone (TC)

test case was designed specifically for the purpose of

model evaluation (Reed and Jablonowski 2011a), and

produces a single TC on an aquaplanet with constant sea

surface temperature. It has been used to study uncer-

tainty in AGCM-simulated TCs (Reed and Jablonowski

2011c), and the impact of modifications to the model

physical parameterizations (Reed and Jablonowski

2011b; He and Posselt 2015). The idealized framework

produces TC evolution consistent with TC represen-

tation in a full AGCM, but with highly reduced com-

putational cost, freely tunable initial conditions, and

easy-to-extract TC features. In addition, simulation

of a single TC facilitates a robust evaluation of the

perturbation–response relationship. The TC is initial-

ized in gradient wind balance in a horizontally homo-

geneous environment, and the initial storm size and

intensity, along with the complete description of the

environment, can be specified using only five parame-

ters. The relatively small dimensionality of the input

parameter space allows us to conduct a thorough test of

the efficacy of a sensitivity analysis framework for the

analysis of weather systems. The well-known sensitivity

of TCs to changes in their environment (e.g., Gray 1968;

McCaul 1991; Emanuel et al. 2004; Emanuel 2007; Zeng

et al. 2007; Davis and Ahijevych 2012; Manganello et al.

2012; Murakami et al. 2012; Camargo 2013; Emanuel

2013; Knutson et al. 2013) provides a rich context

against which we may evaluate the performance of the

sensitivity analysis algorithm.

In our experiments, perturbations to tropical cyclone

initial conditions are created using an LHS method

(Mckay et al. 2000; Iman and Conover 1980; Loh 1996;

Isukapalli and Georgopoulos 2001; Hossain et al. 2006),

then an ensemble of simulations are generated using

these perturbed initial conditions. The input–output

responses in the ensemble are used to train a Gaussian

process emulator (Williams et al. 2006), which produces

an approximation of the multivariate model response.

The emulator is then used to examine the univariate

and multivariate (‘‘main’’ and ‘‘interaction’’) effects of

changes in TC initial conditions on TC characteristics

using Sobol’s variance-based sensitivity analysis meth-

odology. The goals of this study are twofold: first, we

evaluate the effectiveness of a sensitivity analysis tech-

nique for the study of dynamical systems, and second, we

explore the implications of the results for the generation

of ensembles of TC simulations. We note that, while the

idealized TC simulations produced by the model are

considered to be realistic, the idealized nature of our

model framework limits the applicability of our results

to real-world systems. That said, the model physical

parameterizations and dynamical core are consistent

with those used in the NCAR CAMmodel, and as such,

our results are applicable to the interpretation of TC

sensitivity in an AGCM. We also note that, while ver-

tical wind shear is known to be an important factor in

tropical cyclone development (Frank and Ritchie 1999,

2001; He et al. 2015), we do not include it as a pertur-

bation factor because it is coupled to the temperature

lapse rate (through thermal wind balance) and as such

cannot be freely modified.

The remainder of this paper is organized as follows.

Section 2 introduces a schematic summary of the pro-

posed idea. Section 3 describes the hurricane simulation

using CAM, the algorithm used to extract physical fields

from each tropical cyclone, the LHS approach, the input

parameters and their ranges, and the Gaussian process

emulator. Section 4 diagnoses the interrelationship

among the simulated TC characteristics, and analyzes

the sensitivities of the final simulated characteristics of

TCs to initial conditions. Section 5 compares the sensi-

tivity of simulated TC intensity to the five initial factors

in three typically used model resolutions. Section 6

provides a discussion of the results and their limitations.

Section 7 summarizes the main conclusions.

2. Schematic summary

Essentially, a multivariate sensitivity analysis frame-

work can be considered to be a design for conducting

numerical experiments, so as to retrieve detailed in-

formation on a system of interest. For a given dynamical

system, the user first selects a numerical model that can

be used to realistically simulate it. Then the user chooses

the model input factors of interest and the key charac-

teristics of the dynamical system as model output. Once

the inputs and outputs are defined, the user then spec-

ifies the range of input factors. Figure 1 provides a

schematic summary of the methodology. The first step is

to apply the Latin hypercube sampling method to model

input to obtain N samples. In our previous experiments,

we found thatN should be set larger than 50m, wherem

is the number of input control variables. Setting N$ 50

provides sufficient number of samples to construct a

robust emulator. The numerical model is then run N

times with theN sets ofmodel input variables, producing

N model output vectors.

Let x5 (x1, x2, . . . , xm) denote the m model inputs.

These could be sea surface temperature, relative hu-

midity, wind speed, translational speed, atmospheric

stability, etc.; any output factor of interest in the tar-

geted dynamical system. Then, let y5 (y1, y2, . . . , yk)

denote the length k vector of characteristics of the
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dynamical system as model output. These could be

storm size and/or intensity, precipitation, location, and

so on. To illustrate this idea, we imagine a case with

multiple input parameters and one model output vari-

able (k 5 1). Recall that, implementing these steps in

practice requires us to first identify the range of x, then

use LHS to generate N samples of x, which means x

becomes a matrix
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If we set the model input to the vector (x11, x21,

x31, . . . , xm1), and run the model, we will obtain the

corresponding model output y1. Each row of matrix X

comprises a set of inputs to the model, and hence the N

rows of matrix X correspond to N runs of the numerical

model, yielding a model output vector Y, which is an

N3 1 column vector
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The next step is to construct a statistical emulator

using the matrix X and (row) vector Y. The statistical

emulator is also referred to as a surrogate model, which

in this study is a Gaussian spatial process model (GaSP;

Sacks et al. 1989). The emulator is designed to fill the

void between discrete values of model output and input

via curve fitting or interpolation, and is used to

establish a functional relationship between the output

variable y and input vector x. That is, we use samples in

matrix X and the output vector Y to construct an ap-

proximate model: ŷ5 f̂ (x1, x2, . . . , xm). While the en-

semble produced by Latin hypercube sampling can be

used to obtain an initial estimate of the model sensitiv-

ity, analysis of the multivariate response, including the

interactions among various input parameters, requires

orders of magnitude more simulations than are feasible

for most computational models. The statistical emulator

is used alongside the more limited ensemble of model

simulations to produce a large number of input–

response pairs. These can then be used in variance-

based sensitivity analysis to examine univariate and

multivariate sensitivities in detail.

Having defined a functional relationship that emu-

lates the model input–output response, one can input

other values of (xnew1 , xnew2 , . . . , xnewm ) to the emulator

and obtain corresponding model output variables

(ŷnew). As the statistical emulator is much more effi-

cient than the full numerical model, it allows gen-

eration of numerous input–output pairs in a

computationally affordable fashion. The emulator fa-

cilitates generation of the thousands of simulations

necessary for the computation of Sobol’ sensitivity

indices, which allow us to attribute the sensitivity of

the output to the inputs, both in terms of the individ-

ual (main) effects and interactions between any given

pair of inputs. The following section provides in-

formation on how this general framework is applied

to the analysis of sensitivity in an idealized TC simu-

lation. For a case involving multiple model output

variables y, one simply builds the emulator multiple

times, once for each output variable. In our TC

example, there are six model output variables [see

FIG. 1. The schematic flowchart of implementing the multivari-

ate sensitivity analysis techniques on dynamical system in a step-

by-step way.
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section 3a(1) for details], and hence we need to build

six functional relationships: ŷ1 5 f̂ 1(x1, x2, . . . , xm),

ŷ2 5 f̂ 2(x1, x2, . . . , xm), ŷ3 5 f̂ 3(x1, x2, . . . , xm), ŷ4 5

f̂ 4(x1, x2, . . . , xm), ŷ5 5 f̂ 5(x1, x2, . . . , xm), and ŷ6 5

f̂ 6(x1, x2, . . . , xm).

3. Data and methodology

a. Idealized tropical cyclone simulation

1) MODEL CONFIGURATION

In this study, we use the National Center for Atmo-

spheric Research (NCAR)–Department of Energy

(DOE) Community Atmosphere Model (CAM), ver-

sion 5.1.1 (Neale et al. 2010), with horizontal resolutions

of 1:083 1:08, 0:583 0:58, and 0:2583 0:258. A 1:08, 0:58,

and 0:258 latitudinal and longitudinal horizontal grid

corresponds to a grid spacing of approximately 110, 55,

and 28km, respectively, in the equatorial region. The

coarser 1.0 resolution is chosen so as to match the hor-

izontal resolutions commonly used in phase 5 of the

Coupled Model Intercomparison Project (CMIP5;

Taylor et al. 2012) archive. Many high-resolution studies

specifically investigating tropical cyclones in climate

models use 0.58 or 0.258 resolution (Zhao et al. 2009;

Bacmeister et al. 2014; Zarzycki and Jablonowski 2014;

Wehner et al. 2014).

Figure 2 shows the flowchart of the tropical cyclone

simulation. The model is provided an idealized initial

condition, which consists of a three-dimensional (3D)

weak vortex seed overlaid on horizontally homoge-

neous large-scale tropical environmental conditions at

108N latitude. The background wind is set equal to zero,

the surface pressure is set to 1015hPa, and the surface

relative humidity is set to 83.6%. The surface air tem-

perature is set equal to the sea surface temperature, and

the relative humidity linearly decreases from 80% to a

user-specified value at 500 hPa, above which it remains

constant. Based on the specified surface pressure, air

temperature, relative humidity profile, and lapse rate,

the environmental temperature and pressure are set

according to hydrostatic balance. The specific humidity

profile is determined from the relative humidity profile

and the temperature. Given a radius of maximum wind

and maximum wind speed at the surface, the tempera-

ture and wind field of the initial vortex seed are derived

from hydrostatic and gradient wind balance. The model

surface is covered with a global ocean, and SST is set

constant everywhere (aquaplanet setup). After initiali-

zation, the model is integrated for 10 days, and

produces a TC that ranges from weak and disorga-

nized to a strong and well-developed storm (Reed and

Jablonowski 2011b,c, 2012). For a detailed description

of the idealized tropical cyclone simulation set up in

CAM, the reader is referred to Reed and Jablonowski

(2011a). This model configuration is constructed delib-

erately to favor TC development. All of the necessary

ingredients are in place: organized vortex seed, high

SST, no shear, sufficient planetary vorticity, and favor-

able lapse rate. As we will show, this leads to the pro-

duction of, on average, stronger TCs than are typically

FIG. 2. The flowchart of idealized tropical cyclone simulation in the NCAR Community Atmosphere Model. (a)–(d) The snapshots

shows the evolution of tropical cyclone–like vortex at days (a),(b) 0 and (c),(d) 10 at the resolution 0:58, L30. (a),(c) Horizontal cross

section of the wind speed at a height of 100m. (b),(d) Longitude–height cross section of the wind speed through the center of the vortex.

[For details, the reader is referred to Fig. 7 in Reed and Jablonowski (2011a).]
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observed in the real world (particularly at higher reso-

lutions); however, the idealized environment is useful in

that it allows a detailed examination of TC development

that is unclouded by the influence of external sources of

variability.

2) ALGORITHM USED TO EXTRACT MEAN OUTPUT

FIELDS FROM SIMULATED TROPICAL CYCLONES

The sensitivities of six TC-relevant output variables to

the initial conditions are investigated (Table 1). They

are the following: maximum wind speed (MWS; in-

tensity; Vmax), total precipitation rate (PRECT),

shortwave cloud radiative forcing (SWCF), longwave

cloud radiative forcing (LWCF), cloud ice water path

(IWP), and cloud liquid water path (LWP). The five

physical variables are spatially averaged over the region

surrounding the center of the tropical cyclone using the

following procedure: 1) find the minimum surface

pressure, which is defined to be the storm center; 2)

search the tropical cyclone in a latitude/longitude region

within6208 of the storm center; and 3) select the points

that satisfy each of the following criteria: (i) wind speed

at 100-m height above surface greater than 6m s21, and

(ii) outgoing longwave radiation (OLR) less than

230Wm22. Figure 3 shows an example of the shortwave

cloud radiative forcing before and after applying the

TC identification algorithm. The purpose of the algo-

rithm is to filter out features that are not directly associ-

ated with tropical cyclone development, while preserving

the TC-relevant fields. The first two thresholds locate

the TC and its surrounding region, circumscribed in a

square subdomain. The third threshold refines the spe-

cific shape of the TC, and ensures that the resulting

fields accurately represent the processes directly involved

in TC development. Tests of other slightly higher or

lower threshold values of wind speed and OLR to isolate

the TC did not alter our conclusions. After selecting

those points that compose the TC, an area-weighted av-

erage of each variable calculation is computed.

b. Multivariate sensitivity analysis framework

Multivariate sensitivity analysis methods comprise a

set of techniques now widely used to examine un-

certainties in numerical models associated with initial

conditions, model physics parameters, and model con-

struction (Stensrud et al. 2000; Murphy et al. 2004; van

den Heever and Cotton 2004; Posselt and Vukicevic

2010; Collins et al. 2011; Berner et al. 2011; Posselt et al.

2016; Posselt 2016). In this paper, it specifically

includes a combination of LHS with a surface response

emulator and a variance-based sensitivity analysis

technique. LHS is used to sample the points for the

initial parameters, a Gaussian process emulator is used

to approximate the model response surface, and Sobol’s

variance-based sensitivity analysis algorithm is used

to quantify main and interaction effects. In this context,

the ‘‘main effect’’ denotes the influence of variations

in a single parameter on each model response vari-

able (holding the other parameters fixed), while the

‘‘interaction effect’’ describes the response to changes

in a variable when it is changed in concert with other

control parameters.

1) LATIN HYPERCUBE SAMPLING

LHS methods generate a space-filling ensemble of

samples of the model input vector x. The input param-

eter range is divided into equiprobable nonoverlapping

intervals, and LHS requires that every row and column

in the hypercube of partitions has exactly one sample.

This restriction to one sample per row–column combi-

nation in the hypercube yieldsmore uniform coverage of

the range of input variables, relative to traditional

Monte Carlo sampling. By filling the input space in this

manner, LHS seeks to accurately span the range of the

various input–output relationships using a limited

number of sample points. In our experiments, we used

the R package ‘‘lhs’’ and function ‘‘randomLHS’’ to

generate samples in the hypercube. For more informa-

tion on the method, we refer to the work of Mckay et al.

(2000) and Helton and Davis (2003). We choose five

input parameters for study that are both tunable, and

have known relevance to the development of tropical

cyclones, and we divide their ranges into 300 segments

(Table 2). Ranges for each parameter are set based on a

survey of the TC literature, and some are adjusted to

ensure the model does not crash. While we perturb the

500-hPa relative humidity, the surface relative humidity

is set to the same constant 83.6% for each individual

simulation. The LHS sampling is typically followed

by the use of a response surface emulator to fill the space

between quasi-randomly selected initial conditions

and their corresponding output vectors, for example,

TABLE 1. List of names for the TC-relevant output variables

used in this paper (vortex center is defined by the minimum surface

pressure).

Variables Description Units

Intensity

(MWS/Vmax)

Max wind speed of 100-m

height above surface

m s21

PRECT Total precipitation rate (large-scale

precipitation rate 1 convective

precipitation rate)

mmh21

SWCF Shortwave cloud radiative forcing Wm22

LWCF Longwave cloud radiative forcing Wm22

LWP Cloud liquid water path gm22

IWP Cloud ice water path gm22
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multivariate adaptive regression splines (Friedman

1991; Friedman and Roosen 1995), GaSP (Sacks et al.

1989), polynomial chaos, etc. In our paper, we use the

GaSP emulator for fitting the input–output relationship.

2) GAUSSIAN SPATIAL PROCESS EMULATOR

Numerical models (e.g., CAM in this study) can be

very computationally demanding to run and generation

of hundreds of thousands of simulations is generally not

feasible. Statistical emulators approximate the behavior

of a numerical model by replacing the full model with a

simpler interpolation or curve-fitting algorithm. In

GaSP, the output is a realization of aGaussian stochastic

process (Sacks et al. 1989). Let X be the N3m model

input matrix, Y be the N3 1 model output (column)

vector, N be the sample size, and m be the number of

input parameters. The ith input to a numerical simula-

tion can be denoted as an m-dimensional vector,

xi 5 (xi1, . . . , xim), while the corresponding output is

denoted by yi, respectively. The emulator built with a

Gaussian process (GP) algorithm is expressed as

y
i
5 f (x

i
)5m1 z(x

i
); i5 1, . . . ,N ,

where m is the overall mean, and z(xi) is a GP with

E[z(xi)]5 0, VAR[z(xi)]5s2, and Cov[z(xi), z(xj)]5

s2Rij.

Generally speaking, y(X) follows a multivariate nor-

mal distribution, NN(1N , m, S) with S5s2
R, where R

is a correlation matrix having elements Rij, and 1N is a

N3 1 vector of all ones. The GP algorithm used in our

paper follows Ranjan et al. (2011) andMacDonald et al.

(2015), and the correlation matrix R is given by

R
ij
5P

m

k51

expf2u
k
jx

ik
2 x

jk
2g, for all i, j ,
�

�

where u5 (u1, . . . , um) 2 [0,‘)m is a vector of hyper-

parameters. WithR defined, we can estimatem and s2 to

be

m̂(u)5 (1
N
)TR211

N

h i21

(1
N
)TR21Y

h i

and ŝ2(u)

5
Y2 1

N
m̂(u)

� �T
R

21 Y2 1
N
m̂(u)

� �

N
.

Using the correlation matrix R, along with m̂(u) and

ŝ2(u), the negative profile log-likelihood (also referred

to as deviance) can be obtained as

FIG. 3. Example of the shortwave cloud radiative forcing (a) before and (b) after applying the TC identification

algorithm.

TABLE 2. Short names, minimum and maximum values, and

descriptions of the five input parameters in the ensemble simula-

tion with 0.58 3 0.58 grid spacing.

Parameter Min Max Description (units)

RMW 175 300 Radius of max wind speed (km)

MWS 12.5 25 Max wind speed (m s21)

GAMMA 5.5 7.5 Environmental temperature

lapse rate (K km21)

SST 22.5 34.0 Sea surface temperature (8C)

500-hPa RH 0.4 0.7 500-hPa relative humidity (unitless)
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22log(L
u
)} log(jRj)

1Nlog f[Y2 1
N
m̂(u)]TR21[Y2 1

N
m̂(u)]g ,

where jRj denotes the determinant of R, and Lu is

the likelihood function of u given observations

Y. The deviance is the metric for estimating the

hyperparameters u via the maximum likelihood

approach.

In our study, we used the GaSP developed by

MacDonald et al. (2015), and implemented using the R

package: ‘‘GPfit.’’ GPfit is distributed under the Gen-

eral Public License and available from the Compre-

hensive R Archive Network. The parameters used in

building the GPfit model are set to the recommended

default values, which are further explained in the GPfit

documentation. Tests with other parameter values

yielded only slight variation in our results, as we explain

below. Note that the choice of specific emulator is often

made based on personal preference and familiarity with

an algorithm. We chose GaSP because it produced a

robust fit to the model output, has strong support in the

literature, and is capable of representing nonlinear in-

teractions among parameters without having to know

in advance which nonlinear terms are important. We

did conduct a comparison of several different emula-

tion techniques (not shown). In addition to GaSP, we

tested multiple linear regression, multivariate adap-

tive regression splines (MARS), random forest, and

Bayesian additive regression trees (BART). All pro-

duced comparable results, but GaSP provided the

smallest fitting errors.

3) VARIANCE-BASED SENSITIVITY ANALYSIS

Sobol’s (1993) variance-based sensitivity analysis

has recently been used in atmospheric and climate

science (Lee et al. 2013; Zhao et al. 2013; Marzban

et al. 2014). It is capable of assessing the relative effect

of each of a number of model input parameters, along

with their interactions, on one or more model output

variables. In it, the variance of y is decomposed into

several variance terms that are contributed by each

input parameter x and their interactions (Sobol 1993;

Homma and Saltelli 1996; Bolado-lavin and Badea

2008; Marzban 2013):

V(y)5 �
n

i51

V
i
1 �

n

i,j

V
ij
1higher order.

Here, n is the number of input parameters.

Traditionally, each variance term is proportional to

the total variance and converted into an index referred

as Sobol’s sensitivity index:

S
i
5

V
i

V(y)

S
ij
5

V
ij

V(y)

S
Ti
5 �

k2 all the sets of indices

containing the index i

S
k
.

The terms Si, Sij, and STi
are referred to as the first-

order effect index, second-order effect index, and total

effect index, respectively. For estimating these indices,

we first compute Vi and Vij using the definitions:

Vi 5Var(E[yjxi]) and Vij 5Var(E[yjxi, xj])2Vi 2Vj.

Then, we compute V(y) with V(y)5�
n

i51Vi 1�
n

i,jVij.

By doing so, we neglect the third- and higher-order ef-

fects that contribute to V(y), as we are only interested

in the first-order effect Vi and second-order effect Vij.

Finally, Sobol’s sensitivity indices are computed. The

GaSP emulator described above is used to generate the

inputs for computing Vi and Vij.

4. Ensemble simulation results

a. Output–output relationships among the

TC-relevant characteristics

In this study, our main focus is the examination of

input–output relationships, and the use of quantitative

sensitivity analysis techniques to evaluate them. Prior to

doing so, we exploit the opportunity afforded by our

ensemble of 300 0:583 0:58model simulations to explore

the relationships among the output variables them-

selves. Specifically, we assess the degree to which our

simulations reflect known interrelationships among in-

tensity and other outcomes, and obtain an initial view of

the response of the model to perturbations in the initial

conditions. This analysis yields information on the cor-

relation among the model output variables, and also

provides useful context for the input–output sensitivity

analysis. Briefly, we hypothesize that the simulations

should adhere to known relationships among TC in-

tensity, precipitation rate, and water path. For example,

increased intensity should be associated with larger

precipitation rate and larger values of liquid and ice

water path as the storm processes greater amounts of

water vapor. However, the relationships among TC

intensity and the LWCF and SWCP are less clear, as

the LWCF is fundamentally related to the relative

amount of cirrus compared with deep clouds and low

clouds. The SWCF is a function of cloud brightness,

which is primarily related to cloud water content;

however, the integrated SWCF will depend on the
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distribution of highly reflective clouds versus less re-

flective (more diffuse) clouds.

1) INTERRELATIONSHIP BETWEEN INTENSITY AND

THE OTHER FIVE TC-RELEVANT

CHARACTERISTICS

Figure 4 displays the interrelationship between TC

intensity and each of the other five physical variables

considered in our study: precipitation rate (Fig. 4a),

LWCF (Fig. 4b), SWCF (Fig. 4c), LWP (Fig. 4d), and

IWP (Fig. 4e). It is clear that larger TC mean pre-

cipitation rate is associated with stronger TC intensity in

themodel, consistent with northwest Pacific observation

data. LWCF exhibits a positive linear relationship with

TC intensity (Fig. 4b), while TC SWCF bears a weak and

nonmonotonic relationship with intensity (Fig. 4c). The

LWP has a nonmonotonic relationship with intensity: as

TC intensity increases from 30 to 50m s21, LWP de-

creases. Above TC intensity of 50ms21, LWP exhibits a

slight increase with increasing intensity (Fig. 4d), while

IWP has a positive linear relationship with TC intensity

(Fig. 4e) throughout. The response in IWP is consistent

with the notion that increased TC intensity, and by ex-

tension, larger vertical transport, should be associated

with larger ice water path.

2) RELATIONSHIPS TO TC PRECIPITATION RATE

Figure 5 depicts the interrelationships among pre-

cipitation rate and the four other output variables, as

well as the relationship between LWCF and SWCF.

Larger mean precipitation rate tends to be correlated

with larger mean TC LWCF, up to a mean precipitation

rate of approximately 1.7mmh21 (Fig. 5a). The de-

crease in LWCF above 1.7mmh21 appears to be related

to a decrease in IWP (Fig. 5d), and we hypothesize that

the smaller LWCF may be due to a reduction in the

amount of cirrus cloud in the model. SWCF exhibits a

nonmonotonic relationship with precipitation rate,

reaching a relative maximum when the mean TC pre-

cipitation rate is approximately 1.4mmh21. Above this

value, larger mean precipitation rates are associated

with smaller magnitudes in SWCF. The range of values

of SWCF is large at intermediate precipitation rates, and

it is not clear how to interpret the physics behind this

apparent signal. The functional form appears to mirror

the change in IWP with precipitation rate (Fig. 5d). The

precipitation rate is strongly (and positively) correlated

with LWP (Fig. 5c), indicating that the initiation

mechanism of rain from droplet growth by collision and

coalescence works efficiently in the AGCM physical

parameterizations. TC LWCF tends to bear a good lin-

ear relationship with TC SWCF (Fig. 5e). Larger LWCF

comes with larger magnitude of SWCF.

3) RELATIONSHIPS AMONG LWCF, SWCF, LWP,
AND IWP

Figure 6 depicts the interrelationships among the

cloud radiative forcing and the liquid and ice water path,

as well as the relationship between LWP and IWP.

LWCF appears to be largely independent of LWP

(Fig. 6a), but has a positive linear relationship with IWP

(Fig. 6b). This makes sense, given the control high

clouds place on the longwave radiative budget. SWCF is

linearly correlated with LWP (Fig. 6c), which is consis-

tent with an increase in cloud brightness with increasing

LWP. SWCFhas a nonmonotonic relationship with IWP

(Fig. 6d), but we note that the ranges of IWP for most

values of SWCF are large, and this relationship is likely

not robust, or perhaps is indicative of interactions with

other parameters. While IWP is clearly related to

LWCF, it has a somewhat ambiguous relationship with

all other variables, including LWP (Fig. 6e). This leads

to complexity in the response, which we will explore in

more detail in the next section.

b. Input–output relationships

1) VALIDATION OF GASP

The normalized root-mean-square error (RMSE) is

used to measure how well GaSP fits the CAM model in

simulating the relationships between tropical cyclone

characteristics andmodel initial conditions. Let y denote

the output from simulated CAM model and let ŷ be the

output calculated from the GaSP model. The normal-

ized RMSE can then be defined as

RMSE5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

n
�
i

(ŷ
i
2 y

i
)2

s
,

�
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n
�
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�
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RMSE in this case is the proportion of mean square

error to the mean value over the ensemble of CAM

simulations. Specifically, we use cross-validation analy-

sis validate the model. Consider TC intensity (MWS) as

an example. In each of several trials, we use 299 sam-

pling points to construct the GaSP fit, and then predict

the remaining one point. This procedure is commonly

referred to as ‘‘leave-one-out cross validation’’ in sta-

tistics. We conducted 300 trials, in which we compared

each of the 300 predicted values with their correspond-

ing simulated values. The cross-validation analysis is

conducted for all the six variables. Figure 7 shows the

cross-validated mean square prediction error results.

GaSP performs well for MWS, PRECT, LWCF, SWCF,

and IWP (as indicated by the fact that the fitting errors

are on the order of 10% or less), but returns a poorer fit

for LWP. The reason that GaSP does not perform well
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for LWPmay be that the relationship between LWP and

the five initial conditions is much more complicated, or

that there are outliers produced by extreme behavior in

the model.

2) VARIANCE-BASED SENSITIVITY ANALYSIS

The Sobol total sensitivity index is used to quantify

the relative importance of the five initial parameters to

the six TC characteristics. The larger the sensitivity in-

dex is, the more important the parameter is to the rel-

evant TC characteristic. From each subplot in Fig. 8, it is

easy to distinguish the dominant factors. Figure 8a

shows that simulated TC intensity is most sensitive to

the lapse rate, followed by the SST. The initial size

(RMW) and intensity (MWS) of the vortex seed and

RH 500 have only a minor influence on TC intensity.

Precipitation rate (Fig. 8b) is most sensitive to SSTwhile

LWCF (Fig. 8c) is mainly affected by lapse rate and SST.

The three dominant factors for SWCF are SST, MWS,

and lapse rate (Fig. 8d). LWP (Fig. 8e) is most sensitive

to lapse rate, while IWP (Fig. 8f) is most sensitive to

SST. Overall, the vertical lapse rate and SST are the two

FIG. 4. Boxplots for measuring the interrelationships

between TC intensity and (a) precipitation rate,

(b) LWCF, (c) SWCF, (d) LWP, and (e) IWP. The red

line denotes the median value, and the blue box covers

the 25%–75% quantile. The black bar shows the mini-

mum and maximum value, the red points show the

outliers, and ‘‘3’’ marks the mean values.
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dominant controlling factors for all six of the TC char-

acteristics. Sources of sensitivity may be analyzed in

greater detail by examining the first-order and second-

order sensitivity indices (Table 3). Recall that these

describe the individual effect of a change in a parameter

(first order), and the effect of interactions between two

different parameters (second order) on a particular

output variable. The TC intensity, LWCF, and SWCF

are primarily influenced by linear (independent)

changes in each of the five input factors, as second-order

effects are very small. For example, the linear effect of

the five input factors (S1 1 S2 1 S3 1 S4 1 S5) con-

tributes 94.5%, 96.8%, and 99.9% of the total variance

for intensity, LWCF, and SWCF, respectively. It is

worthwhile to note that the midlevel RH shows almost

no effect on TC intensity change. This may be explained,

in part, by the lack of vertical wind shear (Ge et al. 2013).

It is also possible that parameter settings that control the

entrainment of air into convective clouds are preventing

dry midlevel air from having an effect on simulated

storms [see He and Posselt (2015) for additional details].

The size and intensity of initial vortex seed (RMW and

FIG. 5. Boxplots for measuring the interrelationships

(a) precipitation rate vs LWCF, (b) precipitation rate vs

SWCF, (c) precipitation rate vs LWP, (d) precipitation

rate vs IWP, and (e) LWCF vs SWCF. The red line denotes

the median value, and the blue box covers the 25%–75%

quantile. The black bar shows theminimumandmaximum

value, the red points show the outliers, and ‘‘3’’ marks the

mean values.
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MWS) cause weak changes in TC intensity throughout

their predetermined ranges. It is widely assumed that

factors favoring TC genesis can be considered separately

and are additive or multiplicative (Nolan and Rappin

2008). This assumption is fundamental to the genesis

parameters of Gray (1968), andDeMaria et al. (2001), as

well as statistical hurricane intensity forecast models

such as SHIPS (DeMaria and Kaplan 1999). These

genesis parameters, and statistical prediction models, do

not include the initial vortex characteristics. Our results

show that the combined effect on AGCM-simulated

TCs is indeed negligible.

Second-order indices are nonnegligible for pre-

cipitation rate, LWP, and IWP. For precipitation rate,

the linear effect covers 76% of the total variance, and

the main contribution is from SST with 66.6%. The in-

teraction effect between GAMMA and SST covers

15.33%, which indicates that the interaction between

these two factors is the second most important effect on

the final simulated precipitation rate. Interaction

FIG. 6. Boxplots for measuring the interrelationships

(a) LWCF vs LWP, (b) LWCF vs IWP, (c) SWCF vs

LWP, (d) SWCF vs IWP, and (e) LWP vs IWP. The red

line denotes the median value, and the blue box covers

the 25%–75% quantile. The black bar shows the mini-

mum and maximum value, the red points show the out-

liers, and ‘‘3’’ marks the mean values.
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between GAMMA and SST indicates the two are not

linearly independent, and that a joint increase in these

two parameters causes a larger change in storm strength

than the combined change due to each individual factor

alone. This makes sense from a buoyancy perspective, as

the lapse rate controls the stability of the profile, but the

SST sets the properties of the boundary layer air that is

ingested into (and lifted in) the TC. As such, an increase

in SST serves to amplify the effect of an increase in lapse

rate (and vice versa).

For LWP, the linear effect contributes 71.1% to the

total variance, with the largest contribution from

changes in the lapse rate. It is worthwhile to note that

there are two second-order sensitivity indices greater

than 10%: S23 and S34. The large value of S23 indicates

that interactions between MWS and GAMMA are very

important to the final simulated LWP. In essence, this

means that an increase in MWS and an increase in

GAMMA both produce an increase in LWP, but the

combination of the two produces an amplified response.

We speculate that, in this case, a given change in initial

maximumwind speed leads to an increase in LWP via an

increase in total storm intensity, and that this increase is

amplified by an increase in lapse rate. Relatively large

values of S34 mean that the interaction between

GAMMA and SST is also very important to the final

simulated LWP. The mechanism is likely the same as in

the case of increasing storm intensity described above.

In addition, we note that both interaction effects include

GAMMA. The relatively large interaction effects show

that the contributions from the input factors to LWP is

complicated, and may help to explain why LWP is much

harder for GaSP to predict than the other five output

variables. For IWP, the linear effect covers 75.6% of the

total variance, while the interaction effect between

GAMMA and SST covers 16%. The first-order, second-

order, and total sensitivity index provide information as

to which input factor is more important, and whether the

variance stems mainly from its linear effect or in-

teraction effect. In the following section, we take a de-

tailed look at the marginal relationships and covarying

relationships for the important factors.

FIG. 7. Predicted values from GaSP using cross-validation analysis vs the actual values of (a) MWS, (b) total

precipitation rate, (c) LWCF, (d) SWCF, (e) LWP, and (f) IWP from the numerical model for the initial 300 runs.
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3) INPUT–OUTPUT RELATIONSHIPS

(i) Intensity

The effect of atmospheric conditions on tropical cy-

clone intensity change has been extensively studied us-

ing observational data and high-resolution regional

models. Even so, few studies have attempted to quantify

the effect of an isolated factor on TC intensity with

statistical robustness. This is in large part because it is

difficult to isolate a single factor from observational

analysis, as Earth’s atmosphere changes its various

conditions simultaneously. In addition, production of

large numbers of high-resolution regional model simu-

lations is limited by computational constraints. Having

generated 300 simulations using quasi-random LHS

sampling, and with the aid of a statistical emulator, we

are able to assess the relationship between TC intensity

and a single factor, quantify its associated uncertainty,

and assess the changed TC intensity because of two si-

multaneously changing factors. Figure 9 illustrates this

point using TC intensity. Figure 9a assesses the rela-

tionship between TC intensity and atmospheric lapse

rate (GAMMA), while the other four perturbed pa-

rameters (RMW,MWS, SST, 500-hPaRH) are set equal

FIG. 8. The total sensitivity index of the six output variables to the five initial parameters: (a) intensity,

(b) precipitation rate, (c) LWCF, (d) SWCF, (e) LWP, and (f) IWP.
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to three different values: 25% (low, red line), 50%

(median, green line), and 75% (high, blue line) of their

respective ranges (Table 2). Figure 9b is the same as

Fig. 9a, but shows the relationship between TC intensity

and sea surface temperature. While it is well known that

large atmospheric lapse rates (more unstable atmo-

sphere) and high sea surface temperatures produce

larger TC intensity, the relationships have not been

quantified. Our results show that the TC intensity is

linearly affected by atmospheric instability and sea

surface temperature. Not only are the relationships be-

tween both parameters and the TC intensity monotonic,

but there is a systematic change in intensity as the re-

maining parameters are increased from 25% to 50% and

to 75% of their ranges. When GAMMA and SST are

allowed to vary simultaneously (Fig. 9c), they exhibit

near-linear influence on TC intensity change, with little

evidence of intervariable interactions.

(ii) Longwave cloud radiative forcing

TCLWCF is linearly dependent onGAMMA (Fig. 10a);

however, the slope of this relationship is different when

the other four input factors are set to different values.

Specifically, the largest response per unit change in

GAMMA occurs when all other parameters are set to

relatively low values, while the smallest response occurs

when other parameters are set to relatively high values.

LWCF increases with increasing SST (Fig. 10b), and this

relationship tends to flatten when SST is higher than

308C. Unlike GAMMA, the SST–LWCF response does

not appear to change with changes in the values of other

parameters. Higher SST produces stronger storms and

also larger vapor content in the atmospheric, both of

which could increase high cloud fraction, and thus lead

to higher LWCF. High LWCF occurs in high GAMMA

and high SST conditions, while low LWCF occurs at low

values of GAMMA, and in low SST regions (Fig. 10c).

The flattening of the response inLWCF to changes in SST

appears to be a function of the joint relationship between

GAMMA and SST and the LWCF. At low values of

GAMMA, increasing SST produces a monotonic in-

crease in SWCF; however, as GAMMA increases, the

response of LWCF to increases in SST saturates. It is

possible that, at large GAMMA (and higher storm in-

tensity; Fig. 9b), the storm processes water more effi-

ciently, leading to a saturation in the LWCF.

(iii) Shortwave cloud radiative forcing

Figure 11 quantifies the same types of relationship for

SWCF, and only the factors that have a significant effect

on the TC-relevant SWCF are shown. As shown in

Figs. 11a, 11b, and 11c, the magnitude of SWCF is lin-

early affected by three factors: the intensity of the initial

vortex seed (MWS), atmospheric lapse rate (GAMMA),

and sea surface temperature (SST). Larger magnitudes

of SWCF (absolute value of SWCF) are associated with

smaller initial MWS, a more stable atmosphere, and

larger SST. Recall that the SWCF is essentially un-

related to storm intensity (Fig. 4), but is strongly related

to LWP (Fig. 6c). It is possible that a lower MWS and

lower GAMMA lead to larger liquid (vs ice) production

in the storm and as such a stronger SWCF. Increasing

SST, for a given low-level RH, implies an increase in the

low-level water vapor content, which may also be

related to an increase in LWP and a consequent increase

in SWCF. It is worthwhile to note that changes in

GAMMA and SST have the opposite effect on the

SWCF change. Recall that SST and GAMMA were

shown to interact to produce stronger storms. The in-

verse sensitivity of SWCF to GAMMA and SST in-

dicates that storms of equal intensity may have very

different SWCF.

(iv) Cloud ice water path

The TC cloud ice water path is most sensitive to

changes in SST (Fig. 8f), but it also responds to changes

in the initial vortex characteristics and atmospheric

stability. In fact, IWP is the only TC-relevant variable

that shows strong sensitivity to four of the five initial

parameters (RMW, MWS, GAMMA, and SST). Ex-

amination of the input–response relationships indicates

IWP exhibits a small, but discernible, linear decrease

with increasing initial vortex seed intensity (Fig. 12a);

however, the response is a strong function of the values

TABLE 3. The first-order and second-order Sobol sensitivity in-

dices for the six output variables. For the second-order indices, only

the values greater than 1% are listed. The five input factors and

their order are as follows: 1) RMW, 2)MWS, 3) GAMMA, 4) SST,

and 5) 500-hPa RH. S1 denotes the first-order sensitivity index

from the linear effect of the first input factor: RMW. S24 denotes

the second-order sensitivity index from the interaction effect be-

tween the second input factor (MWS) and the fourth input factor

(SST).

Intensity Precipitation LWCF SWCF LWP IWP

S1 0.0277 0.0030 0.0314 0.0074 0.0116 0.0831

S2 0.0418 0.0018 0.0400 0.2540 0.0586 0.1613

S3 0.4917 0.0540 0.3450 0.2337 0.4415 0.0873

S4 0.3812 0.6661 0.5513 0.5043 0.1974 0.4229

S5 0.0015 0.0346 0.0001 0.0005 0.0018 0.0018

S13 — 0.0163 — — 0.0210 —

S14 — — — — — 0.0232

S23 — — — — 0.1071 0.0126

S24 0.0252 — — — 0.0197 0.0267

S34 — 0.1533 0.0305 — 0.1167 0.1596

S35 — 0.0317 — — — —

S45 — 0.0223 — — — —

JULY 2018 HE ET AL . 2079

Unauthenticated | Downloaded 08/27/22 07:21 AM UTC



of the other control parameters. There is a somewhat

stronger increase in IWP with increasing sea surface

temperature (Figs. 12b,d); however, the overall trend is

masked by significant variability. We have regenerated

the GaSP model using subsets of the data and various

parameter settings in the GaSP training, but the high-

frequency variability in the relationship between SST

and IWP remains (Fig. 12c). In essence, this means that,

while the univariate response plots suggest an increase

in IWP with respect to increases in SST, the actual re-

sponse is a complex function of the input parameters.

This is reflected in the Sobol sensitivity indices (Table 3),

which show nonnegligible second-order effects for

several input variable combinations, with interactions

between SST and lapse rate particularly strong. The

sensitivity in the IWP to changes in multiple variables

may simply reflect the fact that the amount of ice in the

simulated TC is a function of multiple different pro-

cesses that affect the vertical transport of water, the

conversion from liquid to ice, or both.

In each of the sets of results presented in Figs. 9–12,

the sensitivity analysis derived from the GaSP emulator

exhibits an overarching structure along with small-scale

variations. For example, in the relationships among SST,

GAMMA, and LWCF, there is a general trend toward

increasing LWCF with increasing GAMMA and SST,

with evidence of nonmonotonicity (decreasing LWCF

with increasing SST). There are also very finescale var-

iations in the relationship (Fig. 10c).We have conducted

tests in which we retrained the GaSP model using dif-

ferent tuning parameter values, and have found that the

larger-scale sensitivity is robust, while the small-scale

variation is not.

5. Marginal sensitivity of intensity to five initial

conditions at three horizontal resolutions

An examination of the sensitivity of simulated TC

characteristics to changes in atmospheric environmental

factors in CAM provides insight into the key controls on

FIG. 9. The relationship between simulated TC

intensity and (a) the initial atmospheric lapse rate

(GAMMA) and (b) the initial sea surface temper-

ature (SST). The black marks are the scatterplot

from the original 300 numerical samples. The lines

represent the model response calculated from the

Gaussian process emulator when the other four

input factors are set equal to values that are 25%

(low, red line), 50% (median, green line), and 75%

(high, blue line) of the full range of values. (c) The

relationship of simulated TC intensity to simulta-

neous changes in initial MWS and SST.
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TC evolution in an AGCM. However, all of our results

are valid for the specific horizontal grid resolution of

0:583 0:58. Here, we compare the sensitivity of simu-

lated TC intensity to changes in the five initial conditions

for three different horizontal grid resolutions commonly

used in full AGCMs: 1.08 3 1.08, 0.58 3 0.58, and 0.258 3

0.258. The 1.08 3 1.08 and 0.258 3 0.258 experiments

utilize the same LHS-generated control parameter sets,

yielding a sample of 300 input–output vector pairs each.

Figure 13 shows the marginal relationship between

simulated TC intensity and changes in each of the five

control factors, and suggests that these relationships are

resolution dependent. First, note that, in simulations run

on a 1:083 1:08 grid, the TC intensity never exceeds

30ms21. This is generally consistent with a previous

study that showed that the NCAR CAM 5.0 model

with a resolution of 1:083 1:08 was only able to capture

nine tropical cyclones per year globally (Walsh et al.

2015) and was not able to produce strong tropical

cyclones (e.g., category 4 or 5 on the Saffir–Simpson

hurricane wind scale). While coarse-resolution simula-

tions exhibit moderate sensitivity to the initial size and

strength of the vortex seed (Figs. 13a and 13b), there is

little discernible sensitivity to changes in any of the en-

vironmental factors (Figs. 13c–e). As was demonstrated

above, there is moderate sensitivity of simulated TC

intensity to changes in the vortex seed characteristics for

simulations run at 0.58 3 0.58 resolution, but the re-

sponse is quite different from the one obtained at 1.08 3

1.08 resolution. At 0.258 3 0.258, there is essentially no

response in intensity to changes in the vortex seed. In

contrast to the 1.08 3 1.08 simulations, sensitivities to

changes in the environmental factors (Figs. 13c–e) are

quite similar for the two finer resolutions. While we

cannot comment on convergence, these results indicate

the response of TCs to changes in environment at

0:583 0:58 and 0:2583 0:258 resolution in CAM is simi-

lar. Consistency between the two sets of simulations is

FIG. 10. The relationship between simulated TC

LWCF and (a) the initial atmospheric lapse rate

(GAMMA), and (b) the initial sea surface tempera-

ture (SST). The black marks are the scatterplot from

the original 300 numerical samples. As in Fig. 9, the

lines represent the model response calculated from

the Gaussian process emulator when the other four

input factors are set equal to values that are 25% (low,

red line), 50% (median, green line), and 75% (high,

blue line) of the full range of values. (c) The re-

lationship of simulated TC LWCF to simultaneous

changes in initial GAMMA and SST.
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likely due to representation of mesoscale circulations,

which are largely absent at 1.08 3 1.08 resolution. TC

intensity at 0:2583 0:258 resolution is uniformly stronger

than it is at 0.58 3 0.58, consistent with findings in earlier

studies that higher-resolution models tend to generate

stronger TCs.Wehner et al. (2014) showed that the high-

resolution (0:2583 0:258) configuration of NCARCAM,

version 5.1, simulates a much more realistic global

number of tropical cyclones and can produce tropical

cyclones up to category 5. Bacmeister et al. (2014) also

showed that the high-resolution (0:2383 0:318) CAM 5

was capable of simulating realistic tropical cyclone

distributions, and reproducing the interannual variabil-

ity in TC statistics. Our results suggest that, when run

with relatively coarse resolution of 1:083 1:08, the

NCAR CAM cannot simulate TCs well, and that this

may be because it could not simulate the response to the

SST and GAMMA in a realistic manner. It also shows

that, while storms are still somewhat underresolved

at 0:583 0:58, this resolution more closely approxi-

mates the response exhibited by simulations run at

0:2583 0:258, a resolution increasingly used for tropical

cyclone studies in climate models.

6. Discussion and limitations of this study

This work uses a multivariate sensitivity analysis

technique to study the response of individual dynamical

systems to changes in multivariate parameters. It pro-

vides a specific example of the use of LHS, a GaSP

emulator, and Sobol’s variance-based sensitivity analy-

sis for sensitivity assessment in AGCM-simulated TCs.

FIG. 11. The relationship between simulated TC SWCF and (a) the initial MWS, (b) the initial atmospheric lapse

rate (GAMMA), and (c) the initial sea surface temperature (SST). The black marks are the scatterplot from the

original 300 numerical samples. As in Figs. 9 and 10, the lines represent the model response calculated from the

Gaussian process emulator when the other four input factors are set equal to values that are 25% (low, red line),

50% (median, green line), and 75% (high, blue line) of the full range of values. (d) The relationship between

simulated TC SWCF and simultaneous changes in initial GAMMA and SST.
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The sensitivity analysis technique could easily be ex-

tended to other dynamical systems, such as extratropical

cyclones, non-TC tropical convective systems, and so on.

It also has the potential to quantify the uncertainties

associated with variability in model internal parameters

in physical parameterization schemes, such as cloud,

precipitation, and turbulence, which are key components

in climatemodel representation of small-scale processes.

It is worthwhile to note that the sensitivities of

AGCM-simulated TC characteristics to the five initial

conditions found in our study utilized a highly idealized

framework. While our results are consistent with the

known sensitivity of TCs to changes in SST and lapse

rate, our goal is not primarily to understand how TCs

function in the real world. Such a study requires a sim-

ulation framework that accounts for additional known

factors that influence the development of TCs (e.g.,

vertical wind shear, characteristics of individual con-

vective updrafts, ocean mixing, proximity to land, etc.).

Rather, we use an idealized model setup to obtain in-

sight into sensitivities of TCs simulated in AGCMs,

which include a multitude of interacting and complex

factors. The lack of vertical wind shear in our idealized

configuration enables us to focus on the response of the

dynamical system to environmental factors like SST,

GAMMA, and so on. Incorporation of vertical wind

shear into the framework will require the adjustment of

vertical temperature and thus lapse rate based on

FIG. 12. The relationship between simulated TC IWP and (a) the initial atmospheric lapse rate (GAMMA) and

(b) the initial sea surface temperature (SST). The black marks are the scatterplot from the original 300 numerical

samples. As in Figs. 9–11, the lines represent the model response calculated from the Gaussian process emulator

when the other four input factors are set equal to values that are 25% (low, red line), 50% (median, green line), and

75% (high, blue line) of the full range of values. (c) The relationship between simulated TC IWP and simultaneous

changes in initial GAMMA and SST. (d) The boxplot measures the relationship between IWP and SST using the

original 300 numerical simulated points.
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thermal wind balance. This is not an insurmountable

challenge, but is one that we leave for future work.

7. Summary

This case study–based idealized sensitivity study

utilized a quantitative sensitivity analysis technique to

map changes in TC initial conditions to responses of TC

intensity, precipitation, water path, and radiative forc-

ing. The sensitivity analysis framework allowed us to

explore not only the univariate responses, but also the

interactions among input factors and output variables.

Examination of the response functions indicates the

FIG. 13. Marginal relationship between simulated

TC intensity (MWS) and the five input parameters for

the three model resolutions. (a) RMW: initial size of

vortex seed, (b) MWS: initial intensity of vortex seed,

(c) GAMMA: vertical lapse rate, (d) SST: sea surface

temperature, and (e) RH 500: midlevel relative hu-

midity. The black line denotes the results computed

from ensemble run with model resolution of 1:083 1:08.

The blue line denotes the results computed from en-

semble run with model resolution of 0:583 0:58. The red

line denotes the results computed from ensemble run

with model resolution of 0:2583 0:258.
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following behavior in the idealized TC framework: 1)

Environmental lapse rate (instability) and sea surface

temperature linearly affect the growth of TCs. 2) The

TC total precipitation rate, cloud radiative forcing, and

cloud water content are all sensitive to the size and in-

tensity of the initial vortex seed, the environmental lapse

rate, and the sea surface temperature, but have weak or

no sensitivity to the initial 500-hPa relative humidity. 3)

Changes in TC initial conditions interact nonlinearly

to affect the final simulated characteristics of the TCs,

in addition to the linear relationships mentioned in

behavior 1. 4) Interrelationships among TC relevant

characteristics exist: specifically, stronger TCs tend to be

associated with larger LWCF and larger total precipi-

tation rate tends to be associated with larger values of

LWCF and larger cloud LWP. 5) The sensitivities of

simulated TC intensity to the five initial conditions

change for different model resolutions, with 18 resolu-

tion producing notably different sensitivity response,

relative to simulations run at 0.58 and 0.258. This high-

lights the reduced utility in using 1:083 1:08 for tropi-

cal cyclone studies, since the resolution is unable to

correctly simulate storm sensitivities found at higher

resolutions.

We have shown that the multivariate sensitivity

analysis technique can be applied to the study of a par-

ticular dynamical system, and yields valuable informa-

tion on the sensitivity of the system and its interaction

with environmental factors. Specifically, we found the

combination of Latin hypercube sampling for genera-

tion of an ensemble of model simulations, surrogate

models for computationally efficient approximation of

numerical simulation outcomes, and variance-based

sensitivity analysis for computation of individual and

interaction effects constitutes a powerful set of tools for

the diagnosis of dynamic systems. It allows simultaneous

variation of multiple model input factors, and thus can

be used to examine not only univariate sensitivity, but

also the effects of interactions among different param-

eters on simulated model output. The results have im-

plications not only for understanding how AGCMs

simulate TCs, but also potentially for the design of en-

semble simulations. Quantification of the primary indi-

vidual control factors, along with their interaction with

other parameters, allows for a more well-informed en-

semble experiment that more completely spans the

range of variability in the system. To the extent that the

model construction (e.g., dynamical core, physical pa-

rameterizations, etc.) are consistent between the ide-

alized framework and the fully realistic AGCM, an

ensemble based on perturbations to the factors we

identified may be expected to span a broader range of

TC evolution than random perturbations alone.

In closing, we note that the sensitivity analysis we

conducted can easily be extended to other dynamic

systems, given a suitable model configuration and

identification of key control factors. We are currently in

the process of using these tools for the analysis of

extratropical cyclones, orographic precipitation, and

mesoscale convective systems, and expect to report on

these results in subsequent manuscripts.
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