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Abstract

Recent advances in high-throughput methods of molecular analyses have led to an

explosion of studies generating large-scale ecological data sets. In particular, noticeable

effect has been attained in the field of microbial ecology, where new experimental

approaches provided in-depth assessments of the composition, functions and dynamic

changes of complex microbial communities. Because even a single high-throughput

experiment produces large amount of data, powerful statistical techniques of multivari-

ate analysis are well suited to analyse and interpret these data sets. Many different

multivariate techniques are available, and often it is not clear which method should be

applied to a particular data set. In this review, we describe and compare the most

widely used multivariate statistical techniques including exploratory, interpretive and

discriminatory procedures. We consider several important limitations and assumptions

of these methods, and we present examples of how these approaches have been uti-

lized in recent studies to provide insight into the ecology of the microbial world.

Finally, we offer suggestions for the selection of appropriate methods based on the

research question and data set structure.
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Introduction

The past decade has seen significant progress in eco-

logical research due in part to the advent and

increased utilization of novel high-throughput experi-

mental technologies. With approaches such as high-

throughput ‘next-generation’ sequencing, oligonu-

cleotide and DNA microarrays, high sensitivity mass

spectrometry, and nuclear magnetic resonance analysis,

researchers are able to generate massive amounts of

molecular data even in a single experiment. These

methods have created an especially powerful effect on

the field of microbial ecology, where we now can

apply DNA, RNA, protein, and metabolite identifica-

tion and measurement techniques to the whole micro-

bial community without a need to separate or isolate

individual community members. These technologies

provided foundation to many groundbreaking

advances in our understanding of microbial commu-

nity organization, function, and interactions within a

community and with other organisms. Examples

include the assessment of marine microbiota response

to the Deepwater Horizon oil spill (Mason et al. 2014),

functional analysis of microbiomes in different soils

(Fierer et al. 2012), identification of enterotypes in the

human intestinal microbiota (Arumugam et al. 2011),

detection of seasonal fluctuations in oceanic bacterio-

plankton (Gilbert et al. 2012) and discovery of the loss

of gut microbial interactions in human gastrointestinal

diseases (Shankar et al. 2013, 2015).

Because large amount of data is generated even in

a single high-throughput experiment, powerful statis-

tical tools are needed to examine and interpret the

results. Because many different variables such as

species, genes, proteins or metabolites are measured

in each sample or site, the analysis of these data sets

is generally performed using multivariate statistics
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(definitions of most commonly used terms are

provided in Box 1). Indeed, many types of standard

multivariate statistical analyses have been employed

for the assessment of such high-throughput data sets,

and novel approaches are also being developed. The

multitude of possible statistical choices makes it a

daunting task for an investigator not experienced

with these tools to pick a good technique to use. In

Box 1. Terminology used in multivariate statistical analyses

• Biplot—a two-dimensional diagram of the ordination analysis output that simultaneously shows variable posi-
tioning and object positioning in a reduced dimensionality space.

• Canonical analysis—a general term for statistical technique that aims to find relationship(s) between sets of vari-
ables by searching for latent (hidden) gradients that associate these sets of variables.

• Constrained and unconstrained ordination—the constrained multivariate techniques attempt to ‘explain’ the vari-
ation in a set of response variables (e.g. species abundance) by the variation in a set of explanatory variables
(e.g. environmental parameters) measured in the same set of objects (e.g. samples or sites). The matrix of
explanatory variables is said to ‘constrain’ the multivariate analysis of the data set of response variables, and the
output of constrained analysis typically displays only the variation that can be explained by constraining vari-
ables. In contrast, the unconstrained multivariate techniques only examine the data set of response variables, and
the output of unconstrained analysis reflects overall variance in the data.

• Gradient analysis—this term describes the study of distribution of variable values in the data set along gradients.
As the goal of ordination analysis is to order objects along the main gradients of dispersion in the data set, both of
these terms can be used synonymously. Two different types of gradient analysis are usually recognized:

� Indirect gradient analysis utilizes only one data set of measured variables. This term is synonymous with
‘unconstrained ordination’.

� Direct gradient analysis in contrast uses additionally available data to guide (direct) the analysis of the data
set of measured variables. It produces axes that are constrained to be a function of explanatory variables. This
term is synonymous with ‘constrained ordination’.

• Data transformation—this term describes the process of applying a mathematical function to the full set of mea-
sured values in a systematic way. See Box 2 for a description of common data transformations.

• Distance—it quantifies the dissimilarity between objects in a specific coordinate system. Objects that are similar
have small in-between distance; objects that are different have large distance between them. For normalized
distances, Distance (X,Y) can be related to Similarity (X,Y) as either D = 1 � S, D = √(1 � S) or D = √(1 � S2). Many
different mathematical functions can be used to calculate distances among objects or variables (Legendre &
Legendre 2012). The choice of distance measure has a profound effect on the output of multivariate analysis and
should be chosen based on the characteristics of the studied ecological data set.

• Eigenvector and eigenvalue—in ordination methods such as PCA, eigenvectors represent the gradients of data
set dispersion in ordination space and are used as ordination axes, and eigenvalues designate the ‘strength’ of
each gradient.

• Explanatory/predictor/independent variable—all these terms describe the type of variables that explain (predict)
other variables.

• Ordination—a general term that can be described as ‘arranging objects in order’ (Goodall 1954). The goal of ordi-
nation analysis is to generate a reduced number of new synthetic axes that are used to display the distribution
of objects along the main gradients in the data set.

• Orthogonal—mathematical term that means ‘perpendicular’ or ‘at right angle to’. Due to this feature, the orthog-
onal variables are linearly independent (Rodgers et al. 1984).

• Randomization tests—a group of related tests of statistical significance that are based on the randomization of
measured data values to assess whether the value of a calculated metric (such as species diversity) can be
obtained by chance.

• Response/dependent variable—both of these terms describe the main measured variables in a study. Many mul-
tivariate analyses examine the relationship between these variables and other variables that are said to ‘predict’
or ‘explain’ these measured variables (such as environmental factors). Thus, the measured variables are ‘depen-
dent on’ or ‘responding to’ the values of the explanatory/predictor variable(s).

• Triplot—a two-dimensional diagram of the multivariate analysis output that in addition to response variables
and objects shown on biplot also displays explanatory variables.

• Unimodal distribution—a distribution with one peak on the variable density plot.

• Variance, variability and variation—the differences in the use of these three related terms can be described by
the following statement: ‘Variance is a statistical measure of data variation and dispersion, which describe the
amount of variability in the data set’.
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this review, we provide short descriptions of the

most frequently used multivariate statistical tech-

niques, we compare different methods, and we pre-

sent examples of how these approaches have been

utilized in recent studies. This text is not meant to

serve as an exhaustive overview of existing methods,

as the landscape of currently available multivariate

analyses is vast and growing. Rather, our goal is to

familiarize the reader with the most commonly used

approaches and to provide background on the differ-

ences among techniques and possible selection

choices. While this review will primarily focus on

the application of multivariate statistics to microbial

ecological research, these techniques can be success-

fully applied to a wide variety of data sets in other

ecological disciplines.

Types and properties of high-throughput
ecological data sets

Although many different experimental tools can be uti-

lized to obtain high-throughput ecological data, the out-

put in most cases is presented as a matrix of positive

numbers each representing either a measured value for

variable i (e.g. mRNA or protein level, metabolite con-

centration or species abundance) in object j (e.g. sample

or site), or a ratio of two measured xi values between

two objects. The former data set structure is common

for outputs from high-throughput sequencing, mass

spectrometry, NMR-based metabolomics and single-

sample microarrays. The latter is usually obtained from

two-colour microarrays or high-throughput quantitative

PCR. The type and distribution of data should match

Box 2. Statistical assumptions and common data transformations

Generally, statistical approaches and tests can be divided into parametric and nonparametric. The parametric meth-

ods make an assumption that the data come from a population with a particular underlying probability distribu-

tion of the measured variable, and parametric statistics make inferences about the parameters of such distribution.

This allows parametric tests to have higher statistical power and to make more accurate estimates. However, the

measured variables have to meet the underlying assumptions for parametric methods to be properly applied. The

most widespread assumptions are as follows:

• The population follows a defined distribution (this is often substituted by the expectation that sampled values
follow a defined distribution). In most cases, either linear or unimodal distribution is expected.

• Variables are independent from each other.

• Population variances are equal or at least similar.

• Samples are drawn randomly from the population.

Unfortunately, biological data sets rarely conform to these assumptions. Most data sets are not normally dis-

tributed, variables that are displayed on the relative scale are no longer independent from each other, and often

variances in different populations are not equal. In such cases, the original data set values can be transformed so

that the scale and the distribution of transformed values conform better to the assumptions of a particular paramet-

ric statistic. Most common data transformations include the following:

• Log transformation x0i ¼ logbðxi þ cÞ—very useful for ratios; log bases 2, e or 10 are used most often; c is a small
number added to deal with xi = 0 cases.

• Root transformation x0i ¼ ðxiÞ1=n—with n ≥ 1, it compresses the spread of values in the right tail of the distribu-
tion.

• Power transformation x0i ¼ ðxiÞn—with n ≥ 1, it has opposite to root transformation effect.

• Arcsine transformation x0i ¼ arcsinðxiÞ—is usually applied to per cent and proportion values.

These transformations are very useful for continuous variables, but are less suited for discrete response variables

including count data (O’Hara & Kotze 2010). In addition, if the data set matrix contains many zero values (e.g. spe-

cies missing from a particular habitat), many common methods of multivariate analysis such as PCA or RDA are

not appropriate as they can create false distributions and outputs. For ecological data with many zeroes, Legendre

& Gallagher (2001) recommend two special transformations that will allow these ordination techniques to be

applied to the data set:

• Chord transformation: x0ij ¼ xij=
pðP x2ijÞ.

• Hellinger transformation x0ij ¼
pðxij=

P
xiþÞ; where i—species, j—object and i+ denotes all i’s.

Alternatively, because nonparametric statistics are not based on parameterized probability distributions (they are

‘distribution-free’), they can be directly applied to the original data set, albeit with a loss of statistical power (they

are thus less likely to find a statistically significant difference). Examples of nonparametric methods are permuta-

tion tests and rank-based statistical analyses.

© 2016 John Wiley & Sons Ltd
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the assumptions of a particular statistical technique,

and in some cases, data should be transformed prior to

performing further tests and statistical analyses. We

describe common statistical assumptions and few of the

most widely used data transformation methods in

Box 2.

Another important distinction among different data

set structures is whether data points represent absolute

or relative values. The former are usually raw signal

values obtained through experimental measurements,

while the latter are most frequently derived by scaling

individual recorded signals to obtain the same total

measured signal across objects. The need for signal

transformation into a relative scale is often driven by

the limitations of the experimental techniques. For

example, multistep template preparation protocols used

in high-throughput sequencing and microarray analyses

can introduce an artificial bias into the observed

sequence counts (Paliy & Foy 2011). Thus, we cannot

compare raw signal values for the same variable across

multiple samples and make comparative conclusions,

because the observed higher or lower sequence abun-

dance includes not only true DNA amount in the sam-

ple, but is also influenced by confounding variables

such as sample DNA quality, amplification biases, vari-

ability in sequencing or hybridization efficiency and

DNA concentration measurements. The effects of many

such confounding factors can be removed if raw signal

values for each object are converted into relative values

through a simple x0i ¼ xi=
PðxiÞ transformation. While

this transformation is very useful for simple across-

object comparisons, it causes individual variables to

lose their independency, which is one of the main

assumptions in many statistical tests and analyses

(Box 2). We describe the issues that can arise from the

use of such compositional data, and approaches to miti-

gate these issues in Box 3.

Different types of multivariate approaches

Different available methods of large-scale data set anal-

yses can be organized into groups based on various cri-

teria such as technique goal (e.g. explore variance,

interpret relationships, discriminate groups, test

statistical significance), type of mathematical problem

(regression, (partial) ordination, calibration, classifica-

tion) or variable response model (e.g. linear, unimodal,

mixture distribution) (ter Braak & Prentice 1988). Clear

separation of the methods is hard to achieve, because

the same technique can be used for several different

purposes, methods can utilize different sets of parame-

ters or interobject distance calculations, and many

approaches are mathematically related. In this review,

we distribute the described techniques into three

categories based on the primary research objective of

multivariate analysis.

1 Exploratory methods are used to explore the rela-

tionships among objects based on the values of vari-

ables measured in those objects. For example, soil

samples (objects) collected in different landscapes

can be compared based on the abundances of soil

microbial species (variables) (Hartmann et al. 2014).

These methods provide a useful visualization of

object similarities, as similar objects are usually posi-

tioned close on the visualization plot, and dissimilar

objects are apart from each other. Major gradients of

data variation as well as object similarity can be

evaluated. This category includes different uncon-

strained ordination techniques (Box 4) as well as

cluster analyses (CLAs).

2 Interpretive methods are ‘constrained’ techniques,

which in addition to the main set of measured vari-

ables, also use another set of additional explanatory

variables (for example, known environmental gradi-

ents among objects) during the analysis. The aim of

constrained ordination analyses is to find axes in the

multidimensional data set space that maximize the

association between the explanatory variable(s) and

the measured variables (called response variables).

Thus, the ordination axes are constrained to be func-

tions of the explanatory variables. Coefficients for

each explanatory variable used to calculate each ordi-

nation axis indicate the contribution of that variable

to observed object dispersion along that axis. Con-

strained ordination techniques can be seen as testing

specific hypotheses of how environmental variables

determine response variable values. Visualization of

constrained ordination analysis allows interpretation

of these relationships and reveals object similarity.

This group of methods also includes several multi-

variate statistical tests that are used to assess whether

the observed data distribution can be expected due to

chance.

3 Discriminatory methods are an extension of the inter-

pretive multivariate techniques and are usually called

discriminant analyses (DA). The goal of DA is to define

discriminant functions (synthetic variables) or hyper-

space planes that will maximize the separation of

objects among different classes (Box 4). For example,

in a linear discriminant analysis (LDA), the measured

variables serve as a set of explanatory variables, and

the response variable defines the class of each object.

The discriminant function(s) are constrained to be

specific combinations of explanatory variables. Vari-

able coefficients (often called weights or loadings) used

to calculate each discriminant function indicate the

relative contribution of each of the explanatory vari-

© 2016 John Wiley & Sons Ltd

MULTIVARIATE STATISTICS IN MICROBIAL ECOLOGY 1035



ables to the observed object separation along each

discriminant function. This can provide biological

insight into the determinants of the (dis)similarity

among object classes. Using the calculated discrimi-

nant functions, DA algorithms also generate prediction

models that permit predictive classification of new

objects into one of the classes based on the values of

the measured explanatory variables.

Box 3. Pitfalls of the use of compositional data

Many types of biological and ecological data are expressed as relative-to-total values, such as relative abundances

of different microbial taxa in a soil site, or fraction of particular metabolite in the metabolic profile of a sample.

The widespread use of relative values stems from the technical limitations of employed experimental methods,

which do not allow direct comparison of the raw measured values of a particular variable (such as gene mRNA

level or microbe abundance) between samples. In many cases, an assumption is made that the overall measured

signal should be the same among different samples, and the levels of variables are expressed as a fraction of the

total. Unfortunately, such transformation of raw data into relative form gives rise to the phenomenon of constant-

sum constraint, which violates the assumption of variable independence made in many statistical tests. Specifically,

because the sum of all values in a sample has to equal a predefined value (for example, 1% or 100%), a change of

one of the variables in that sample will cause reciprocal changes in the calculated relative values for other variables

(Faust et al. 2012). This will produce a negative correlation effect between such variables (see Box Table). If the

assumption of the equal overall sum of all measured values among objects is indeed true, such use of composi-

tional data can lead to biologically valid interpretations. However, if ‘equal sum’ assumption can only be techni-

cally but not biologically justified, the use of compositional data can produce false discoveries (see Box Table), as

the joint probability distribution of compositional variables cannot describe the distribution of the underlying abso-

lute variables (Lovell et al. 2015). Ordination techniques can similarly produce erroneous results because many of

these techniques are based on the calculation of the matrix of pairwise distances or dissimilarities which are often

a function of correlation (Lovell et al. 2015). Rank-based nonparametric statistical measures can diminish the effects

of outliers, random noise and deviations from expected probability distribution on the correlation estimates (Shev-

lyakov & Smirnov 2011). They, however, still suffer from the possible lack of congruency between absolute and rel-

ative data distributions as shown by Lovell et al. (2015).

Several approaches are available to mitigate the described issues in compositional data analysis.

1 A centred log-ratio transformation can be applied to the compositional data set as x0i ¼ logðxi=ð
Q

xiÞ1=nÞ, where (∏xi)
1/n

is the geometric mean of all variables xi (i = 1. . .n) in an object (Aitchison 1986; Lovell et al. 2015). This transformation

removes effect of constant-sum constraint on the covariance and correlation matrices; such log-ratio transformed data

set can be subjected to multivariate analyses such as PCA (Kucera & Malmgren 1998). The use of this transformation is,

however, challenging for data sets with many zeroes (Friedman & Alm 2012), and a zero-replacement procedure has

been proposed (Aitchison 1986).

2 The variance of log-ratio transformed data was used as a basis for the SparCC (Sparse Correlations for Compositional

data) approach of correlation network inference (Friedman & Alm 2012). SparCC was shown to be very accurate on

simulated data and was applied to high-throughput

sequencing data sets from Human Microbiome Pro-

ject to reveal robust taxon–taxon interaction net-

works.

3 A specific method to allow construction of correla-

tion networks for ecological compositional data,

called CCREPE (Compositionality Corrected by

REnormalization and PErmutation), has also been

recently developed (Gevers et al. 2014). Taking into

account the constant-sum constraint, CCREPE

adjusts P-values assigned to similarity measures

(such as correlation coefficient) through a Z-test
comparison of the observed similarity distribution

with the null distribution generated through permu-

tation and renormalization of the data. This

approach reduces the number of spurious correla-

tions and false discoveries.

© 2016 John Wiley & Sons Ltd
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This review aimed to provide a short description of the

most widely used multivariate statistical approaches in

microbial ecology. These methods are listed in Table 1,

together with the classification of each method, expected

data structure, and availability of MATLAB and R scripts

to run each algorithm. Figure 1 provides an illustration

of the input expectations for each category of multivari-

ate techniques. A more in-depth description of these and

other multivariate analyses can be obtained from avail-

able literature (Manly 2004; Borcard et al. 2011; Legendre

& Legendre 2012; James et al. 2014; �Smilauer & Lep�s

2014) and online sources such as GUSTA ME (Buttigieg &

Ramette 2015). Stand-alone software packages such as

CANOCO (�Smilauer & Lep�s 2014), PRIMER v6 (Clarke & Gor-

ley 2005) and PAST (Hammer et al. 2001) are available as

alternatives to MATLAB and R scripts.

Exploratory methods

Principal components analysis

Principal components analysis (PCA) is one of the most

widely used and one of the oldest methods of ordina-

tion analyses (Pearson 1901). The general principle of

PCA is to calculate new synthetic variables called prin-

cipal components based on the matrix operations

applied to the original data set of quantitative variables.

Each principal component (PC) is a linear combination

of original variables calculated so that the first PC rep-

resents an axis in the multidimensional data space that

would produce the largest dispersion of values along

this component (see Box 4 Fig. A). Other principal

components are calculated as orthogonal to the preced-

ing components and similarly are positioned along the

largest remaining scatter of the values. Thus, PCA cre-

ates a rotation of the original system of coordinates so

that the new axes (principal components) are orthogo-

nal to each other and correspond to the directions of

largest variance in the data set.

By definition, the first PC axis of the PCA output repre-

sents the largest gradient of variability in the data set,

PC2 axis—the second largest, and so forth, until all data

set variability has been accounted for. Each object can

thus be given a new set of coordinates in the principal

components space, and the distribution of objects in that

space will correspond to the similarity of the variables’

scores in those objects (Box 4). Displaying objects in only

the first two or three PC dimensions is often sufficient to

represent much of the variability in the original data set.

In fact, looking at the per cent of data set variance that is

‘explained’ by each principal component can tell us

whether there are any dominant gradients in the data set.

We can also infer whether few (first few PCs explain

almost all variance) or many (variance ‘explained’ by

each successive PC is distributed along a shallow curve)

effects influenced the observed data distribution.

Because PCA uses Euclidean distance to measure dis-

similarity among objects, care should be taken when

using PCA on a data set with many zeroes, as is often

the case for data with long gradients. As described in

detail by Legendre & Gallagher (2001), when run on

such data sets, PCA can generate severe artefacts such

as horseshoe visualization effect (see Legendre &

Legendre 2012; ter Braak & �Smilauer 2015, for exam-

ples). With this artefact, objects at the edges of the envi-

ronmental gradient actually appear close to each other

in the ordination space (Novembre & Stephens 2008).

While the horseshoe effect can be partially reduced by

processing of the original data values through a chord

or Hellinger transformation before running PCA (Box 2;

Legendre & Gallagher 2001), the use of correspondence

analysis (CA) is usually advocated for such data sets

(ter Braak & �Smilauer 2015).

Principal components analysis can be used as a sim-

ple visualization tool to summarize data set variance

and show the dominant gradients in low-dimensional

space. PCA results are usually displayed as a two- or

three-dimensional scatter plot, where each axis corre-

sponds to a chosen principal component, and each

object is plotted based on its corresponding PC values.
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Fig. 1 Expected input data structure for the multivariate ordi-

nation techniques. Exploratory techniques (blue rectangle) are

used to discern patterns within a single m 9 n matrix of mea-

sured variables and objects. Interpretive techniques (orange

rectangle) are used to explain variation in a set of dependent

variables (measured variables) by another set of independent

variables (explanatory variables). Discriminatory techniques

(pink rectangle) are used to separate objects between different

classes based on the values of measured variables. Predictive

approaches are an extension of discriminatory techniques that

allow classification of a new object based on the generated dis-

crimination model.
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While it is typical to show PC1-vs.-PC2 and/or PC2-vs.-

PC3 scatter plots, any two or three principal compo-

nents can be chosen for visualization. Examples of PCA

use in microbial ecological studies are provided by

Hong et al. (2010), Ringel-Kulka et al. (2013) and Shan-

kar et al. (2013).

Correspondence analysis

Correspondence analysis is an exploratory technique

designed to find relationships (correspondence)

between rows and columns of a matrix of tabulated

data (often called contingency table) and to represent

these relationships in an ordination space (Hill 1973,

1974). While the goal of CA is similar to that of PCA,

important differences exist between these methods:

1 PCA maximizes the amount of explained variance

among measured variables, while CA maximizes the

correspondence (measure of similarity of frequencies)

between rows (represent measured variables) and

columns (represent objects) of a table (Yelland 2010).

Box 4. Introduction into ordination techniques

Ordination methods are a group of multivariate statistical

approaches that attempt to order objects based on the values of

variables measured in these objects (Goodall 1954). Ordination

methods are also often called gradient analyses, because these

algorithms look for the main gradients of variation in multidi-

mensional data space, and then arrange the objects in a new sys-

tem of coordinates with each gradient serving as an axis as shown

in Fig. A. Often, the few largest gradients account for the majority

of the variance in the data. Thus, a large data matrix can be dis-

played in just 2 or 3 dimensions with relative positioning of the

objects representative of the relationships among the variables

measured in these objects. This dimensionality reduction coupled

with the straightforward interpretation of visual distribution of

objects on an ordination plot (close objects have similar values of

variables, distant objects—different) make these ordination tech-

niques a popular choice in ecological studies.

Exploratory ordination methods look for the largest gradients of the scatter in the data, and object distribution in

the ordination space represents the largest sources of dispersion (red arrow in Fig. B). Examination of this output

can reveal groups of similar objects, and it can show whether the main gradients of variance correspond to the

expected sources of data variation. Alternatively, if the potential sources of data variation have been measured,

these additional predictor variables can then be used to guide the analyses using one of the ‘constrained’ ordina-

tion techniques. In these methods, the goal is to look specifically for gradients in the multidimensional data space

that are associated with the observed variation of predictor variables. If the additional variable describes the distri-

bution of objects among different classes, discriminatory ordination analysis will maximize the separation of objects

belonging to different classes (green arrow in Fig. B).

Often, there are many different predictor variables that all influence measured response variables. This can make

interpretation of ordination results difficult as it is harder to estimate the contribution of each predictor variable to the

observed object distribution (see Fig. 6A for an example). To more specifically assess the relationship between particu-

lar predictor variable(s) and response data set, partial ordination analysis can be performed (ter Braak 1988). In this

approach, one or few predictor variables are chosen, and the rest are treated as covariates. Contribution of covariates

to the variability in response variables is factored out, and ordination is then performed on the residual variability.

Partial ordination can reveal how much of the total variation in response variables is attributed specifically to the cho-

sen predictor variable(s), and it can remove the effects of undesired or accidental predictors (Liu 1997). Partial ordina-

tion can be extended further and used as a basis of variation partitioning (Borcard et al. 1992). This approach allows

one to partition the total variation in the data set of response variables into components uniquely as well as jointly

described by individual (groups of) predictor variables. The total variation is then displayed as pie chart or Venn dia-

gram, with each section representing the fraction of total variance explained by each (group of) predictor(s). This

reveals which predictors have the highest effect on the response variables, and it also shows any joint effects between

predictor variables. Volis et al. (2011) and Hildebrand et al. (2013) provide examples of variation partitioning analysis.

(B) Exploratory vs. discriminatory

(A) Dimensionality reduction

Exploratory

Discriminatory
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Thus, transposing the data matrix prior to running

CA produces the same result, while this is not true

for PCA (Choulakian 2001). This property leads to

CA results ordinarily displayed in a biplot, where

both row (variables such as taxa, genes, metabolites)

and column (objects such as samples, sites) variables

are jointly depicted on the same ordination chart. For

each variable, the position of the point on a plot rep-

resents its estimated optimum along the gradient.

2 While PCA expects a linear relationship among vari-

ables, CA is based on a unimodal model. This is a very

important distinction as we describe in detail in Box 5,

and the choice between PCA and CA should depend

on the type of variables being analysed, assumed

response model, and the lengths of the gradients and

variable distributions (�Smilauer & Lep�s 2014).

3 The distances among objects in full CA ordination

space are equal to a variant of Euclidean distance,

called the weighted Euclidean distance or chi-square

distance. The calculation of chi-square distance does

not take into account cases where the value of a vari-

able in two different objects is zero. Thus, CA is well

suited to the analysis of data sets of species composi-

tion and abundance, where sites at both ends of

environmental gradient usually lack many common

species. Note, however, that as described in detail by

ter Braak & �Smilauer (2015), true chi-square distance

between objects is only visualized in the full CA ordi-

nation space. In two dimensions and with detrending

applied, the interobject distances now represent

actual ecological distances (ter Braak & �Smilauer

2015).

While CA does not suffer from the horseshoe effect

described above for PCA, unmodified CA ordination

output can often produce a noticeable ‘arch’ effect (see

ter Braak & �Smilauer 2015, for an example). Arch effect

is a mathematical artefact where distribution of objects

along the first canonical axis is also partially mirrored

in the second axis, because CA axes are constrained to

be uncorrelated but not necessarily unrelated of each

other (Hill & Gauch 1980). The arch effect can be elimi-

nated by the use of a detrended correspondence analy-

sis (DCA) technique, which attempts to remove

residual axis 1 variance from axis 2 object scores (Hill

& Gauch 1980; Lockyear 2000; ter Braak & �Smilauer

2015). Detrending can also correct the shrinking of

interobject distances at the ends of ordination axes and

can reduce the influence of uncommon variables (e.g.

rare species). Note that while often useful, the detrend-

ing procedure does not always lead to an ordination

output that better reflects the observed environmental

gradients (see Legendre & Legendre 2012, for an in-

depth discussion).

Correspondence analysis and DCA were shown to

approximate well the ecological niche model and the typ-

ically expected Gaussian distribution of ecological vari-

ables (ter Braak & Looman 1986; ter Braak 1987). These

techniques have been applied in ecology to analyse spe-

cies distribution across many sites and samples, and to

visualize sample similarity based on the presence and

absence of different species (Prideaux et al. 2013). Other

examples of CA use can be found in Jones et al. (2007),

Perez-Cobas et al. (2014) and Thureborn et al. (2013).

Principal coordinates analysis

Principal coordinates analysis (PCoA) is a conceptual

extension of the PCA technique described above. It

similarly seeks to order the objects along the axes of

principal coordinates while attempting to explain the

variance in the original data set. However, while PCA

organizes objects by an eigen analysis of a correlation

or covariance matrix, PCoA can be applied to any

distance (dissimilarity) matrix (Gower 1966). PCoA

has gained recent popularity in microbial ecology due

to its ability to use phylogenetic distance (e.g. UniFrac

distance; Lozupone & Knight 2005) and community

composition (e.g. Bray–Curtis distance; Bray & Curtis

1957) measures to calculate (dis)similarity among

microbial populations. Another potentially good

choice of a distance measure is a recently introduced

distance correlation metric dCor, which is able to

robustly capture nonlinear relationships between vari-

ables (Szekely et al. 2007). Because PCoA uses dis-

tance matrix as its input, it is not possible to directly

relate any of the measured variables to individual

principal coordinate axes (Ramette 2007). An indirect

correlation or regression analysis of object PC values

vs. object scores for a particular variable can instead

be used to estimate the contribution of that variable

to object dispersion along a particular PC axis

(Koenig et al. 2011).

A particularly useful implementation of PCoA for the

microbial ecology studies has been developed by Rob

Knight group (Lozupone & Knight 2005). This PCoA

uses a measure of phylogenetic community distance,

called UniFrac metric, calculated as the fraction of total

branch lengths on a community phylogenetic tree that

are unique to one microbial population or the other.

Thus, if the two populations are identical and the same

members are found in both, all the phylogenetic tree

branches are shared, and the UniFrac value is 0. If no

member is shared by two populations, then all of the

branches are unique, thus providing the maximum pos-

sible UniFrac distance. The calculated UniFrac distance

metric can therefore be used as a measure of the phylo-

genetic similarity of the community structure between
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populations. A variant of the algorithm, called

weighted UniFrac (Lozupone et al. 2007), was also

introduced, which weighs the tree branches according

to the abundance of each community member. Exam-

ples of PCoA use in ecological research are provided

by Fierer et al. (2012), Koren et al. (2013) and Schnorr

et al. (2014).

Nonmetric multidimensional scaling

Multidimensional scaling (MDS) is a unique ordination

technique in that a (small) number of ordination axes

are explicitly chosen prior to the analysis and the data

are then fitted to those dimensions. Thus, if only 2 or 3

axes are chosen, there will be no nondisplayed axes of

variation at the end of the analysis. Similar to PCoA, a

matrix of object dissimilarities is first calculated using a

chosen distance metric. In nonmetric multidimensional

scaling (NMDS), ranks of these distances among all

objects are calculated. The algorithm then finds a con-

figuration of objects in the chosen N-dimensional ordi-

nation space that best matches differences in ranks

(Kruskal 1964).

Because NMDS is a numerical rather than an analyti-

cal technique, it does not produce a unique solution. A

‘stress’ parameter is computed to measure the lack of fit

between object distances in the NMDS ordination space

and the calculated dissimilarities among objects. The

NMDS algorithm then iteratively repositions the objects

in the ordination space to minimize the stress function

Table 1 Common multivariate statistical tools

Technique

Assumed

relationship* Input R script† MATLAB script†

Exploratory

PCA Linear Raw data prcomp (stats) princomp (built-in)

CA/DCA Unimodal Raw data ca (mva)

decorana (vegan)

CAR‡

PCoA AnyDM Distance matrix pcoa (ape) f_pcoa (Fathom toolbox§)

NMDS AnyDM Distance matrix metaMDS (vegan) mdscale (built-in)

Hierarchical clustering AnyDM Distance matrix hclust (stats) pdist + linkage + cluster (built-in)

K-means clustering AnyDM Distance matrix kmeans (stats) kmeans (built-in)

Interpretive

CCorA Linear Raw data CCorA (vegan) f_CCorA (Fathom toolbox§)

CIA AnyORD Ordination output coinertia (ade4) coinertia.m¶

PA Any Any procrustes (vegan) f_procrustes (Fathom toolbox§)

RDA Linear Raw data rda (vegan) f_rda (Fathom toolbox§)

db-RDA AnyDM Distance matrix capscale (vegan) f_rdaDB (Fathom toolbox§)

CCA Unimodal Raw data cca (vegan) CAR‡

PRC Linear Raw data prc (vegan) —

GLM AnyLF Raw data glm (stats) glmfit (built-in)

Mantel test Any Distance matrix mantel (vegan) f_mantel (Fathom toolbox§)

ANOSIM Any Distance matrix anosim (vegan) f_anosim (Fathom toolbox§)

PERMANOVA Any Distance matrix adonis (vegan) f_npManova (Fathom toolbox§)

Discriminatory

DFA Linear Raw data candisc (candisc) DA (Classification toolbox**)

OPLS-DA Linear Raw data oplsda (muma) osccalc + pls (PLS_toolbox�)

SVM AnyKF Raw data ksvm (kernlab) svmtrain (built-in)

RF Any Raw data randomForest (randomForest) classRF_train (RF_MexStandalone††)

DM, assumed relationship depends on the distance metric used. ORD, assumed relationship depends on the ordination technique

used. LF, assumed relationship depends on the link function used. KF, model can be linear or nonlinear if a nonlinear kernel func-

tion is incorporated.

*Expected relationship among variables.
†Entries indicate functions for the respective platforms. Names within brackets represent the package that contains the function.
‡Described in Lorenzo-Seva et al. (2009).
§Described at http://www.marine.usf.edu/user/djones/matlab/matlab.html and available from: http://www.marine.usf.edu/user/

djones/.
¶Described in Doledec & Chessel (1994).

**Described in Ballabio & Consonni (2013).
††Available at https://code.google.com/p/randomforest-matlab/.
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(Dugard et al. 2014). Stress values ≤0.15 are considered

generally acceptable (Clarke 1993).

Nonmetric multidimensional scaling makes few

assumptions about the distribution of data, and is often

used for molecular fingerprinting techniques such as

denaturing gradient gel electrophoresis (DGGE) and ter-

minal restriction fragment length polymorphism

(TRFLP) (Littman et al. 2009). For data sets with many

different gradients of variance, NMDS ordination can be

superior to that of other ordination techniques (Minchin

1987). That is because with Naxis = 2 all data set variance

is utilized to distribute objects in a two-dimensional

NMDS ordination plot, whereas the first two dimensions

of the PCA/CA/PCoA ordination only display a part of

that variance (Legendre & Legendre 2012). NMDS, how-

ever, does not perform a simultaneous ordination of

both variables and objects. Note that NMDS is not an

eigenvector-based gradient analysis technique but rather

is a mapping method. Each of its ordination axes does

not correspond to a particular gradient in the original

data set, and its goal is to represent ranks of pairwise

dissimilarities among objects. Examples of how NMDS

has been utilized in ecological research can be found in

Mason et al. (2014) and Ushio et al. (2015).

Cluster analysis

The goal of CLA is to separate variables into groups

based on the similarity of variables’ scores among

objects, so that variables within each group (cluster) are

more similar to one another than to variables in other

groups (Driver & Kroeber 1932). The algorithms mini-

mize the within-group distances and maximize

between-group distances. The same approach can also

be used to distribute objects into groups. After objects/

variables are clustered into individual groups, all

Box 5. Models of variable response to environmental gradients

The goal of ecological studies is to assess and contrast the relationships between (groups of) biological entities (spe-

cies, metabolites, proteins, etc.) and their environment. To accomplish this, parametric statistical techniques need to

make a specific assumption of the type of the relationship, generally called variable response model, in order to

define the appropriate mathematical calculations. While linear relationships are the simplest (the relationships are

modelled by a straight line), true linear gradients are rare in nature (Whittaker 1967). Instead, current evidence

shows that biological variables tend to display a nonmonotonic relationship with the environment and have an

optimum and low-density areas (Whittaker 1956, 1967). For example, consistent with the ecological niche model,

species distribution along a gradient (spatial, temporal, response to perturbation, etc.) usually displays a unimodal

shape with higher population density in the middle of the distribution area and fewer members towards the edges

of the territory (Whittaker et al. 1973; Austin 2007). The standard statistical methods that assume linear relation-

ships are thus not appropriate for the analyses of such variables. Instead, Gaussian models, first promoted by

Gauch & Whittaker (1972), were found to be a good approximation of the distribution of ecological variables. These

models are also well suited to deal with compositional data, data with many zeroes and binary (presence/absence)

variables (ter Braak & Verdonschot 1995). There are, however, two caveats. First, linear-based methods can be used

on some nonlinear response data sets if the data can first be transformed to linearity (Box 2). Second, note that over

a narrow range of environmental gradient, distribution of response variable can approximate linear function, and

thus, linear methods such as PCA might be appropriate (Box Fig. 2). Further discussion of this topic can be found

in Austin (2007). An excellent guide for the gradient length-based choice between unimodal and linear-based ordi-

nation approaches can be found in �Smilauer & Lep�s (2014).

Based on considerations described above, several different types of response models can be chosen. Linear

response models are implied in the Euclidean distance-based methods such as PCA and RDA. Unimodal responses

can be described explicitly with maximum-likelihood estimators of Gaussian curves, or heuristically with weighted

averaging estimators (ter Braak & Looman 1986; ter Braak & Prentice

1988). The ordination methods based on the former approach are available

but have generally not been used often due to complexity (Yee 2004).

Weighted averaging estimators are much simpler and were used as a basis

for the ‘reciprocal averaging’ method (correspondence analysis) developed

by (Hill 1973) as an approximate solution to Gaussian ordination. Finally,

a number of ordination methods such as PCoA, db-RDA and NMDS are

not based on specific underlying model of variable–environment relation-

ship, but instead rely on the user-defined matrix of (dis)similarities among

all objects. Environmental gradient
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members of the same group can be considered together.

This facilitates the interpretation of high-throughput

data. CLA has been particularly popular in the analyses

of high-throughput microarray gene expression data,

because it is more straightforward to examine just a

few different types of gene expression responses after

environmental perturbation instead of analysing each

individual gene behaviour separately (Withman et al.

2013). Because CLA allows the use of any distance met-

ric that can generate (dis)similarity measures, this

approach can be equally well suited to ecological data

(Gajer et al. 2012; Shankar et al. 2014). Below, we

describe the two most common types of CLA.

Hierarchical clustering. Hierarchical clustering (HCA)

produces a joint treelike organization of variables, with

organization and length of branches indicative of the rel-

ative similarity of different variables. HCA is usually

accomplished through an agglomerative approach where

single variables that are most similar to each other are

first successfully joined into common nodes, which are

then joined with other nodes and so forth. This process

continues iteratively until all variables have been incor-

porated into nodes that form a single connected struc-

ture. The order of how the nodes were formed and

joined is displayed through the organization of the nodes

into a ‘hierarchy’ tree (called dendrogram). The connec-

tivity and length of tree branches reflect the similarity

between variables and nodes. There are several different

methods to compute the distances between nodes (e.g.

single linkage, complete linkage and average linkage, the

latter is generally used most often), which influences rel-

ative node positioning and tree branching (Ferreira &

Hitchcock 2009). HCA provides a simple way to visual-

ize similarities among variables, and the dendrogram

structure can be used to make inferences about grouping

of variables. A special case of HCA is biclustering (some-

times called two-way clustering), which produces simul-

taneous clustering of rows and columns of the data

matrix. Biclustering can find features (genes, microbial

taxa, etc.) that correlate only in a subset of objects but not

in the rest of the data set (Sridharan et al. 2014; Shankar

et al. 2015).

Disjoint clustering. We use this term to describe a num-

ber of related clustering techniques that aim to separate

all variables or objects into individual, usually mutually

exclusive, and in most cases unconnected clusters. One

of the most frequently used disjoint clustering methods,

K-means clustering, seeks to partition all variables into

predefined K number of individual clusters. The initial

cluster reference profiles (variable’s value for each

object) are either generated randomly, defined by user,

or a single random variable is chosen in the beginning

to seed each cluster. All variables are then assigned to

one of these predefined clusters based on the shortest

distance of each variable to cluster centroids. Each clus-

ter reference profile is then recalculated based on the

mean of the variables in that cluster, and all variables

are repartitioned into clusters. This process is repeated

until a stable solution is achieved. Because initial cluster

reference profiles are often chosen randomly, K-means

clustering is considered nondeterministic, so repeats of

this procedure on the same data set can produce some-

what different results. Thus, it is advisable to run K-

means algorithm multiple times and then choose the

clustering result that achieves the lowest total error

sum of squares (sum of squared distances among vari-

ables within each cluster; represents how ‘tight’ vari-

ables are within each cluster; Arthur & Vassilvitskii

2007). The chosen number of K clusters has a large

impact on cluster profiles, and there are mathematical

approaches to define the optimal number of clusters

(Hastie et al. 2001). K-means clustering was used to

define groups of genera that are modified by the faecal

microbiota transplantation (FMT) in patients with

Clostridium difficile-associated disease (Shankar et al.

2014), and to associate glycan degradation patterns with

microbial abundances in mammalian gut (Eilam et al.

2014). Other clustering techniques are available such as

TWINSPAN (Hill 1979), self-organizing maps (Kohonen

1982) and DBSCAN (Ester et al. 1996).

Interpretive methods

Interpretive methods described in this section can be fur-

ther subdivided into three types. Symmetric approaches

compare two data sets and do not distinguish variables

between explanatory and response. These include canon-

ical correlation analysis (CCorA), co-inertia analysis

(CIA) and procrustes analysis (PA). Asymmetric

approaches also use two different sets of variables but

designate one set as explanatory (independent) variables

and another as response (dependent) variables. Dis-

cussed asymmetric techniques are redundancy analysis

(RDA), canonical CA, principal response curves (PRC)

and generalized linear models. Finally, we also include

in this group three techniques that are focused on the sta-

tistical significance testing of multivariate data sets.

Canonical correlation analysis

Canonical correlation analysis is a multivariate exten-

sion of simple correlation analysis. The goal of this

method is to investigate the associative relationship

between two sets of variables. If we have two sets of

variables, X = (x1, x2,. . .,xn), and Y = (y1, y2,. . .,yn), and

there are correlations among the variables, then CCorA
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will aim to find linear combinations of the x’s and the

y’s that would provide maximum correlation between

X and Y. As the goal is to find correlations, there is no

assumption of which variables are predictive and which

are responsive. CCorA output is a set of orthogonal

canonical variates with a corresponding set of canonical

correlations. The first canonical correlation is between

the first canonical variates XCV1 and YCV1 and has the

largest value, the second—between the second canoni-

cal variates and has the second largest value, and so

forth. Once the canonical variates are calculated, we can

assess how each original variable contributed towards

each canonical variate based on the weight coefficient

of that variable. This is usually done for XCV1 and YCV1

variates, as they show the strongest correlation in com-

parison with other pairs. The level of overall association

between two variable sets can be assessed by the frac-

tion of their joint covariance explained by all pairs of

canonical variates. Examples of the use of CCorA in

microbial ecology can be found in Schwartz et al.

(2012), Wang et al. (2012b) and Guan et al. (2013).

Co-inertia analysis

The goal of CIA, similarly to CCorA, is to find the

strongest associations between two sets of variables.

The method was developed by Doledec & Chessel

(1994) to specifically study species–environment

interactions. In contrast to CCorA, the relationships are

based on the covariance rather than on a correlation. In

a typical CIA approach, both sets of variables are first

subjected to a gradient analysis such as PCA or CA.

Using each ordination output, an axis of variance (iner-

tia) is then found in each ordination space so as to

achieve the maximum covariance between the projected

object values along each axis. Further pairs of axes that

maximize the remaining covariance can be calculated

under orthogonality constraints. Co-inertia is thus a

measure of the similarity of object distribution in both

ordination spaces and is quantitatively defined by an

RV coefficient (Heo & Gabriel 1998; Dray et al. 2003a).

CIA allows each variable set to be analysed by a differ-

ent ordination algorithm (Dray et al. 2003a). CIA has

been used in several recent studies to reveal relation-

ships between human-associated microbiome and meta-

bolome data sets in the gut of the elderly (Claesson

et al. 2012), on the intestinal mucosal surface (McHardy

et al. 2013), and in obese subjects (Zhang et al. 2015).

Procrustes analysis

Procrustes analysis is a statistical method of comparing

the distributions of multiple sets of corresponding

objects (Hurley & Cattell 1962; Gower 1975). Because

each data set can be depicted as a cloud of objects in a

multidimensional space, this analysis is also referred to

as comparison of shapes. The aim of this technique is to

superimpose structures and then move, rotate, and scale

them so as to achieve the best match (the smallest differ-

ence in shapes). In microbial ecology studies, PA is usu-

ally used to compare the distributions of the same set of

objects in different ordination spaces. Here, PA mini-

mizes the square root of sum of squared distances (some-

times called Procrustes distance) between the positions

of the same object in different ordination outputs. For

example, we have carried out microbial and metabolite

profiling of the same set of faecal samples obtained from

several cohorts of children (Shankar et al. 2013, 2015).

Several different ordination analyses indicated that sam-

ples could be separated largely based on their cohort

assignment in both microbiota and metabolite data sets.

By employing PA of the distributions of samples in PCA

plots based on these two data sets, we showed that the

separation of samples was congruent between metabolite

and microbial data sets. Position of a particular sample

in microbiota-based ordination plot was generally close

to its placement in the metabolite-based ordination chart

(Fig. 2). By randomly changing the object IDs in one of

the sets, a statistical significance of the observed mini-

mized Procrustes distance was obtained (Shankar et al.

2015). Similar to CIA, PA can be applied to outputs from

any ordination method. Thus, it can also be used to

assess whether multiple ordination techniques applied to

the same object-by-variable data set produce similar

results (Bassett et al. 2015). Other examples of PA use are

provided in studies by Claesson et al. (2012), McHardy

et al. (2013) and Zhang et al. (2015).

All three symmetrical techniques described above are

closely related. Compared to CCorA, both CIA and PA

impose no constraints on the number of variables in the

data sets compared to the number of objects, and they

have fewer assumptions (Legendre & Legendre 2012).

CIA provides a more readily interpretable quantitative

assessment of the strength of the global association (RV

coefficient), while PA can be run on a wider range of input

tables. Both CIA and PA can be applied to more than 2

data sets simultaneously (Ten Berge 1977; Bady et al.

2004). An approach merging CIA and PA within the same

analysis has been proposed (Dray et al. 2003b).

Redundancy analysis

Redundancy analysis is a type of constrained ordination

that assesses how much of the variation in one set of

variables can be explained by the variation in another

set of variables. It is the multivariate extension of simple

linear regression that is applied to sets of variables (Rao
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1964; Van den Wollenberg 1977). RDA is based on simi-

lar principles as PCA, and thus assumes linear relation-

ships among variables. RDA is in fact a canonical

version of PCA where the principal components are

constrained to be linear combinations of the explanatory

variables. If the expected relationship between response

variables and environmental gradients is unimodal

rather than linear (Box 5), then the canonical CA

described below is more appropriate.

A combination of two data sets is required to run

RDA: the first data set contains response (dependent)

variables (species presence or abundance, metabolite

levels, etc.) and the other set contains explanatory (pre-

dictive) variables (such as environmental variables or

experimental treatments measured in the same samples

or sites) (see Fig. 1). ‘Redundancy’ expresses how much

of the variance in the set of response variables is

explained by the set of explanatory variables. The frac-

tion of the total variance observed in response variables

that is explained by all the explanatory variables is a use-

ful indication of how much variance in the species distri-

bution, for example, is due to differences in

environmental factors between sites. The output of RDA

is an ordination that is usually shown on a two-dimen-

sional ‘triplot’, with constrained RDA dimensions used

as axes. Each object is depicted by a point, and response

variables are represented by arrows originating from the

coordinate system origin, and explanatory variables by

either arrows (quantitative variables) or points (categori-

cal variables). Because triplots display a lot of data on a

single plot, their interpretation is more challenging. On a

distance triplot, distances between objects represent the

between-object similarity; the angles between arrows of

response variables and arrows of explanatory variables

represent the found associations between those variables.

Finally, the projection of an object onto an arrow

approximates the value of the corresponding variable in

this object. A detailed description of the interpretation of

ordination diagrams can be found in ter Braak &

Verdonschot (1995) and �Smilauer & Lep�s (2014). Alterna-

tively, to simplify interpretation, one can carry out par-

tial constrained ordination such as PRC analysis

described below (see also Box 4).

A special variant of RDA, called distance-based RDA

or db-RDA, can be used when the response data are

available as dissimilarity matrix, or when the use of

Euclidean distance is inappropriate (Legendre & Ander-

son 1999; Anderson & Willis 2003). db-RDA is thus a

constrained version of PCoA, and it provides an oppor-

tunity to use phylogenetic and ecological distances in

constrained ordination analysis (Shakya et al. 2013).

Examples of the use of RDA for constrained analysis of

ecological data sets are available in the works by

Rajilic-Stojanovic et al. (2010), Zhang et al. (2012a) and

Ringel-Kulka et al. (2013).

Canonical correspondence analysis

The goal of the canonical correspondence analysis

(CCA) is similar to that of RDA as it too aims to find

the relationship between two sets of variables X and Y.

However, whereas RDA assumes a linear relationship

among variables, CCA expects a unimodal relationship.

Thus, CCA is a canonical form of CA of the response

variable set that is constrained by the set of explanatory

variables (ter Braak 1986). Note that CCorA can also be
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Fig. 2 Use of procrustes analysis to test for congruency between ordination outputs. Principal components analysis (PCA) was per-

formed on centred log-ratio transformed compositional metabolite binned data (panel A) and compositional microbiota phylotype

data (panel B) for the same set of human faecal samples. Raw metabolite and microbiota data sets were taken from Shankar et al.

(2015). PCA results were provided as input to procrustes analysis to compare object positioning in PCA ordination spaces. Panel C

displays the first two dimensions of the procrustes analysis output. The distance between each sample position on two PCA plots is

indicated by connecting line. Shorter lines represent more similar object positioning on both PCA plots. P-value for statistical signifi-

cance of observed object separation congruency was generated using randomization of object labels.
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abbreviated as CCA in the literature. These are, how-

ever, two different techniques. The visual output of

CCA is a triplot similar to that of RDA, where in addi-

tion to objects and variables typically shown on a CA

plot, the explanatory variables are also shown as either

arrows (quantitative variables) or points (categorical

variables). An example of CCA plot interpretation is

provided below. Examples of CCA utilization in ecolog-

ical studies can be found in Wang et al. (2012a), Zhang

et al. (2013) and Yan et al. (2015).

Principal response curves

When data sets contain a large number of explanatory

and response variables, interpretation of RDA and

CCA plots can become quite challenging, especially

when there are interaction effects among explanatory

variables (ter Braak & �Smilauer 2015). In such cases,

an influence of any individual explanatory variable on

the observed distribution of objects is not readily iden-

tified. To facilitate visual representation of such com-

plex constrained analyses and to limit interpretation to

a single effect (single explanatory variable) and an

interaction with a second effect, principle response

curves method can be used [not to be confused with a

distinct ‘principal curves’ technique proposed by

De’ath (1999)]. PRC was initially developed by van

den Brink & ter Braak (1999) to visualize and interpret

differences between treatment and control communities

over time. PRC algorithm carried out a partial RDA

ordination (Box 4) to partition the variance between

individual effects and their interaction term. The

canonical coefficients obtained in RDA for each sample

were then displayed in a line chart (principal curve)

with time plotted on the X axis (van den Brink & ter

Braak 1999). PRC is especially useful for the analysis

of longitudinal series of measurements, as time-depen-

dent effects can be clearly isolated in PRC from other

effects (Fig. 6B). PRC was further extended by van den

Brink et al. (2009) to use a single reference point as

control for each series of measurements, allowing lon-

gitudinal analysis of individual communities. Multiple

sets of objects can be displayed on the same chart as

separate response curves, and time can be substituted

by other gradient present in the experimental design

or the data set (van den Brink et al. 2009; ter Braak &
�Smilauer 2015). The congruency between each variable

response pattern and computed principal response

curve is provided by variable weights, which are dis-

played on a separate chart (Fig. 6B; van den Brink &

ter Braak 1999). Although PRC is yet to be extensively

utilized in microbial ecology research, few examples

are provided in the reports by Zhang et al. (2012b) and

Fuentes et al. (2014).

Generalized linear modelling

Generalized linear modelling (GLM) is a term that

describes a statistical approach to relate response vari-

able(s) to the linear combinations of the explanatory

(predictor) variable(s) (Nelder & Wedderburn 1972).

GLM is an extension of the standard linear models such

as regression and analysis of variance (ANOVA). The

power of GLM lies in its ability to generate not only

regression models for continuous response variables,

but also models for discrete and categorical response

variables (Nelder & Wedderburn 1972). In GLM, the

values of response variable are ‘predicted’ from a linear

combination of explanatory variables by connecting

them via a so-called link function. Many different link

functions can be chosen (examples include log, inverse,

power, root and logit functions), and several different

distributions of the response variable may thus be

defined (examples include linear, Gaussian, logistic and

beta distributions). This provides GLM with a tremen-

dous flexibility. The output of GLM is (i) a set of regres-

sion coefficients defining the modelled relationship

between explanatory and response variables, and (ii)

statistical assessment of the fit of the model to the data

(Fox 2008). The generated model can then be evaluated

to reveal the strength and statistical significance of the

relationship between each predictor variable and the

response variable. Multivariate extension of GLM is

available (Warton 2011), an ordination algorithm based

on GLM dimensionality reduction has been developed

(Yee 2004), and further extension of GLM, called gener-

alized additive modelling, has been made (Hastie &

Tibshirani 1986). Several recent studies have indicated

that for ecological data sets that often contain many zer-

oes, GLM carried out on the data set of measured vari-

ables performed better than standard parametric

analyses conducted on log- or power-transformed

values (O’Hara & Kotze 2010; Warton et al. 2012).

Mantel test, analysis of similarities (ANOSIM) and
permutational multivariate analysis of variance
(PERMANOVA)

Mantel test, ANOSIM and PERMANOVA are multivariate statis-

tical tests of significance. Mantel test typically compares

two distance matrices that were calculated for the same

set of objects but that are based on two independent sets

of variables (e.g. a species dissimilarity matrix and site

distance matrix) (Mantel 1967). The test calculates the

correlation between values in the corresponding posi-

tions of two matrices. Significance of the linear relation-

ship between matrices is assessed through permutation

of objects (Box 6). The goal of Mantel test is similar to

that of CCorA, CIA and PA (Lisboa et al. 2014).
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ANOSIM tests for significant difference between two or

more classes of objects based on any (dis)similarity mea-

sure (Clarke 1993). It compares the ranks of distances

between objects of different classes with ranks of object

distances within classes. The basis of this approach is

similar to the NMDS ordination technique described

above. As ANOSIM is based on ranks, it has fewer assump-

tions compared to the regression techniques such as mul-

tivariate analysis of variance (MANOVA).

PERMANOVA is a nonparametric method to conduct

multivariate ANOVA and test for differences between

object classes (Anderson 2001). Any dissimilarity metric

can be used, and the test statistic is calculated from the

comparison of dissimilarities among interclass objects to

those among intraclass objects. Significance levels (P-

values) are obtained through permutation (Box 6).

Note that most ordination techniques can also assess

the statistical significance of observed object distribution

via permutation-based analysis (Box 6).

Discriminatory methods

Discriminant function analysis

Discriminant function analysis (DFA) comprises a

group of ordination techniques that find linear combi-

nations of observed variables that maximize the

grouping of objects into separate classes (Fisher 1936).

Here, the measured variables are the predictor vari-

ables, and the variable that defines object classes is

treated as the response variable (also called grouping

variable). In literature, DFA is also called either LDA,

or canonical discriminant analysis (CDA, also called

multiple discriminant analysis; usually implies that

more than two classes of objects are available). Algo-

rithmically, DFA methods generate latent variables

(called discriminant functions or DFs) that maximize

the formation of coherent, well-separated clusters of

objects. Multiple discriminant functions can be

extracted, each orthogonal to the others, until their

number equals the number of predictor variables or

the number of object classes minus one, whichever is

smaller. An eigenvalue associated with each DF

defines the discriminating ‘power’ of that function.

DFA techniques are related to PCA; however, unlike

PCA which summarizes total variation in the data set,

LDA and CDA derive synthetic variables that specifi-

cally maximize the between-class object dispersion.

Because each discriminant function is a weighted lin-

ear combination of the measured predictor variables,

the weights (called discriminant coefficients) can be

used to define the contribution (i.e. importance) of

each predictor variable to the observed discrimination

between classes of objects. Results of the DFA can be

visualized through a scatter plot with discriminant

functions serving as synthetic axes.

Like PCA, DFA is based on the noniterative, eigen-

vector-based solution. As a result, it is more computa-

tionally efficient than iterative methods, and is

appropriate for extremely large data sets. A model of

class prediction can also be generated during discrimi-

nant analysis. Such model can be used to provide pre-

dictions for a new (‘unknown’) object based on the

values of measured variables in that object (Putnam

et al. 2013). Examples of the use of different DFA vari-

ants in ecological studies are available in the reports by

Gilbert et al. (2012) and Koenig et al. (2011).

Orthogonal projections to latent structures
discriminant analysis

Orthogonal projections to latent structures discriminant

analysis (OPLS-DA) is based on the principle of partial

least-squares (PLS) regression; PLS itself is an extension

of the multiple linear regression model (Wold 1966). The

goal of PLS regression is to predict response variable(s) Y

from a (large) set of predictor variables X. PLS regression

reduces the set of predictor variables to a smaller set of

uncorrelated components and then performs least-squares

regression on these components. In the process, both vari-

ables X and Y are projected to a new space. This process

is called projection to latent (hidden) structures (Abdi &

Williams 2010). Compared to multivariate regression, PLS

has fewer assumptions (it can use predictor variables that

are collinear and not independent; Tobias 1995). An addi-

tional modification to the PLS regression was developed

by Trygg & Wold (2002), who introduced a way to

remove systematic variation from the predictor variable

data set X that is not correlated to the response variable

data set Y, that is to remove variation within X that is

orthogonal to Y. The advantage of such orthogonal projec-

tions to latent structures (OPLS) method is that a single

latent variable (designated ‘T’) is used as a predictor of Y.

All variability in X is separated into predictive (T) and

uncorrelated information (Torthogonal), and the two compo-

nents can be analysed separately. In OPLS discriminant

analysis, the Y is a binary class-designating variable, and

the analysis aims to find the best separation between

classes of objects along the T axis, while all variation

unrelated to class separation is distributed along the

Torthogonal axes (Westerhuis et al. 2010). Similar to DFA,

each variable’s loading indicates its contribution to the

OPLS model. The generated model can then be applied to

a new object to predict its class given the values of its X

variables. The OPLS-DA output provides measures of the

model fit (R2), model predictive power (Q2) and model

accuracy based on a cross-validation procedure. Examples

of OPLS-DA use in multivariate ecological analyses can
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be found in Shankar et al. (2013) and Ramadan et al.

(2014).

Support vector machine

Support vector machine (SVM) is a supervised machine

learning algorithm that can be used for both classifica-

tion and regression (Vapnik 1979; Cortes & Vapnik

1995). Using a training set of objects separated into

classes, the SVM algorithm finds a hyperplane in the

data space that produces the largest minimum distance

(called margin) between the objects that belong to dif-

ferent classes. The larger the margin, the lower the

expected prediction (i.e. misclassification) error. As

shown in Fig. 3, in comparison with DFA, which uses

differences in class means to separate objects (Welling

2005), SVM only considers the objects on the edges of

the margin (these are called support vectors). This

increases class separation and reduces expected predic-

tion error. SVM can be used for both linear and nonlin-

ear-based discriminatory analyses (Gu et al. 2010), and

is considered to be a superior DA method for high-

dimensionality data sets with small sample size, espe-

cially when variable selection and filtering are included

in the algorithm (Gokcen & Peng 2002; Knights et al.

2011). While SVM has yet to be used extensively in

microbial ecology, at least one example is available

(Yang et al. 2006).

Random forest

Random forest (RF) is an ensemble learning approach

based on the use of decision (classification) trees. Deci-

sion tree learning seeks to construct a statistical model

to predict the values of response variable(s) based on

the given values of predictor variables. The model is

obtained by iteratively partitioning the space of predic-

tor variables and establishing a value of the response

variable within each partition (Loh 2011). The result of

such partitioning can be represented as a decision tree

containing a set of if-then logical conditions. RF ‘grows’

many different decision trees for the same data set and

thus is a type of ensemble classifier. The existing data

set is used to build predictive classification trees and

‘train’ the algorithms. To classify a new object, the input

data (values for all predictor variables) are provided to

each tree, which then generates an output classification

(called a vote). The RF then chooses the classification

that garnered the most votes among all the trees in the

forest.

Random forest has been shown to achieve very high

discriminating power and accuracy of classification

(Cutler et al. 2007). This is because RF voting consoli-

dates decisions across thousands of individual trees

that together provide very high overall classification

accuracy despite potentially low classification accuracy

of some individual trees. This technique also does not

suffer from high variance or bias that single classifica-

tion model can have. The accuracy of the constructed

model can be calculated by the cross-validation tech-

nique (Japkowicz & Shah 2014), while the similarities

among objects can be assessed by computing the aver-

age proximity (fraction of trees where objects occupy

the same position on a particular tree) for each pair

of objects. Variable importance in the classification

model can be estimated in RF by permutation tests

(Box 6). Specifically, the values of one of the predictor

variables are randomly swapped in the data set and

the number of votes for the correct assignment in all

trees is then calculated. The difference in the number

of votes between the ‘untouched’ forest and the vari-

able-permuted forest represents the importance score

of that variable in the RF model. Results of RF analy-

sis can be visualized as a MDS scatter plot of matrix

of proximities among objects. RF has been used in

several recent studies as described by Yatsunenko

et al. (2012), Lozupone et al. (2013) and Shankar et al.

(2013).

In a recently published article, Knights et al. (2011)

compared the performance of several different discrimi-

natory and classification techniques. Data describing the

community composition of human-associated micro-

biota were used as benchmarks, and several different

algorithms including SVM and RF were compared. RF

achieved the best performance among the compared

techniques, followed closely by SVM applied to a fil-

tered set of OTUs (Knights et al. 2011).

Margin

Optimal hyperplane

SVM direction

LDA direction

Support vector

Support vector

Support 
vector

Fig. 3 Directions of class discrimination in linear and support

vector machine-based discriminant analyses. Binary classifica-

tion problem is depicted. Coloured circles represent different

objects separated into two classes. The figure was adapted with

permission from fig. 1 provided in the Gu et al. (2010) study.
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Examples of the use of multivariate techniques
in microbial ecology research

Study example 1: PCoA

Koren et al. (2013) assessed the relative composition of

human faecal microbial communities by exploratory

ordination. The authors performed PCoA using Jensen–

Shannon divergence metric calculated on high-through-

put 16S rRNA gene sequence data obtained from the set

of Human Microbiome Project faecal samples. The posi-

tion of samples in the PCoA ordination space was found

to reflect the relative abundances of key members of fae-

cal microbial communities. To illustrate this concept, the

authors visualized on a PCoA plot the relative abun-

dances of different genera in each faecal sample accord-

ing to a colour gradient as shown in Fig. 4. Three

prominent genera of human gut microbiota—Bacteroides,

Prevotella and Clostridium—revealed the most striking

abundance gradients. Specifically, distribution of sam-

ples across PC1 axis reflected samples’ Bacteroides relative

abundances; sample distribution along PC2 axis corre-

sponded to samples’ Prevotella abundances. A similar

strong gradient was observed for genus Clostridium; how-

ever, this effect contributed to the sample dispersion

observed along both PC1 and PC2 axes (Fig. 4). Thus, the

exploratory PCoA revealed that the abundances of Bac-

teroides and Prevotella served as the main drivers of

variation in the faecal microbiota composition, concor-

dant with their role as keystone genera of gut microbiota

enterotypes (Arumugam et al. 2011).

Study example 2: CCA

The utility of CCA was demonstrated by ter Braak and

Verdonschot, who applied CCA to the macroinverte-

brate distribution data from two man-made stream

tributaries (ter Braak & Verdonschot 1995). The goal

was to identify major environmental gradients and their

effects on the species distribution patterns. The data set

consisted of counts data for species collected from each

site as well as measurements of several environmental

Box 6. Resampling tests of statistical significance

In many cases, after running a particular multivariate statistical analysis, an investigator desires to obtain some

measure of confidence in the observed relationship or object separation. Such measure of confidence is usually

acquired through a statistical test for significance. In parametric methods, the output is compared to the probability

distribution model that was used as a basis for a particular technique. The probability of observing the obtained

output by chance is then represented by a P-value. While this approach works well for methods such as regression

and correlation analyses, for many ordination techniques no expected data distribution is defined before running

the analyses. Thus, parametric statistical testing cannot be applied to these techniques.

For such cases, one approach to assess statistical confidence of the obtained output is through the use of resam-

pling methods that include bootstrap, jackknife and permutation tests (Tukey 1958; Efron 1979; Desu & Raghavarao

2003). The principle of these techniques relies on the random resampling of the actual measured data to generate a

reference distribution, which the observed distribution is tested against. In bootstrap tests, a subset of data is

drawn randomly with replacement from a set of data points; in jackknife tests, a subset of data points is left out

systematically and the analysis output remeasured; in permutation tests, object labels are randomly exchanged.

The statistical significance (i.e. probability of observing the calculated output by chance) is then computed as the

fraction of all simulated outcomes that are at least as extreme as the one originally observed. Because these tests

make no assumptions about data distribution, they can be used practically on any data set irrespective of the

assumed relationship among variables.

For example, we have incorporated the permutation analysis of interclass distance based on the Davies–Bouldin

(DB) cluster separation index (Davies & Bouldin 1979) to assess the statistical significance of the observed object

separation between classes in PCA (Shankar et al. 2013, 2015). Specifically, we calculated the DB distance metric as

the ratio of the average interclass distance among all objects to the average of all intraclass distances. The permuta-

tion algorithm then randomly reassigned the object labels, and the DB distance metric was again computed. This

process was repeated 10 000 times to produce a reference distribution of DB metric. The significance of object

class-based separation observed in PCA ordination was calculated as the fraction of all permuted DB metric values

that were equal or higher than the one obtained for the original data set (Shankar et al. 2013).

For constrained analyses, the significance of the constrained ordination model can be obtained by first calculating

the fraction of total variance in the data set of response variables that is explained by canonical axes, and then

comparing this statistic to the distribution of such fractions obtained through a permutation analysis of the data set

(�Smilauer & Lep�s 2014).
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variables. While this example does not describe a

microbial system, it offers an excellent illustration of the

interpretation of gradient analysis plots. The following

insights can be made from the CCA triplot (Fig. 5):

1 The distance between site and species position on the

triplot is indicative of the abundance of that species

at that site: ‘the inferred abundance of a species is

maximal if the site point coincides with the species

point and decreases in all directions the farther away

the site point is’ (ter Braak & Verdonschot 1995).

Thus, we can conclude that species Et is abundant in

sites U15–U19, whereas sites L15–L20 are optimal for

Ms, Ss and Hd species (see Fig. 5 legend for species

abbreviations).

2 Interpretation of quantitative environmental variables

can be summarized as ‘the arrow points in the direc-

tion of maximum change in the value of the associ-

ated variable, and the arrow length is proportional to

this maximum rate of change’ (ter Braak & Verdon-

schot 1995). Thus, the ‘source distance’ variable desig-

nates the distance of each site from the stream

source, and the site ranking is consistent with the

direction of the arrow. The difference in species dis-

tribution between L and U sites is small near the

stream source (low ranks) but increases progressively

the farther from the source the sites are (higher site

ranks).

3 The relative positioning of environmental variables

and species triangles indicates the optimum of spe-

cies distribution along these environmental gradients.

For example, for species Dl and Et, the distribution

optimum is located the farthest along the gradient of

electric conductivity. A similar interpretation can be

extended to the qualitative variables. As stated by the

authors, ‘sites that belong to a particular class’

(‘shrub’ or ‘no shrub’) ‘are scattered around the class

point, simply because, by definition, each class is at

the centroid of the sites that it contains’. By this inter-

pretation, sites L15–L20 have high shrub coverage.

This example demonstrates how CCA triplots can

provide a large number of insights and valuable

interpretations, and such methods of direct gradient

analyses are well suited to examine the relationships

between environmental gradients and response

variables (e.g. species).

Study example 3: PRC

Principal response curves analysis was used by Fuentes

et al. (2014) to depict the time-dependent changes in dis-

tal gut microbiota composition of patients with Clostrid-

ium difficile infection (CDI) who have undergone FMT.

The HITChip phylogenetic microarray was used to deter-

mine the distal gut microbiota composition from faeces

collected from CDI patients before (day 0) and after FMT

(days 14–70) and from their corresponding donors. PCA

was first performed on the log-transformed microbiota

data set (probe signal intensities) to visualize main gradi-

ents of variability (Fig. 6A). PC1 clearly separated all

patient pre-FMT samples from donor and post-FMT sam-

ples. However, the samples of the latter group were all

clustered together, which did not allow the assessment of

the effect of factors such as time, interpersonal differ-

ences and donor variability on the distribution of sam-

ples in PCA space. To assess such possible effects more

specifically, PRC analysis was used to isolate the

PC1 PC1 PC1

P
C

2

P
C

2

P
C

2

(A) (B) (C)Bacteroides Prevotella Clostridium

Fig. 4 Application of principal coordinates analysis (PCoA) to arrange faecal human samples based on microbiota structure. Jensen–

Shannon divergence metric was used to calculate distances among all faecal samples obtained in the Human Microbiome Project

(Peterson et al. 2009). Associations of sample distribution in PCoA space with relative abundances of genera Bacteroides (panel A),

Prevotella (panel B) and Clostridium (panel C) are shown. Each sample point is colour-coded based on the abundance of the corre-

sponding genus according to the colour gradient as shown in each figure legend. Samples are represented as either circles or trian-

gles to denote microbiota enterotype cluster. The figure was adapted with permission from the supplementary figure S13 provided

in the Koren et al. (2013) study.
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relationships between a single environmental variable

(time) and the observed microbiota changes (Fig. 6B).

Assessment of the PRC chart indicated that gut micro-

biota changes occurred quickly after FMT procedure and

community maintained similarity to that of the donor for

at least 70 days, confirming a previously reported obser-

vation (Shankar et al. 2014). Additionally, the authors uti-

lized the weights assigned by PRC analysis to different

microbial groups to determine the main drivers of the

changes in the microbiota profiles between pre- and post-

FMT time points. Groups with positive weights such as

Bacilli and Proteobacteria were shown to be higher in

pre-FMT samples and were depleted as a function of

time in the post-FMT samples, while groups with nega-

tive weights such as Bacteroidetes and Clostridium clus-

ters IV and XIVa followed the opposite profile.

This study presented an excellent example of the

utility of PRC to visualize time-dependent changes in

community organization and showcased how partial

ordination analysis can facilitate the interpretation of

ordination results of complex data sets.

Study example 4: RF

Random forest discriminatory analysis was employed

by Lozupone and colleagues to assess the distinctive-

ness of faecal microbiota between healthy subjects and

HIV-infected patients (Lozupone et al. 2013). The

authors utilized high-throughput sequencing of 16S

rRNA gene to profile faecal microbiota from healthy

controls and patients with chronic untreated HIV. The

sequencing data were clustered to generate operational

taxonomic unit (OTU) tables and subsequently sub-

jected to RF analysis. RF generated a class prediction

model (healthy vs. HIV), which was then used to clas-

sify unknown samples. Classification of ‘unknown’

samples achieved a 96% accuracy rate. This indicated

that HIV-associated faecal microbiota displayed specific

differences between healthy and HIV gut. Taking

advantage of RF’s ability to assign an importance score

to each OTU variable, the authors identified discrimina-

tory OTUs that marked sample donors as healthy or

HIV. OTUs from genus Bacteroides were found to be

depleted in HIV-infected patients compared to healthy

controls. Conversely, members of Erysipelotrichaceae,

Veillonellaceae and Ruminococcoceae were enriched in

HIV-infected patients. In summary, RF analysis gener-

ated a model that used faecal microbiota OTU abun-

dances to distinguish between healthy and HIV-infected

subjects.

Limitations of multivariate analyses

Despite their undoubted usefulness, multivariate analy-

ses also exhibit some limitations. The outputs of these

algorithms are more difficult to interpret compared to

those generated by univariate analyses (although it is

much less time-consuming to interpret single multivari-

ate analysis then hundreds of individual univariate out-

puts), and the assumptions of a particular method are

sometimes not easy to assess or meet. It is also impor-

tant to remember that revealed associations among vari-

ables and patterns of object distribution do not

inherently imply causality (unless explanatory variables

are experimental treatments), and that synthetic ordina-

tion axes or cluster groups might not necessarily match

any biological effects or gradients. Finally, many multi-

variate techniques are very computationally demanding

and require significant computing resources when

applied to very large data sets.
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Fig. 5 Interpretation of canonical correspondence analysis

(CCA) to relate macroinvertebrate species distribution to envi-

ronmental sites and gradients. The figure displays a CCA tri-

plot showing the relationships among sites (circles), species

(triangles) and environmental variables (arrows and squares).

Site labels (U and L) and colours (orange and cyan) represent

the stream designations; site number denotes the ranked dis-

tance from the stream source. Black arrows denote quantitative

environmental variables; black squares represent qualitative

environmental variables. Black triangles indicate distribution

optimum for each species. Select species are displayed on the

plot and are abbreviated as follows: Ct—Ceratopogonidae, Dl—

Dendrocoelum lacteum, Et—Erpobdella testacea, Gc—Glossiphonia

complanata, Hl—Haliplus lineatocollis, Hd—Helodidae, Ma—

Micropsectra atrofasciata, Mf—Micropsectra fusca, Ms—Micro-

pterna sequax, Po—Prodiamesa olivacea and Ss—Stictochironomus

sp. The figure was adapted with permission from fig. 3 pro-

vided in ter Braak & Verdonschot (1995) study.
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The majority of multivariate statistical techniques dis-

cussed here define similarities and/or distances among

objects based on the distribution of variables’ values

across these objects. The values of different variables

are combined to generate the object distance or dissimi-

larity matrix. How different variables are combined

impacts the output and interpretation of multivariate

statistical techniques and can generate artefacts as

described in detail by Warton et al. (2012). The authors

point out that in real data sets different variables (taxon

abundance, metabolite concentration, etc.) usually dis-

play unequal mean–variance relationships. This inequal-

ity can lead to the ordination displaying dispersion

effects (differences among object classes in variables’

variances) instead of the location effects (differences

among object classes in variable means), because most

distance-based techniques are not able to distinguish

between these two effects (Fig. 7). The main limitation

is not the ordination technique itself, but the distance

metric used, and the authors show that most currently

used distance metrics do not account correctly for the

mean–variance relationship when combining data

across variables. Note that the location-vs.-dispersion

effects are less prominent in the constrained ordination,

because constraints specifically focus on location differ-

ences in the data set (ter Braak & �Smilauer 2015).

Well-chosen data transformation applied to the data

prior to statistical analysis (discussed in Box 2) can les-

sen the extent of mean–variance bias in multivariate data

sets, but it does not remove it completely. Standardiza-

tion of variable variances prior to multivariate analysis is

not very helpful, because it reduces the effect of differ-

ences in variable means among classes and thus reduces

true biological differences and statistical power of the

analysis. Two solutions to the issue of unequal mean–

variance distributions were offered by the authors. Stan-

dardization of within-class variance for each variable

during the analysis solves the mean–variance issue but

is very computationally intensive especially for tech-

niques that use permutation to derive statistical signifi-

cance of class separation (Box 6). Alternatively,

multivariate GLM (Warton 2011) allows the choice of dif-

ferent mean–variance functions and was shown to per-

form well (O’Hara & Kotze 2010; Warton et al. 2012). To

avoid possible artefacts in the multivariate analysis

output, we recommend that the within-class variances

for each variable are compared among all object classes,

and are adjusted if found to be unequal.

Choice of the multivariate analysis

The multitude of different multivariate analytical tech-

niques that were described above provides many

choices for the selection of an algorithm to analyse a

particular large-scale data set. In Fig. 8, we offer sug-

gestions of some of the appropriate choices based on

the research goal, data input structure and expected

relationships among variables. Exploratory methods are

in general applied first to extract the main gradients of

variation in the data with unconstrained ordination

techniques, and to identify groups of similar variables

and/or objects with CLAs. To relate variability

observed in the response variables to the values of

additional explanatory variables, constrained gradient

analysis should be performed. If the goal is to
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same data set. X axis shows collection time points. Microbial

community changes over time are depicted on Y axis as the

difference between microbiota composition of a given patient

sample and that of the corresponding donor. Variable weights

for individual microbial groups are depicted on the weight

scale. The figure was adapted with permission from fig. 6 pro-

vided in the study by Fuentes et al. (2014).
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differentiate among a priori known classes of objects

based on variable scores and/or to predict class mem-

bership of new/future observations, discriminant analy-

ses and decision trees can be used.

The choice of a particular technique within a category

usually depends on the input data structure and the

assumed relationship among variables as we describe in

Fig. 8. While available evidence based on the analysis

of simulated data sets with known gradients does not

provide a clear consensus on the best approach among

linear, unimodal and distribution-free techniques (Aus-

tin 2013), several suggestions can be made.

In general, to analyse short environmental gradients

and continuous variables expressed as absolute values,

linear methods such as PCA and RDA are used most

often (see figure in Box 5). To model long environmen-

tal gradients as well as relative abundances and count

data, the application of unimodal ordination techniques

such as (D)CA and CCA is usually advised (Austin

2007; Ramette 2007). Log-ratio transformation applied

to the raw data can address the problem with data com-

positionality (Box 3). For data sets not conforming to

most common statistical assumptions or distribution

models, the use of nonparametric (distribution-free)

methods is appropriate. When similarities among

objects are desired to be assessed based on one of the

ecological distance calculations, the use of PCoA,

NMDS and db-RDA techniques is advocated.

When several different ordination outputs are available

for the same set of objects, co-inertia and PAs can be used

to assess the congruency of the results. To determine the

fraction of the total variation in measured (response)

variables attributed specifically to different environmental

gradients, variation partitioning can be carried out (Box 5).

To find which variables are responsible for the

observed differences among classes of objects, discrimi-

natory analyses can be employed. OPLS-DA, SVM and

RF all showed good performance in different compara-

tive studies, with RF currently being favoured in micro-

bial community comparisons (Knights et al. 2011). To

avoid the problem of model overfitting, model regular-

ization and variable selection and filtering should be

applied during discriminatory analyses, especially for

data sets with large number of variables (e.g. OTU

tables) (Chen et al. 2015).

Closing comments

The development and continuing advances in the high-

throughput molecular approaches have led to a

dramatic shift in the type and amount of data generated

by microbial researchers. It is a less common case now

where experimental results can be analysed manually

or with the use of simple parametric statistics and uni-

variate analyses. Instead, the experimental data are

often represented by large matrices of data points. This

large-scale structure of obtained data limits researcher’s

ability to interpret the results without significant reduc-

tion in data set complexity. Multivariate analyses

described in this review are well suited for this task,
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and we provided a general overview of the most fre-

quently used multivariate statistical methods to assist

ecologists and other researchers in the choice of appro-

priate approaches for the analyses of their data sets.

The popularity of multivariate analyses continues to

increase as more and more researchers start to take

advantage of high-throughput experimental platforms.

While the initial high-throughput studies tended to

employ simpler exploratory techniques such as PCA

and PCoA, there is a recent trend to move to interpre-

tive and discriminatory ordination approaches and to

perform more rigorous multivariate hypothesis testing.

The use of more recently developed techniques includ-

ing principal curves and surfaces (Hastie & Stuetzle

1989; De’ath 1999), dynamic factor analysis (Zuur et al.

2003), random-effect ordination (Walker & Jackson

2011), coreferentiality (Fesel 2012), multidimensional

fuzzy set ordination (Roberts 2009) and fuzzy clustering

(Bezdek 1981), elastic net regression (Zou & Hastie

2005), and regularized discriminant analyses (Friedman

1989; Zhao & Wong 2014; Chen et al. 2015) is expected

to further advance these studies and improve the valid-

ity and robustness of the outcomes. All these techniques

provide exciting opportunities to link ecological and

functional measures of microbial communities with

environmental gradients, host (patient) information, and

time and space variables. Ecological theories can be

tested at the whole community level, and microbial

community structure and function can now be used to

facilitate discrimination between different sites, environ-

ments, or between human health and disease (Lozu-

pone et al. 2013; Shankar et al. 2015). All of such studies

provide deeper appreciation for the importance of eco-

logical analyses of biological systems, and will reveal

further mechanisms of interactions among members of

complex communities and between host and microbial

partners.
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