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Abstract
A most discussed topic of the new decade, COVID-19 is an infectious disease caused by the recently discovered SARS-CoV-2.
With an exceedingly high transmission rate, COVID-19 has affected almost all the countries in the world. Absent any vaccine or
specific treatment, the humanity is left with nothing but the legacy method of quarantine. However, quarantine can only be
effective when combined with early diagnosis of suspected cases. With their high sensitivity and unmatched specificity, biosen-
sors have become an area of interest for development of novel diagnostic methods. Compared to the more traditional diagnostics,
nanobiotechnology introduces biosensors as different diagnostics with greater versatility in application. Today, a growing
number of analytes are being accurately identified by these nanoscopic sensing machines. Several reports of validated application
with real samples further strengthen this idea. As of recent, there has been a rise in the number of studies on portable biosensors.
Despite the slow progression, certain devices with embedded biosensors have managed to be of diagnostic value in several
countries. The perceptible increase in development of mobile platforms has revolutionized the healthcare delivery system in the
new millennium. The present article reviews the most recent advancements in development of diagnostic nanobiosensors and
their application in the clinical fields.

Key points
• There is no specific treatment for highly transmissible SARS-CoV-2.
• Early diagnosis is critical for control of pandemic.
• Highly sensitive/specific nanobiosensors are emerging assets against COVID-19.
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Introduction

A global concern in the new decade, COVID-19 is a viral
disease associated with severe acute respiratory syndrome
(Lai et al. 2020; Sheervalilou et al. 2020). In December
2019, a cluster of peculiar cases with pneumonia was reported
in Wuhan, China (WHO 2020c). In the beginning, the causa-
tive virus was called 2019-nCoV. However, it was officially
recognized as “SARS-CoV-2” due to its great similarity to
SARS-CoV, the pathogen behind the original SARS outbreak
(Cascella et al. 2020). With an astonishingly rapid person-to-
person transmission, COVID-19 was declared to be a pan-
demic on March 12, 2020 (WHO 2020a). As of February 9,
2021, nearly 106,321,987 confirmed cases of COVID-19
have been reported globally, resulting in 2,325,282 deaths
(https://covid19.who.int/). Over the last two decades,
coronaviruses (CoVs) have been involved in several important
outbreaks of respiratory diseases. The severe acute respiratory
syndrome (SARS) and the Middle East respiratory syndrome
(MERS) epidemics are two such incidents (Cascella et al.
2020) that were instigated by SARS-CoV and MERS-CoV,
respectively (deWit et al. 2016). COVID-19 is the third large-
scale epidemic, and the first pandemic to have been caused by
a coronavirus (Ksiazek et al. 2003). With a total of 10,000
cases, the previous two outbreaks concluded with a mortality
rate of 10% for SARS and a strikingly high 37% for MERS.
However, in the case of COVID-19, an overwhelmingly high
number of patients have been reported, which is nearly 90
times greater than the cumulative cases of SARS and MERS
(Mahase 2020). With due attention to the expeditious trans-
mission of COVID-19, there is no doubt that secondary pre-
vention measures by means of early diagnosis can immensely
contribute to the management of the situation (Qiu et al.
2020).

Being zoonotic viruses, CoVs are major culprits for mild to
moderate upper respiratory tract (URT) infection in both
humans and animals (Li et al. 2020a). According to its sever-
ity, the disease is classified into three categories: mild (81%),
severe (14%), and critical (5%). Mild CoV disease is com-
monly manifested as mild pneumonia. Severe disease, on the
other hand, is characterized by shortness of breath with a re-
spiratory rate of 30 or more, which often results in oxygen
saturations below 93%. Few patients deteriorate and develop
critical conditions associated with life-threatening systemic
complications such as acute respiratory distress syndrome,
arrhythmias, and shock and eventually, die of multiple organ
failure (Wang et al. 2020; Wu and McGoogan 2020).

A lack of specific manifestations in the early phase of
COVID-19 has made its diagnosis an arduous challenge for
clinicians (Huang et al. 2020). Despite their high accuracy,
genome sequencing methods have not received favorable
regards in terms of rapid diagnosis (Wu et al. 2020). As of
today, reverse transcription-polymerase chain reaction (RT-

PCR) is the widely accepted technique for diagnosis of
COVID-19. Nevertheless, erroneous results like false-
positive and false-negative reports have made this method a
fairly questionable tool for early diagnosis of COVID-19 (Qiu
et al. 2020). Apart from imperfect results, the technique is
neither cost-effective nor time-friendly, as it requires skilled
personnel and takes several hours to generate results (Chu
et al. 2020).

Presently, COVID-19 is propagating around the world with
an unprecedentedly high transmission rate for a disease caused
by a coronavirus. Furthermore, cases of COVID-19 transmis-
sion from asymptomatic patients have also been reported (Bai
et al. 2020). It is estimated that each patient infected with
SARS-CoV-2 can transmit the pathogen to approximately
two individuals (Li et al. 2020b). Since there are no vaccines
or specific medicines for prevention and treatment of COVID-
19, successful containment of this sensitive situation can only
be achievedwith early detection of the infection in asymptom-
atic patients (Zhu et al. 2020).

With their high sensitivity, immunological diagnostic tests
are valuable assets in precise detection of viral antigens, pro-
viding a seamless pathway for rapid diagnosis of COVID-19
(Seo et al. 2020). Narrowing down the scope, the lesser-
known “nanobiosensors” have also been clinically tested amid
major viral outbreaks such as influenza (Saylan and Denizli
2020). A growing body of evidence is now suggesting biosen-
sors as a reliable alternative solution to the time-consuming
process of diagnosis (Soler et al. 2019) (Fig. 1). The present
review paper seeks to convey a brief yet illustrative account of
biosensors and their potential application in the detection of
SARS-CoV-2 infection.

SARS-CoV-2 biology

Commonly isolated from different animal species, CoVs be-
long to a family of positive-sense betacoronavirus with a
single-stranded RNA at their core (Perlman and Netland
2009). The densely packed genetic material is responsible
for the expression of four major proteins in betacoronavirus
(β-CoV), especially SARS-CoV-2. These structural proteins
are known as spike (S), small envelope (E), matrix (M), and
nucleocapsid (N) (de Wit et al. 2016). Based on recent inves-
tigations, SARS-CoV-2 preferably targets angiotensin-
converting enzyme II (ACE2) as a receptor for entry to the
cell. ACE2 is also a receptor of interest for the much older
SARS-CoV (Li et al. 2003). SARS-CoV-2 is internalized into
its host cell once a high-affinity binding is formed between the
viral spike protein and ACE2 (Wrapp et al. 2020). In this
regard, SARS-CoV-2 shares greater similarity with SARS-
CoV than MERS-CoV (Lu et al. 2020).

For unexplained reasons, CoVs can infiltrate from one spe-
cies to another, causing illness in humans that might range
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from a benign common cold to severe malevolent disease. It is
speculated that CoVs might have originated from bat species
and then moved to other mammalian hosts before afflicting
humans, i.e., the Himalayan palm civet in the case of SARS-
CoV. Unknown newly emerging strain with dynamics yet to
be elucidated, SARS-CoV-2 is also suspected of having orig-
inated in animals (Cascella et al. 2020).

The prominence of early diagnosis

Following identification of the first cases, unprotected expo-
sure to certain animal species was assumed to be the primary
route of transmission. The reason was that the disease was
strongly linked to a particular seafood market in China, as
the majority of patients had a history of visiting the place.
However, after a monumental burst in the number of cases,

it was clarified that the major mechanism at large was human-
to-human transmission. Later, it was revealed that patients
with no symptoms at all could also transmit the infection to
other people. Transmission of COVID-19 is mediated through
tiny droplets expelled into the air by coughing and sneezing.
According to analyses on the propagation pattern of SARS-
CoV-2 in China, close contact between individuals is sug-
gested to be a prerequisite for transmission of the virus.
Hence, the majority of patients either come from the same
community or work in the public healthcare system
(Cascella et al. 2020).

The incubation period of COVID-19 can span from 3 to 7
days. Occasionally, this period can last as long as 2 weeks (Li
et al. 2020b). The doubling time, through which the number of
patients doubles, is estimated to be 7 days for COVID-19.
This is in contrast to the much shorter 3 days reported for
the SARS-CoV epidemic. On average, each COVID-19

Fig. 1 The COVID-19 diagnosis by biosensors. (Abbreviations: SARS-CoV-2, severe respiratory syndrome coronavirus 2)
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patient is capable of spreading the virus to two other individ-
uals (Bauch et al. 2005). These data unanimously indicate that
absent any treatment, the only promissory strategy for slowing
down the rate of transmission is most probably early diagnosis
of the infection.

Routine molecular diagnostics

Being a top priority, accurate laboratory diagnosis is of pre-
eminent value in prevention and control of potential outbreaks
(Qiu et al. 2020). In their latest interim guidance laboratory
testing for the 2019 novel coronavirus disease, the WHO as-
serts that several molecular assays have been developed for
this cause (Organization 2020). Among various diagnostics,
the more traditionally practiced modalities include hemagglu-
tination assay (HA) inhibition, complement fixation, immu-
nofluorescence, viral culture, and PCR (Saeed and Wu 2020).

Genome sequencing

Genome sequencing is regarded as a universal language since
many countries employ target genes that, if not identical, are
highly similar to each other. RNA-dependent RNA polymer-
ase (RdRp) and open reading frame 1ab (ORF1ab) stand
among the most used sequences around the world (Qiu et al.
2020). In spite of its high accuracy, genome sequencing is not
a readily applicable method for rapid detection of COVID-19.
This is primarily due to the time-consuming process of se-
quencing and the expensive equipment demanded by this
prestigious technique (Wu et al. 2020).

Reverse transcriptase polymerase chain reaction

RT-PCR is a reliable method for detection of emerging path-
ogens. To this date, real-time RT-PCR has successfully been
applied for identification of SARS-CoV-2 in specimens of
respiratory secretions from suspected cases (WHO 2020b).
With its unrivaled sensitivity, RT-PCR is the method of
choice for uncovering viral RNA through the instantaneous
generation of multiple copies from a specific template se-
quence. Several studies on RT-PCR amid the recent epidemic
have reported an astonishing sensitivity of 3.7 RNA copies for
accurate detection of SARS-CoV-2 (Corman et al. 2020).

A mostly triumphant diagnostic method, RT-PCR, can fail
on various occasions when confounding factors are present,
e.g., spurious nucleic acid sequences (Qiu et al. 2020). Else, a
single RT-PCR test takes a minimum of 3 h to be completed,
including the time allocated for preparation of viral RNA,
which is an important step due to its direct effect on the accu-
racy of the test (Seo et al. 2020). Time and time again, the
method also struggles to correctly report an ongoing infection
in asymptomatic patients (Zhang et al. 2020). There are

accounts of certain false-negative reports by RT-PCR for
cases that had already been confirmed to have SARS-CoV-2
infection (Xie et al. 2020). Accordingly, in clinical experi-
ence, a single negative RT-PCR result is not considered suf-
ficient evidence to exclude the possibility of COVID-19, since
the positive rate for this test can be as low as 30% (Zhang and
Zhao 2020), especially if the sample is taken from the upper
respiratory tract (Qiu et al. 2020). Regrettably, the COVID-19
outbreak is most obstreperous in regions where allocation of
enough resources for PCR testing is not plausible (Chu et al.
2020).

Based on past clinical experience with swine flu (Moscona
2005), late diagnosis of COVID-19 might result in high mor-
tality rates as well (Sakai-Tagawa et al. 2010). On that ac-
count, it would be a sensible strategy to screen suspected cases
by another equally sensitive yet superiorly reliable diagnostic
method (Qiu et al. 2020).

New approaches:
nanobiotechnology/biosensors

Error-free detection of pathogens is perhaps the cornerstone of
point-of-care testing (Saylan and Denizli 2020). With their
distinctive characteristics, biosensors have recently become a
sought-after area of interest, due mostly to the unrivaled sen-
sitivity and specificity they provide in real-time (Liu and Guo
2012). As of today, an expansive array of different substances
has been appraised for designing biosensors; however, gold-,
magnetic-, and carbon-based nanomaterials appear to be the
most promising options in developing clinically effective
nanobiosensors (Akbarzadeh et al. 2006; Norouzi et al.
2019; Saeed and Wu 2020; Shakeri-Zadeh et al. 2020).

Every functional biosensor consists of recognition ele-
ments and transducers that identify the target and translate
potential responses to recognizable signals, respectively.
Biosensors are commonly classified into five categories with
distinctive chemical properties: electrochemical, magnetic,
thermal, optic, and piezoelectric. This novel family of sensing
small contraptions has evolved to be a sophisticated facility in
identification of infinitesimal analytes, e.g., peptides, nucleic
acids, toxins, and pathogens (Saylan and Denizli 2020).

Virus detection

Infectious diseases are notoriously renowned for their perva-
sive nature (Saylan and Denizli 2020). They have always been
an obstinate source of trepidation due to the paucity of diag-
nostic tests and treatment modalities (Demirci and Inci 2019).
To this date, several promising attempts have been made at
application of nanobiosensors in sensitive fields such as diag-
nosis (Chang et al. 2018) and laboratory medicine (Choi et al.
2018). Through the last few years, new recognition molecules
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have been examined to enhance their detection capacity and
bring new properties to the game (Justino et al. 2013; Saylan
et al. 2019). Time and time again, biosensors have been
sought for diagnosis of serious maladies, e.g., influenza, hep-
atitis B, Ebola virus disease, Zika fever, and HIV infection
(Saylan and Denizli 2020) (Table 1 (Bai et al. 2012;
Diltemiz et al. 2013; Kim et al. 2019; Tam et al. 2009;
Vollmer et al. 2008)). New evidence indicates that biosensors
can be of clinical value in early detection of SARS-CoV-2.

SARS-CoV-2 assay strategies

Nucleic acid detection

SARS-CoV-2 is an enveloped, nonsegmented single-stranded
RNA virus (Guarner 2020). Similar to RT-PCR, the DNA-
RNA hybridization technique is extensively employed in var-
ious biosensors. The process is predicted by the melting of
nucleic acid strands (Zhang et al. 2018), which is the reason
behind the utility of nucleic acids in bionanotechnology, as
well as clinical diagnosis (Zhang et al. 2012).

Protein detection

Another appropriately relevant approach is to detect the con-
spicuous S protein on SARS-CoV-2 surface (Seo et al. 2020;
Zhang et al. 2020). In a recent investigation, scientists evalu-
ated the biophysical properties of this protein and reported a
remarkable binding affinity to ACE2, which was significantly
higher than that of SARS-CoV (Wrapp et al. 2020).

Implication of biosensors in SARS-CoV-2 assay

Figure 2 and Table 2 list recent studies on SARS-CoV-2
through biosensors.

Field-effect transistor–based biosensing devices

In terms of clinical diagnosis, field-effect transistor (FET)–
based biosensing devices come with certain benefits, on top
of which stands their sharp sensitivity for measuring trace
amounts of analytes (Liu et al. 2019). Accordingly, FET-
based biosensors could be game-changing assets in point-of-
care testing and clinical diagnosis (Seo et al. 2020).

Graphene-based FET biosensors

Graphene is a uniform two-dimensional layer of carbon atoms
that are arranged in a hexagonal layout (Cooper et al. 2012).
Thanks to its large surface area and high electronic conduc-
tivity, this material has been widely used for development of
sensing platforms (Geim and Novoselov 2010). Capable of
detecting alterations in their surroundings, graphene-based Ta
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FET (Gr-FET) biosensors excel as a low-noise means of ul-
trasensitive detection (Zhou et al. 2017). Such unparalleled
sensitivity and stability have rendered Gr-FET biosensors a
material of choice for immunosensing (Zhang et al. 2020).

Scientists recently devised a special FET-based biosensing
device that was able to selectively recognize SARS-CoV-2 S
protein in a groundbreaking concentration of 100 fg/ml. The

device comprises a FET-containing graphene sheet that was
coatedwith specific antibodies against the S protein on SARS-
CoV-2 strains isolated from patients with COVID-19 (Seo
et al. 2020). Another investigation reported a successful trial
of a unique CoV immunosensor in experimental settings.
Similarly, the device was based on Gr-FET biosensors and
was capable of detecting SARS-CoV-2 spike protein in

Fig. 2 Biosensors in SARS-CoV-2 detection. (Abbreviations: SARS-
CoV-2, severe respiratory syndrome coronavirus 2; FET, field-effect tran-
sistor; Gr, graphene; S pro, spike protein; CSAb, SARS-COV spike S1
subunit protein antibody; ACE2R, angiotensin-converting enzyme 2 re-
ceptor; PBASE, 1-pyrenebutanoic acid succinimidyl ester; RT-LAMP-
NBS, reverse transcription loop–mediated isothermal amplification
coupled with nanoparticle-based biosensor assay; TL 1, test line 1; TL
2, test line 2; CL, control line; FITC, fluorescein; Dig, digoxigenin;
Biotin-BSA, biotinylated bovine serum albumin; Dig-biotin-np-LAMP

amp, Dig-biotin–labeled np-LAMP amplicons; FITC-biotin-F1ab-
LAMP amp, FITC-biotin–labeled F1ab-LAMP amplicons; SA-DPNs,
dye streptavidin (Crimson Red)–coated polymer nanoparticles; NCmem-
brane, nitrocellulose membrane; pSi, nanoporous silicon; Si, silicon; Ag,
Silver; Cu, copper; Au, gold; PET-PE, polyethylene terephthalate-
polyethylene; T. sensor, temperature sensor; E. heater, electrical heater;
TriSilix, silicon-based integrated point-of-need tri-modal nucleic acid
transducer; PPT, plasmonic photothermal; NA, nucleic acid; AuNIs,
two-dimensional gold nanoislands)
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concentrations as low as 0.2 pM, a promising achievement
that further supports the utility of such biosensor-based de-
vices in clinical diagnosis (Zhang et al. 2020).

Biosensor coupled with loop-mediated isothermal
amplification

It is possible to run nucleic acid amplification under isother-
mal conditions without the application of a precision thermal
cycler. Called “loop-mediated isothermal amplification”
(LAMP), this fairly new method is extremely efficient
(Schoepp et al. 2017). LAMP is a tremendously specific tech-
nique as it requires validation of 6 or 8 independent regions for
successful recognition of target sequence (Chotiwan et al.
2017). RT-LAMP is an upgraded iteration of LAMP that has
been integrated with reverse transcription assay for detection
of several respiratory viruses, including influenza virus,
MERS-CoV, and SARS-CoV (Wong et al. 2018).

Dye streptavidin-coated polymer nanoparticles–based
biosensor assay

In a most recent study, scientists ameliorated RT-LAMB and
developed a brand-new technique. Duly named “RT-LAMP-
NBS,” this original system is a reflective fusion of RT-LAMP
coated with a streptavidin-coated nanoparticle-based biosen-
sor (NBS). With a sensitivity of 12 copies per reaction, RT-
LAMP-NBS could detect SARS-CoV-2 through a single-step
reaction. The analytical sensitivity of this novel assay for de-
tection of SARS-CoV-2 was reported to be 100%, as it accu-
rately identified the virus in 33 oropharyngeal samples col-
lected from 33 patients with COVID-19. Further analyses
conducted on 96 individuals without COVID-19 indicated a
perfect specificity of 100%. Each diagnostic test in this study
only took 1 h to be completed (Zhu et al. 2020).

The point-of-need technology

Point-of-need or PON transducers can amplify select nucleic
acid sequences specific to certain pathogens in real time. PON
is a facile technology since it does not imperatively require
advanced equipment to be manufactured. A wafer-scale itera-
tion of this technology can be produced in a standard labora-
tory. Hence, this technology appropriately follows the code of
sustainability, as it can be assembled anywhere in the world
(Nunez-Bajo et al. 2020).

Silicon-based integrated PON transducer

To further lower the costs, scientists developed a silicon-based
trimodal transducer with integrated PON technology. Known
as “TriSilix,” this customized transducer offered real-time per-
formance in amplification and quantitative detection of

nucleic acids specific to pathogens. With their novel
TriSilix, scientists were able to maintain PCR at a
predetermined temperature, while simply measuring the con-
centration of amplicons in real time. More importantly,
TriSilix managed to discern trace amounts of complementary
DNA (cDNA) specific to SARS-CoV-2 from that of SARS-
CoV in exceedingly low concentrations (1 pg/ml) (Nunez-
Bajo et al. 2020).

Localized surface plasmon resonance biosensing systems

Biosensing systems based on localized surface plasmon reso-
nance (LSPR) are another class of fairly applicable devices for
analysis of different molecules (Haes et al. 2005). An optical
phenomenon, LSPR, occurs when a surface plasmon is con-
fined within a conductive nanoparticle and excited by a certain
wavelength of light that is larger than the size of the nanopar-
ticle (Willets and Van Duyne 2007). LSPR-based devices ex-
hibit great sensitivity to variables such as molecular binding
and refractive index, which could be associated with enhanced
plasmonic field (Anker et al. 2010). Accordingly, biosensing
devices based on LSPR stand among the alternatives that
should be appraised for detection of nanoscopic analytes
(Qiu et al. 2020).

Localized surface plasmon resonance with gold nanoislands

Combining the plasmonic photothermal (PPT) effect and
LSPR, scientists designed a transcendent biosensing device
comprising two-dimensional gold nanoislands (AuNIs).
They functionalized their system with receptors specific to
cDNA based on nucleic acid hybridization. In this regard,
the heat resulting from PPT can raise the temperature at which
in situ hybridization is running, therefore further facilitating
error-free discrimination between two similar nucleic acid se-
quences. With a lower detection limit than plain LSPR, this
AuNI-based system was able to accurately identify selected
sequences of cDNA synthesized from SARS-CoV-2 RNA
(Qiu et al. 2020).

Conclusion and outlook

With the highly transmissible SARS-CoV-2 at large and no
specific treatment at hand, one can sense an urge for develop-
ment of novel diagnostic methods able to rapidly identify
COVID-19 in asymptomatic patients. In doing so, humanity
may finally succeed at containing the situation caused by
SARS-CoV-2.

Highly sensitive and distinctly specific nanobiosensors are
emerging assets that can come to our aid in the ongoing fight
against COVID-19. With their excellent biocompatibility and
optimal stability, nanobiosensors are soon going to be the new
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trend in signal detection, promising a finer point-of-care test-
ing in the forthcoming years.
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