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1 Application of Natural Antimicrobials for Food Preservation
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5 University College Dublin, Belfied, Dublin 4, Ireland, ‡Agricultural and Biosystems Engineering
6 Department, South Dakota State University, Brookings, South Dakota, and §School of Food Science &
7 Environmental Health, Dublin Institute of Technology, Dublin 1, Ireland

8

9 In this review, antimicrobials from a range of plant, animal, and microbial sources are reviewed

10 along with their potential applications in food systems. Chemical and biochemical antimicrobial

11 compounds derived from these natural sources and their activity against a range of pathogenic and

12 spoilage microorganisms pertinent to food, together with their effects on food organoleptic proper-

13 ties, are outlined. Factors influencing the antimicrobial activity of such agents are discussed

14 including extraction methods, molecular weight, and agent origin. These issues are considered in

15 conjunction with the latest developments in the quantification of the minimum inhibitory (and

16 noninhibitory) concentration of antimicrobials and/or their components. Natural antimicrobials can

17 be used alone or in combination with other novel preservation technologies to facilitate the

18 replacement of traditional approaches. Research priorities and future trends focusing on the impact

19 of product formulation, intrinsic product parameters, and extrinsic storage parameters on the design

20 of efficient food preservation systems are also presented.
21

22 KEYWORDS: Antimicrobial activity; chemical compounds; plant/animal/microbial antimicrobials
23 mechanism; minimum inhibitory concentration

24 INTRODUCTION

25 A number of nontraditional preservation techniques are being
26 developed to satisfy consumer demand with regard to nutritional
27 and sensory aspects of foods. Generally, foods are thermally
28 processed by subjecting them to temperatures varying from 60 to
29 100 �C for the duration of a few seconds to a minute in order to
30 destroy vegetative microorganisms. During this period of treat-
31 ment, a large amount of energy is transferred to the food.
32 However, this energy can trigger unwanted reactions, leading to
33 undesirable organoleptic and nutritional effects (1). Ensuring
34 food safety and at the same time meeting such demands for
35 retention of nutrition and quality attributes has resulted in
36 increased interest in alternative preservation techniques for
37 inactivating microorganisms and enzymes in foods. Quality
38 attributes of importance include flavor, odor, color, texture, and
39 nutritional value. This increasing demand has opened new dimen-
40 sions for the use of natural preservatives derived from plants,
41 animals, ormicroflora. In biopreservation, storage life is extended,
42 and/or safety of food products is enhanced by using natural or
43 controlled microflora, mainly lactic acid bacteria (LAB) and/or
44 their antibacterial products such as lactic acid, bacteriocins, and
45 others (2). Typical examples of investigated compounds are
46 lactoperoxidase (milk), lysozyme (egg white, figs), saponins and
47 flavonoids (herbs and spices), bacteriocins (LAB), and chitosan
48 (shrimp shells) (3). Antimicrobial compounds present in foods can

49extend the shelf life of unprocessed or processed foods by reducing
50the microbial growth rate or viability (4). Originally, spices and
51herbs were added to change or to improve taste. Some of these
52substances are also known to contribute to the self-defense of
53plants against infectious organisms (5, 6).
54Extensive research has investigated the potential application of
55natural antimicrobial agents in food preservation. In this review,
56antimicrobials and their chemical and biochemical components
57from a range of natural sources and their applications in food
58systems are reviewed.Natural antimicrobials in foodpreservation
59can be used alone or in combination with other nonthermal
60technologies. Naturally derived antimicrobial systems from
61plant, animal, and microbial origin are detailed, and the latest
62developments in the quantification of the minimum (and non-
63inhibitory) concentration of antimicrobials and/or their compo-
64nents are presented.

65PLANT ORIGIN ANTIMICROBIAL AGENTS

66Edible, medicinal, and herbal plants and their derived essential
67oils (EO) (and their hydrosols, i.e., byproducts of an essential oil
68purification procedure) and isolated compounds contain a large
69number of secondary metabolites that are known to retard or
70inhibit the growth of bacteria, yeast, and molds (7, 8). Many of
71these compounds are under investigation and are not yet
72exploited commercially. The antimicrobial compounds in plant
73materials are commonly found in the essential oil fraction of
74leaves (rosemary, sage, basil, oregano, thyme, and marjoram),
75flowers or buds (clove), bulbs (garlic and onion), seeds (caraway,
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76 fennel, nutgem, and parsley), rhizomes (asafetida), fruits (pepper
77 and cardamom), or other parts of plants (9, 10). Plant EOs and
78 their constituents have been widely used as flavoring agents in
79 foods since the earliest recorded history, and it is well established
80 that many have a wide spectra of antimicrobial action (11-15).
81 These compounds may be lethal to microbial cells or they might
82 inhibit the production of secondary metabolites (e.g., mycotox-
83 ins) (16). Plant essential oils are generally more inhibitory against
84 Gram-positive than Gram-negative bacteria (10, 17, 18). While
85 this is true for many EOs, there are some agents that are effective
86 against both groups, such as oregano, clove, cinnamon, and
87 citral (19-21). The major EO components with antimicrobial
88 effects found in plants, herbs, and spices are phenolic compounds,
89 terpenes, aliphatic alcohols, aldehydes, ketones, acids, and iso-
90 flavonoids (8, 22-27). Chemical analysis of a range of EOs
91 revealed that the principal constituents of many include carva-
92 crol, thymol, citral, eugenol (see Scheme 1 for their chemical
93 structure), and their precursors (8, 28-30). It has been reported
94 that some nonphenolic constituents of EOs are more effective or
95 quite effective against Gram-negative bacteria, e.g., allyl isothio-
96 cyanate (AIT) (31) and garlic oil (32), respectively. In addition,AIT
97 is also effective against many fungi (33). Generally, the antimicro-
98 bial efficacy of EOs is dependent on the chemical structure of their
99 components as well as the concentration. Many of the antimicro-
100 bial compounds present in plants can be part of their pre- or
101 postinfectional defense mechanisms for combating infectious or
102 parasitic agents (34). Consequently, plants that manifest relatively
103 high levels of antimicrobial action may be sources of compounds
104 that inhibit the growth of foodborne pathogens (35). Compounds
105 are also generated in response to stress from inactive precur-
106 sors (36), which may be activated by enzymes, hydrolases or
107 oxidases, usually present in plant tissues (37). In mustard and
108 horse radish, precursor glucosinolates are converted by enzyme
109 myrosinase to yield a variety of isothiocynates including the allyl
110 form, which is a strong antimicrobial agent (38).
111 The application of plant EOs for controlling the growth of
112 foodborne pathogens and food spoilage bacteria requires evalua-
113 tion of the range of activity against the organisms of concern to a
114 particular product, as well as effects on a food’s organoleptic
115 properties. PlantEOs are usuallymixtures of several components.
116 Oils with high levels of eugenol (allspice, clove bud and leaf, bay,
117 and cinnamon leaf), cinnamamic aldehyde (cinnamon bark and
118 cassia oil), and citral (lemon myrtle, Litsea cubeba, and lime) are
119 usually strong antimicrobials (39,40). The EOs fromThymus spp.
120 possess significant quantities of phenolic monoterpenes and have
121 reported antiviral (41), antibacterial (42, 43), and antifungal
122 (44, 45) properties. The volatile terpenes carvacrol, p-cymene,
123 γ-terpinene, and thymol contribute to the antimicrobial activity
124 of oregano, thyme, and savory (18). The antimicrobial activity of
125 sage and rosemary can be attributed to borneol and other
126 phenolic compounds in the terpene fraction. Davidson and
127 Naidu (40) reported that the terpene thejone was responsible

128for the antimicrobial activity of sage, whereas in rosemary, a
129group of terpenes (borneol, camphor, 1,8 cineole, a-pinene,
130camphone, verbenonone, and bornyl acetate) was responsible.
131Plant EOs such as cumin, caraway, and coriander have inhibitory
132effects on organisms such asAeromonas hydrophila,Pseudomonas
133fluorescens, and Staphylococcus aureus (46, 47), marjoram and
134basil have high activity against B. cereus, Enterobacter aerogenes,
135Escherichia coli, and Salmonella, and lemon balm and sage EOs
136appear to have adequate activity againstL.monocytogenes and S.
137aureus (10). Gutierrez et al. (10) showed that oregano and thyme
138EOs had comparatively high activity against enterobacteria
139(minimum inhibitory concentration (MIC) of oregano and thyme
140at a range of 190 ppm and 440 ppm, respectively, for E. cloacae),
141lactic acid bacteria (MIC of oregano and thyme at a range of
14255 ppm and 440 ppm, respectively, for Lactobacillus brevis), B.
143cereus (MIC of oregano and thyme at a range of 425 ppm and
144745 ppm, respectively, forLactobacillus brevis), andPseudomonas
145spp (MIC of oregano and thyme at a range of 1500 ppm for P.
146putida), although in general Pseudomonas species are consistently
147highly resistant to plant antimicrobials (10, 48). One of the
148attributed factors can be the production of exopolysaccharide
149layers forming biofilms of the microorganism that can delay
150penetration of the antimicrobial agent (49).
151Lee et al. (50) investigated the antibacterial activity of vegetables
152and juices and concluded that green tea and garlic extracts have
153broad applications as antibacterial agents against a wide range of
154pathogens. Arrowroot tea extract has reported antimicrobial
155activity against E. coli O157:H7 (19). Ibrahim et al. (35) reported
156the potential of caffeine at a concentration of 0.5%or higher as an
157effective antimicrobial agent for the inactivation of E. coli O157:
158H7 in a liquid system (i.e., brain heart infusion (BHI)).
159Mechanisms of Antimicrobial Action. The possible modes of
160action for phenolic compounds (EO fractions) as antimicrobial
161agents have been previously reviewed (16, 24, 27, 36, 51-53).
162However, the exact mechanism of action is not clear. The effect of
163phenolic compounds can be concentration dependent (54). At low
164concentration, phenols affect enzyme activity, particularly those
165associated with energy production, while at high concentrations,
166they cause protein denaturation. The antimicrobial effect of
167phenolic compounds may be due to their ability to alter microbial
168cell permeability, thereby permitting the loss of macromolecules
169from the interior (for example ribose andNa glutamate) (55). They
170could also interfere with membrane function (electron transport,
171nutrient uptake, protein, nuclein acid synthesis, and enzyme
172activity) (55) and interact with membrane proteins, causing defor-
173mation in structure and functionality (56-58). The high antibac-
174terial activity of phenolic components can be further explained in
175terms of alkyl substitution into the phenol nucleus (25). The
176formation of phenoxyl radicals that interactwith alkyl substituents
177does not occur with more stable molecules such as the ethers
178myristicin or anethole, which was related to the relative lack of
179antimicrobial activity of fennel, nutmeg, or parsley EOs (10).
180Delaquis and Mazza (38) reported that the antimicrobial
181activity of isothiocynates derived from onion and garlic is related
182to the inactivation of extracellular enzymes through oxidative
183cleavage of disulfide bonds and that the formation of the reactive
184thiocyanate radical was proposed to mediate the antimicrobial
185effect. Carvacrol, (þ)-carvone, thymol, and trans-cinnamalde-
186hyde are reported to decrease the intracellular ATP (adenosine
187triphosphate) content of E. coli O157:H7 cells while simulta-
188neously increasing extracellular ATP, indicating the disruptive
189action of these compounds on the plasma membrane (59).
190Inactivation of yeasts can be attributed to the disturbance of
191several enzymatic systems, such as energy production and struc-
192tural component synthesis (60).

Scheme 1. Plant Origin Antimicrobial Agents
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193 Factors Affecting Antimicrobial Activity.Antimicrobial activity
194 of EOs is influenced by a number of factors including botanical
195 source, time of harvesting, stage of development, and method of
196 extraction (61). For example, Chorianopoulos et al. (62) reported
197 that Satureja EOs obtained during the flowering period were the
198 most potent with bactericidal properties. The composition, struc-
199 ture as well as functional groups of the oils play an important role
200 in determining their antimicrobial activity. Usually compounds
201 with phenolic groups are the most effective (5, 25). Most studies
202 related to the antimicrobial efficacy of EOs have been conducted
203 in vitro using microbiological media (63-71). Consequently,
204 there is less understanding related to their efficacy when applied
205 to complex food systems. Key areas requiring further knowledge
206 for optimized application of natural antimicrobials in food
207 include targeting the microorganism of concern, the intelligent
208 use of combinations to provide a synergy of activity,matching the
209 activity of the compounds to the composition, and processing and
210 storage conditions of the food (9, 72).
211 Plant EOs of thyme, clove, and pimento were tested against
212 Listeria monocytogenes and were found to be highly effective in
213 peptone water. However, when the EOs were applied in a food
214 system, Singh et al. (73) concluded that efficacy of EOswas reduced
215 due to interaction with food components. In general, higher
216 concentrations of EOs are required in foods than in laboratory
217 media. Combinations of EOs could minimize the application
218 concentrations required, thereby reducing any adverse organolep-
219 tical impact; however, their application for microbial control may
220 also be affected by food composition (74). The antimicrobial
221 efficacy of EOs was found to be a function of ingredient manipula-
222 tion, for example, the antimicrobial activity of thyme is increased in
223 high protein concentrations, concentrations of sugars above 5%on
224 themicrobial growthmedium did not reduce EO efficacy, and high
225 potato starch concentrations decreased the EO antimicrobial
226 activity of oregano and thyme on L. monocytogenes in food model
227 systems (74,75). Finally, lowpHvalues (of the range of 5) seemed to
228 have the highest impact on the increase of the antimicrobial effect of
229 EOs on L. monocytogenes (74). Low pH values appear to increase
230 the hydrophobicity of EOs, consequently enabling easier dissolu-
231 tion in the lipids of the cell membrane of target bacteria (54).
232 Accordingly, the challenge for practical application of EOs is
233 to develop optimized low dose combinations tomaintain product
234 safety and shelf life, thereby minimizing the undesirable flavor
235 and sensory changes associated with the addition of high con-
236 centrations of EOs.

237 ANIMAL ORIGIN ANTIMICROBIAL AGENTS

238 There are numerous antimicrobial systems of animal origin,
239 where they have often evolved as host defense mechanisms.
240 Lysozyme is a bacteriolytic enzyme, commercially sourced from
241 hen’s egg white which is reported to inhibit the outgrowth of
242 Clostridium tyrobutyricum spores in semihard cheeses (76). Lyso-
243 zyme has found commercial applications; inovapure is said to be
244 effective against a wide range of food spoilage organisms and can
245 be successfully used to extend the shelf life of various food
246 products, including raw and processed meats, cheese, and other
247 dairy products. The lactoperoxidase system, which is naturally
248 active in milk, has strong antimicrobial effects against both
249 bacteria and fungi. A wide range of both Gram-negative (77)
250 and Gram- positive bacteria (78) are inhibited by the lactoperox-
251 idase system. However, studies have shown that Gram-negative
252 bacteria were generally found to be more sensitive to lactoperox-
253 idase mediated food preservation than Gram-positive species
254 (79, 80). Many of the antimicrobial agents inherent to animals
255 are in the form of antimicrobial peptides (polypeptides).

256Antimicrobial peptides were first isolated from natural sources
257in the 1950s when nisin was isolated from lactic acid bacteria for
258potential application as a food preservative (81). Subsequently,
259antimicrobial peptides were isolated from other natural sources,
260such as plants, insects, amphibians, crustaceans, and marine
261organisms (82-84). Antimicrobial peptides (AMPs) are widely
262distributed in nature and are used by many if not all life forms as
263essential components of nonspecific host defense systems. The list
264of discovered AMPs has been constantly increasing, with much
265discovery in the last two decades. The list of AMPs produced by
266animal cells includes magainin (85), MSI-78 (86), PR-39 (87),
267spheniscin (88), pleurocidin (89), dermaseptin S4 (90), K4S4-
268(1-14) (91), cecropin P1 (92), melittin (93), LL-37 (94), clavanin
269A (92), and curvacin A (95). Antimicrobial peptides present a
270promising solution to the problemof antibiotic resistance because,
271unlike traditional antimicrobial agents, specific molecular sites are
272not targeted, and their characteristic rapid destruction of mem-
273branes does not allow sufficient time for even fast-growing
274bacteria tomutate. Some of the potential antimicrobials of animal
275origin which could be used as food additives are discussed below.
276Pleurocidin. Pleurocidin, a 25 amino acid peptide isolated from
277the skin mucus membrane of the winter flounder (Pleuronectes
278americanus) is active against Gram-positive and Gram-negative
279bacteria. It is heat-stable, salt-tolerant, and insensitive to physio-
280logical concentrations of magnesium and calcium (96). Pleuroci-
281din has potential for use in food applications and was found to be
282effective against foodborne organisms including Vibrio parahe-
283molyticus, L. monocytogenes, E. coli O157:H7, Saccharomyces
284cerevisiae, and Penicillium expansum (97). The antimicrobial
285activity of pleurocidin against foodborne microorganisms was
286reported at levels well below the legal limit for nisin (10,000 IU/g)
287without significant effect on human red blood cells (97), thereby
288indicating its potential as a food preservative and a natural
289alternative to conventional chemicals. However, pleurocidin
290was inhibited by magnesium and calcium (96), which may limit
291the use of this AMP in environments rich in these cations.
292Defensins. Defensins are another group of antimicrobial pep-
293tides widely found in nature including mammalian epithelial cells
294of chickens, turkeys, etc. They are abundant in cells and tissues
295active in host defense against microorganisms (98, 99). They are
296reported to have a broad spectrum of antimicrobial activity (100),
297including Gram-positive, Gram-negative bacteria, fungi, and
298enveloped viruses (101, 102).
299Lactoferrin. Bovine and activated lactoferrin (ALF), an iron-
300binding glycoprotein present in milk, has antimicrobial activity
301against a wide range ofGram-positive and negative bacteria (102)
302fungi, and parasites (103). Lactoferrin has been applied in meat
303products (104-106) as it has recently received approval for
304application on beef in the USA (USDA-FSIS 2008. FSIS Direc-
305tive 7120.1 Amendment 15).
306Other AMPs. Protamine, like salmine and clupeine, has been
307reported to be isolated from fish and is found to be effective against
308Gram-negative and Gram-positive bacteria, yeasts, and molds
309(108-111). Magainin peptides isolated from frogs (112) have been
310found effective against a range of food-related pathogens (113),
311implying a possible application as food preservatives (91,114,115).
312Chitosan. Chitosan, a natural biopolymer obtained from the
313exoskeletons of crustaceans and arthropods, is known for its
314unique polycationic nature and has been used as active material
315for its antifungal activity (72,116) and antibacterial activity (117-
316120). Liu et al. (121) studied the efficacy of chitosan againstE. coli
317and concluded that low molecular weight chitosan is effective for
318controlling growth. The strong antibacterial activity of chitosan
319was also observed against S. aureus, while its molecular weight
320appeared to be a significant parameter defining its activity (122).
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321 Lipids. Like lipids of plant origin, lipids of animal origin have
322 antimicrobial activity against a wide range of microorganisms.
323 Free fatty acids atmucosal surfaces have been shown to inactivate
324 S. aureus (123). Milk lipids have recorded activity for inactivation
325 of Gram-positive bacteria including S. aureus, Cl. botulinum, B.
326 subtilis,B. cereus,L.monocytogenes,Gram-negative bacteria such
327 asP. aeruginosa,E. coli, andSalmonella enteriditis (124-126), and
328 also against various fungi such as Aspergillus niger, Saccharo-
329 myces cerevisiae, and C. albicans (36, 124). Lipids may serve to
330 inhibit the proliferation as well as the prevention of the establish-
331 ment of pathogenic or spoilage microorganisms in food matrixes.
332 Shin et al. (127) studied eicosapentaenoic acid (EPA) and
333 docosahexaenoic acid (DHA), which are formed in animal
334 (including fish and shellfish) tissues but not plant tissues (18:3
335 ω-3). DHA is a component ofmembrane structural lipids that are
336 enriched in certain phospholipid components of the retina and
337 nonmyelin membranes of the nervous system in animals. Bio-
338 converted EPA and DHA exhibited antibacterial activities
339 against four Gram-positive bacteria, B. subtilis, L. monocyto-
340 genes, Staphylococcus aureus ATCC 6538, S. aureusKCTC 1916,
341 and seven Gram-negative bacteria, E. aerogenes, E. coli, E. coli
342 O157:H7, E. coli O157:H7 (human), P. aeruginosa, Salmonella
343 enteritidis, and S. typhimurium (127). The growth inhibition by
344 both EPA and DHAwas similar against Gram-positive bacteria,
345 while the bioconverted extract of DHA was more effective than
346 EPA against Gram-negative bacteria.
347 Mechanism of Antimicrobial Action. The mechanism of action
348 ofAMPs seems to involvemultiple targets. The plasmamembrane
349 is the most cited target; however, recent studies suggest intracel-
350 lular targets at least for some peptides (128, 129). Although most
351 AMPs act by nonspecific mechanisms, they often display some
352 selectivity between different microorganisms, for example, Gram-
353 negative compared with Gram-positive bacteria (130, 131) and
354 susceptibility of fungal cells compared with other eukaryotic
355 cells (132). Antimicrobial peptides can assume amphipathic struc-
356 tures, which are able to interact directly with the microbial cell
357 membrane, rapidly disrupting the membrane in several locations,
358 resulting in leaching out of vital cell components (96, 133).
359 Previous studies conducted on the mechanism of action of
360 pleurocidin revealed that it exhibits strong membrane transloca-
361 tion and pore-formation ability, reacting with both neutral and
362 acidic anionic phospholipid membranes (134). Lipids inactivate
363 microorganisms mainly by disruption of bacterial cell wall or
364 membrane, inhibition of intracellular replication, or inhibition of
365 an intracellular target (135). Monoacylglycerols lower the heat
366 resistance of certain bacteria and fungi; therefore, they may find
367 application in reducing the required heat treatment for certain
368 foods (36). Lysozyme hydrolyses the β-1,4-glycosidic linkage in
369 sugar polymers such as N-acetylmuramic acid and N-acetylglu-
370 cosamine linkages found in bacterial peptidoglycan (136).

371 MICROBIAL ORIGIN ANTIMICROBIAL AGENTS

372 Bacteria produce many compounds that are active against
373 other bacteria, which can be harnessed to inhibit the growth of
374 potential spoilage or pathogenic microorganisms. These include
375 fermentation end products such as organic acids, hydrogen
376 peroxide, and diacetyl, in addition to bacteriocins and other
377 antagonistic compounds such as reuterin (137). Both Gram-
378 negative and Gram-positive bacteria produce bacteriocins. Bac-
379 teriocins are proteinaceous antibacterial compounds, which con-
380 stitute a heterologous subgroup of ribosomally synthesized
381 antimicrobial peptides (138). Bacteriocin production can be
382 exploited by food processors to provide an additional barrier to
383 undesirable bacterial growth in foods (Table 1).

384Bacteriocins are cationic peptides that display hydrophobic
385or amphiphilic properties, and in most cases, the target for
386their activity is the bacterial membrane. Depending on the
387producer organism and classification criteria, bacteriocins can
388be categorized into several groups (139-142) with as many as
389five classes of bacteriocins proposed (143-145). The majority
390fall into classes I and II, which are the most intensively
391researched to date. The class I group, termed lantibiotics, are
392small peptides that are characterized by their content of several
393unusual amino acids (146). The class II bacteriocins are small,
394nonmodified, heat stable peptides (147). Another classification
395is with respect to the producing microorganism and is specifi-
396cally named after the genus, species, or the group of micro-
397organisms, e.g., lantibiotics for bacteriocins of lactic acid
398bacteria, colicins of E. coli, klebisins of Klebsiella pneumo-
399niae (148). A large number of bacteriocins have been isolated
400and characterized from lactic acid bacteria, and some have
401acquired a status as potential food preservatives because of
402their antagonistic effect on important pathogens. Many bac-
403teriocins are active against food borne pathogens and spoilage
404bacteria (149-152). The important ones include nisin, diplo-
405coccin, acidophilin, bulgarican, helveticin, lactacin, and plan-
406taricin (153). Nisin is produced by various Lactococcus lactis
407strains, is the most thoroughly studied bacteriocin to date, and
408is applied as an additive in food worldwide (154). While the
409antimicrobial polypeptide nisin and related compounds such
410as pediocin are the only bacteriocins widely used for food
411preservation (155, 156), many other bacteriocins have been
412reported and have shown potential for food preservation and
413safety applications.
414Reuterin. Reuterin (β-hydroxypropionaldehyde) is a water-
415soluble nonproteinaceous metabolite of glycerol (157). It is a
416broad spectrum antimicrobial compound produced by some
417strains of Lactobacillus reuteri, with recorded activity against
418Gram-negative and Gram-positive bacteria, yeasts, and filamen-
419tous fungi (158). Reuterin was isolated, purified, and identified by
420Talarico and Dobrogosz (159) and is active over a wide range of
421pH values and resistant to the action of proteolytic and lipolytic
422enzymes (160). Reuterin is reported to exhibit bacteriostatic
423activity against Listeria monocytogenes but was only slightly
424bactericidal against Staphylococcus aureus at 37 �C. However,
425higher bactericidal activity was reported against E. coliO157:H7,
426S. choleraesuis subsp. Choleraesuis, Y. enterocolitica, A. hydro-
427phila subsp. Hydrophila, and C. jejuni (161).
428Pediocin. Pediocin is produced by strains of Pediococcus
429acidilactici and P. pentosaceus and is designated generally recog-
430nized as a safe (GRAS). The organism is commonly isolated from
431and used in fermented sausage production. The bacteriocins
432produced by P. acidilactici are AcH, PA-1, JD, and 5, and those
433produced from P. pentosaceus are A, N5p, ST18, and PD1 (162).
434Most pediocins are thermostable proteins and function over a
435wide range of pH values. Pediocin AcH has proven efficacy
436against both spoilage and pathogenic organisms, including
437L. monocytogenes, Enterococcus faecalis, S. aureus, and Cl.
438Perfringens (163). Natamycin is an antifungal produced by
439Streptomyces natalensis that is effective against nearly all molds
440and yeasts but has little or no effect on bacteria.
441Nisin.Nisin is themostwidely usedbacteriocin. Todate, nisin is
442the only natural antimicrobial peptide (see Scheme 2 for its
443structure) approved by the FDA for use as a food preservative;
444however, it has a limited spectrum of activity, does not inhibit
445Gram-negative bacteria or fungi, and is only effective at low
446pH (164, 165). Nisin is produced by fermentation of a modified
447milk medium by certain strains of lactic acid bacterium, Lacto-
448coccus lactis.Nisin functions by interactingwith thephospholipids

D J. Agric. Food Chem., Vol. XXX, No. XX, XXXX Tiwari et al.



449 in the cytoplasmic membrane of bacteria, thus disrupting
450 membrane function and preventing outgrowth of spores by
451 inhibiting the swelling process of germination. It is highly
452 active against many of the Gram-positive bacteria and speci-
453 fically used by the cheese industry to control the growth of
454 Clostridium spp. (166). Substantial research has evaluated the
455 efficacy of nisin against various pathogens and its use for
456 different food products (167-174). Nisin has been used to
457 inhibit microbial growth in beef (173), sausages (2), liquid
458 whole egg (174), ground beef (175), and poultry (176). It has
459 also been reported to reduce initial levels of Listeria mono-
460 cytogenes and suppress subsequent growth in ready-to-eat
461 (RTE) meat products (177, 178). Komitopoulou et al. (179)
462 reported that nisin could be used for the effective control of

463Alicyclobacillus acidoterrestris in fruit juices. A nisin level of
4646.25 μg/g could inhibit lactic acid bacteria (LAB) growth for
465over 28 days and for 35 days with 25 μg/g (180). The effects of
466three types of phosphate (used as emulsifiers) on nisin activity
467in sausage were compared, and LAB growth rate was fastest in
468samples containing orthophosphate and slowest in sausages
469containing diphosphate.
470Mechanism of Antimicrobial Action. The antimicrobial action
471of bacteriocins is based on pore formation in the cytoplasmic
472membrane of the target microorganism. This leads to a loss of
473small intracellularmolecules and ions and a collapse of the proton
474motive force (181). Nisin is less effective on Gram-negative
475bacteria, as the outer membrane disables the entry of this
476molecule to the site of action (50, 119, 182, 183). The first step

Table 1. Effect of Natural Antimicrobial Agents on Food Preservation and Qualitya

food product antimicrobial agent (concentrations) microbial dynamics quality attributes reference

fruit yoghurt vanillin (2000 ppm) yeast, bacterial (delays growth) shelf life (v) (232)

tomato juice clove oil (0.1%) total plate count (3.9LR) shelf life (v), vitamin C (∼) (208)

mint extract (1.0%) total plate count (8.34LR)

nisin (0.004%) total plate count (V)

ready-to-eat fruit salad citral (25-125 ppm) yeasts and lactic acid bacteria (LAB) (delays growth) shelf life (v) (233)

citron (300-900 ppm)

citron (600 ppm) Salmonella enteritidis E4 (2 LR), sensory characteristics (∼)

Escherichia coli 555 (<4.5 LR)

Listeria monocytogenes Scott A (4 LR)

raspberries methyl jasmonate (MJ), AC (v) (234)

allyl isothiocyanate (AITC) AC (V)

EO of Melaleuca alternifolia

(tea tree oil)

AC (v)

fresh cut water melon nisin (25 μg/mL) L. monocytogenes (0.8 LR) quality (v) (235)

lettuce thyme oil (1 mL/l) E. coli (6.32LR) (236)

baby carrot E. coli (5.57LR)

minimally processed carrots oregano oil (250 ppm) background spoilage microflora sensory characteristics (∼) (205)

total viable count (TVC) (>1 LR)

lactic acid bacteria (LAB) (>1 LR)

Pseudomonas (<1 LR)

minimally processed vegetables thyme oil (1%) Aeromonas spp (2 LR) sensory properties (V),

shelf life (v)

(237)

psyschrotrophic aerobic plate count (4.19 LR)

plate count agar (5.44 LR)

wine nisin LAB (minimum inhibitory concentration, MIC = 0.39 mg/mL) (238)

Oenococcus oeni (MIC 0.01 mg/mL)

acetic acid bacteria (MIC 1.5 mg/mL)

milk reuterin (8 AU/ml) L. monocytogenes (4.59 LR) (161)

nisin (100 IU/ml) S. aureus counts (5.45 LR)

skimmed milk powder nisin (100 IU/ml) L. innocua (3.8 LR) (240)

chicken meat nisin E. coli (<1 LR) proximate composition (∼),

shelf life (v)

(209)

Brochothrix thermosphacta (∼)

EOs of mustard oil Lactobacillus alimentarius (∼)

Brochothrix thermosphacta (∼)

Lactobacillus alimentarius (delays growth)

fish EOs (0.5% carvacrol þ 0.5% thymol) TVC (2.5LR) shelf life (v), lipid oxidation (V) (241)

sensory characteristics (∼)

red meat tea catechins (300 mg/kg) shelf life (v), lipid oxidation (V) (242)

beef hot dog clove oil (5 mL/l) L monocytogenes (1.15-1.71LR) (73)

thyme oil (1 mL/l) L. monocytogenes (0.67-1.05 LR)

pork bologna nisin (125 μg/mL) L. monocytogenes (1.5LR) (169)

minced beef Capsicum annum extract Salmonella typhimurium (Minimum lethal concentration,

MLC 15 g/kg)

(199)

Pseudomonas aeruginosa (MLC 30 g/kg)

chicken frankfurter clove oil (1% v/w) L. monocytogenes (4.5 LR) (197)

cooked beef grape seed extract (1%) Escherichia coli (1.7 LR) color (∼), lipid oxidation (V) (200)

S. Typhimurium (2.0 LR)

L. monocytogenes (0.8 LR)

Aeromonas hydrophila (0.4 LR)

a AU: arbitrary units were defined as the reciprocal of the highest two-fold dilution that did not allow the growth of the indicator strain. AC: anthocyanin content. v and V indicate
increase and decrease, respectively, while ∼ shows no significant difference. LR: microbial log reduction.
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477 in the mode of action of nisin is to pass through the cell wall of
478 Gram-positive bacteria. Generally, it is assumed that nisin
479 passes the cell wall by diffusion. However, the Gram-positive
480 cell wall can act as a molecular sieve against nisin depending
481 on its composition, thickness, or hydrophobicity (184). The
482 removal of the cell wall from nisin-resistant Listeria resulted in
483 the removal of nisin resistance, suggesting that the cell wall plays
484 a role in the differences in susceptibility toward nisin (185). The
485 next step of the antimicrobial process of nisin is to associate with
486 the cytoplasmic membrane of the target microorganism. It has
487 been suggested that nisin interacts electrostatically with the
488 negatively charged phosphate groups of surface membrane
489 phospholipids (173).
490 Factors Affecting Antimicrobial Activity. Various factors can
491 impact the antimicrobial efficacy of bacteriocins. These include
492 the emergence of bacteriocin-resistant bacteria, conditions that
493 destabilize the biological activity of proteins such as proteases or
494 oxidation processes, binding to food components such as fat
495 particles or protein surfaces, inactivation by other additives, poor
496 solubility, and uneven distribution in the food matrix and/or pH
497 effects on bacteriocin stability and activity (137). The application
498 of bacteriocins in combination with other preservation hurdles
499 has been proposed to reduce the selection for resistance to
500 bacteriocins in target strains and/or to extend its inhibitory
501 activity to Gram-negative species (182). Interactions between
502 bacteriocin and the food matrix may result in a decrease in the
503 efficacy of the bacteriocin. The combination of bacteriocins with
504 other minimal or nonthermal preservation technologies may
505 prove useful for practical applications. This approach is of value
506 for the control of Gram-negative bacteria as their outer mem-
507 brane acts as an efficient barrier against hydrophobic solutes and
508 macromolecules, such as bacteriocins (119).

509 QUANTIFICATION OF THE MINIMUM AND NONINHIBITORY
510 CONCENTRATION

511 The use of antimicrobials as preservatives in food systems
512 can be constrained when effective antimicrobial doses exceed
513 organoleptic acceptable levels (especially for essential oils) or
514 when they are added to complex food systems. Two specific
515 concentrations appear to be of interest, i.e., the noninhibitory
516 concentration, NIC, the concentration above which the inhi-
517 bitor begins to have a negative effect on growth, and the
518 minimum inhibitory concentration, MIC, which marks the
519 concentration above which no growth is observed by compar-
520 ison with the control (186). Therefore, these concentrations are
521 quantified with the aim of defining the boundaries of sensory
522 acceptability and antimicrobial efficacy of antimicrobials (26).
523 Most of the studies on the calculation of MIC and NIC are
524 semiquantitative, while quantitative approaches have been
525 mainly applied on studies concerning the antimicrobial activity
526 of plant origin antimicrobial agents, i.e., essential oils and their
527 components.

528The MIC and NIC are dependent on experimental conditions.
529The influencing conditions include the incubation temperature,
530organism, and inoculum size, and therefore, they should be
531reported in studies where MIC and NIC are evaluated (187,
532188). In vitro studies for identifying the MIC can be divided into
533groups such as diffusion, dilutions, impedance, and optical
534density (or absorbance) methods (see for e.g., refs (189-191)).
535Most of these evaluations are based on an end-point approach for
536evaluating theMIC, i.e., end result inwhichnogrowth is obtained
537for a test level of preservative, into which an inoculum of
538microbes is added. This kind of approach is considered semi-
539quantitative (188).
540Lambert and Pearson (188) examined the inhibitory activity of
541single compounds of EOs and developed a fully quantitative
542approach. This is given by the Lambert-Peason model (LPM)
543inspired by a modified Gompertz equation (eq 1) to evaluate the
544dose-responses of microorganisms against several inhibitors.
545This modeling approach has already been examined for optical
546density, O.D. (187, 188), and impedance microbial measure-
547ments (62).

fa ¼ exp -
x

P1

� �P2

" #
ð1Þ

548In eq 1, fa is the fractional area which is defined as the ratio of
549inhibited growth to uninhibited growth as measured by the
550applied method (impedance, optical density, etc.), x is the
551inhibitor concentration (mg/L), P1 is the concentration at max-
552imum slope (of a log x vs fa plot; see Figure 1 for a graphical
553example of this equation), and P2 is a slope parameter. Observe
554that fa can bemeasured by using the trapezoidal rule under theO.
555D. (or other microbial measurements)/time curves and then
556taking the ratio of the test area to that of the control (187).
557Therefore, the range of fawill be between 0 and 1 (Figure 1). The
558routine, trapz, provided by Matlab is an example of a software
559package that can be used for performing a trapezoidal numerical
560integration.
561TheMIC (eq 2) and theNIC (eq 3) can then be calculated as the
562intercept of the concentration axis to the tangent at themaximum
563gradient of the fa/log concentration curve and the intercept of the
564tangent at the maximum gradient of the fa/log concentration
565curve to the fa=1 contour.

MIC ¼ P1 3 exp
1

P2

� �
ð2Þ

NIC ¼ P1 3 exp
1-e

P2

� �
ð3Þ

566567Guillier et al. (192) developed another approach for evaluating
568theMICbased on the use of growth ratemodels. After estimation
569of the maximum specific growth rates (μmax) from optical density

Scheme 2. Structure of Nisin
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570 growth kinetics by amodifiedGompertzmodel, they assessed the
571 antimicrobial concentration dependence on μmax (eq 4).

ffiffiffiffiffiffiffiffiffi
μmax

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μmaxðc ¼ 0Þ 3 f ðcÞ

q
ð4Þ

572 f(c) can be described either as eq 5, i.e., the SRμmodel, or as eq 6,
573 i.e., the LPμ model.

f ðcÞ ¼ 1-
c

MIC

� �β
, c < MICor 0, cgMIC ð5Þ

f ðcÞ ¼ exp -
c

MIC=exp lnðNIC=MICÞ
-e

� �
0
@

1
A-e=ðlnðNIC=MICÞÞ2

64
3
75 ð6Þ

574 μmax(c=0) is the growth rate in the absence of the antimicrobial
575 (c=0) and β a shape parameter representing the sensitivity of the
576 microorganism to an antimicrobial in eq 5. These two approaches
577 appeared to give equivalent results. Observe that for estimating
578 the parameters ofMIC,NIC, andμmax(c=0)of eq 6, a regression
579 is performed for the data that relate themaximum specific growth
580 rates (μmax) with the concentration of the inhibitor.
581 Lambert et al. (26) argued that the majority of antimicrobial
582 activity could be attributed to two components acting indepen-
583 dently. Therefore, they also suggested another expression for a
584 mixture of two inhibitors that could be extended in case there are
585 more inhibitors as presented in eq 7:

faxi, :::, xk ¼ exp -
xi

Ci, 1

� �Ci, 2
þ:::þ xk

Ck, 1

� �Ck, 2
" #CQ

8<
:

9=
; ð7Þ

586 where parametersCi,1 are the concentrations of the xi inhibitors at
587 the maximum slope. The main difference is that the current
588 expression takes into account interactions between the antimi-
589 crobials, whichmeans that it could be considered for any additive,
590 antagonistic, and synergistic activity between the studied inhibi-
591 tors. For an example in which a mixture of two antimicrobials is
592 studied reference is made to Lambert and Lambert (187). In that
593 case, theMIC of any of the xi antimicrobials is then given by eq 8.

MIC ¼ Ci, 1 3 exp
1

Ci, 2þCQ

� �
ð8Þ

594595 Another interesting quantitative approach for evaluating the
596 bactericidal effect of different agents has been suggested by Lui
597 et al. (193). This is based on a concentration killing curve
598 approach and the estimation of the so-called median bactericidal
599 concentration and bactericidal intensity. The developed method

600is based on the correlation (by the use of a sigmoidal curvewith an
601inflection point) of the population size (number CFU per plate)
602with respect to the concentration of the agent. This approach has
603been applied for quantifying the bactericidal potency of anti-
604biotics against E. coli and might have to be further investigated
605for different antimicrobials. Similar to the discussed approaches,
606novel modeling methods for quantitatively expressing the effect
607of antimicrobials throughMIC andNIC values can be developed
608byknowledge coming frompredictivemicrobiology.Anoverview
609of representative cases for differentmodeling expressions tackling
610the effect of both chemical and natural inhibitory compounds can
611be found in Devlieghere et al. (194).
612Accurate quantitative evaluations of MIC and NIC are
613important for designing effective preservation methods that
614are based on the use of the discussed antimicrobials. These
615quantitative methods can be exploited to give insight to optimal
616concentrations or combinations for real food systems by direct
617comparison of the antimicrobial efficacy of different antimicro-
618bials, their individual or combined components, or their mix-
619tures, and for efficient design of preservation for food products
620based on the principles of hurdle technology. These approaches
621have not received much attention for evaluating the MIC or the
622minimum bactericidal concentration of the antimicrobials of
623animal and microbial origin, but their potential is evident.

624APPLICATIONS OF NATURAL ANTIMICROBIALS IN FOOD

625The extrapolation of results obtained from in vitro experiments
626with laboratory media to food products is not straightforward as
627foods are complex, multicomponent systems consisting of differ-
628ent interconnecting microenvironments. Though there is vast
629potential for natural antimicrobial agents in food preservation,
630most of the literature presents inactivation data frommodel foods
631or laboratory media. Table 1 reports inactivation studies in real
632food systems. The level of natural preservatives required for
633sufficient efficacy in food products in comparisonwith laboratory
634media may be considerably higher, which may negatively impact
635the organoleptic properties of food.
636Monoacylglycerols have increased the shelf life of various
637foods including soy sauce,miso, sausages, cakes, andnoodles (36).
638The lauric acid ester of monoacylglycerol has reported antimi-
639crobial potential in seafood salads and various flesh foods
640including deboned chicken meat, minced fish, refrigerated beef
641roasts, and frankfurter slurries (126,195). Hao et al. (196) studied
642the efficacy of a range of plant extracts for inhibition of
643A. hydrophila and L. monocytogenes in refrigerated cooked
644poultry and found that eugenol reduced pathogen counts by
6454 log10 cfu/g over a 14day storage trial. Similarly, 1-2%w/wclove
646oil inhibited the growth of a range of Listeria spp. in chicken
647frankfurters over 2weeks at 5 �C(197). Conversely, Shekarforoush

Figure 1. Hypothetical inhibition profile as can be described by eq 1 for increasing values of P2 and constant P1 (left panel) and increasing values of P1 and
constant P2 (right panel). Inhibitor concentration is expressed on a logarithmic scale.
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648 et al. (198) found that EOs of oregano and nutmeg were effective
649 against E. coli O157:H7 in a broth system but had no effect in
650 ready-to-cook chicken. Careaga et al. (199) recorded that 1.5 mL/
651 100 g of capsicum extract was sufficient to prevent the growth of
652 S. typhimurium in raw beef but that 3 mL/100 g was required for a
653 bactericidal effect againstP. aeriginosa. Ahn et al. (200) also found
654 a range of plant extracts to be useful for reduction of pathogens
655 associated with cooked beef and quality maintenance; however,
656 Uhart et al. (201) concluded that when in direct contact, spices
657 inactivated S. typhimurium DT104 but that the activity decreased
658 considerablywhenadded to a complex food system such as ground
659 beef. Gutierrez et al. (74,75) concluded that plant essential oils are
660 more effective against food-borne pathogens and spoilage bacteria
661 when applied to ready-to-use foods containing a high protein level
662 at acidic pH as well as lower levels of fats or carbohydrates and
663 moderate levels of simple sugars. The success of plant derived
664 antimicrobials when applied to fruit and vegetable products is also
665 documented in the literature. Karapinar et al. (202) recommended
666 unripe grape juice as an alternative antimicrobial agent for
667 enhancing the safety of salad vegetables, and Martinez-Romero
668 et al. (203) suggested that carvacrol could be applied as a novel tool
669 for the control of fungal decay on grapes. Although Valero and
670 Frances (204) found that low concentrations of carvacrol, cinna-
671 maldehyde, or thymol had a clear antibacterial effect against
672 B. cereus in carrot broth, cinnamaldehyde retained a significant
673 activity at storage temperatures of 12 �C. Gutierrez et al. (205)
674 found that the efficacy of oregano EO was comparable with
675 chlorine as a decontamination treatment for ready-to-eat carrots.
676 Use of this essential oil contributed to the acceptability of sensory
677 quality and appreciation. A novel application of plant extracts is
678 for the production of chocolate; Kotzekidou et al. (206) reported
679 enhanced inhibitory effects of plant extracts against an E. coli
680 cocktail at 20 �C.
681 Antimicrobials from microbial sources, especially nisin, find
682 application in a number of foods such as milk, orange juice (207),
683 and tomato juice (208), and for increasing the shelf life of chicken
684 meatwithout altering sensory properties of the product (209). The
685 efficacy of enterocin AS-48 for inhibition of B. cereus in rice and
686 S. aureus in vegetable sauces was investigated (210, 211) with
687 bacteriocin levels in the range of 20-35 μg/mL and 80 μg/mL,
688 respectively.
689 Investigation of the antimicrobial properties of preservatives
690 from animal sources and their possible potential in food applica-
691 tion is still in its infancy, with few published studies available as
692 described above. A common conclusion that could be drawn
693 from these studies is the fact that the significant potential of
694 antimicrobials from animal sources is not being exploited.
695 Some other applications in foods that got attention in previous
696 years are the use of bioactive packaging technologies. These
697 systems can be applied for all of the discussed antimicrobials,
698 i.e., plant, animal, and microbial origin agents either by adding a
699 sachet (or possibly by encapsulating the agents (212)) into the
700 package, dispersing bioactive agents in the packaging, coating
701 bioactive agents on the surface of the packaging material, or
702 utilizing antimicrobial macromolecules with film-forming prop-
703 erties or edible matrixes (213, 214). Film-coating applications
704 have been reported for meat, fish, poultry, bread, cheese, fruits,
705 and vegetables (215).

706 USE OF NATURAL ANTIMICROBIALS IN THE MULTIPLE-
707 HURDLE CONCEPT

708 Investigations based on combinations of natural antimicro-
709 bials with other nonthermal processing technologies within the
710 multiple-hurdle concept are warranted to counteract any poten-
711 tial organoleptic or textural effects on food products as well as

712optimizing microbial inactivation. The preservative action of
713bacteriocins alone in a food system is unlikely to ensure compre-
714hensive safety. This is of particular significance with regard to
715Gram-negative pathogenic bacteria that are protected from the
716antimicrobial action of bacteriocins by the presence of an outer
717membrane. When the outer membrane is disrupted by agents
718such as the food grade chelating agent ethylene diamine tetra-
719acetate (EDTA), which acts by binding to Mg2þ ions in lipopo-
720lysaccharide, the outer membrane of Gram-negative bacteria are
721rendered sensitive to the antimicrobial action of bacterio-
722cins (181). Potential synergistic effects may be found with other
723chemical or physical inactivation technologies including dense
724phase carbon dioxide, ultrasound, pulsed-electric field, high
725pressure, and ozone treatment. As a consequence of applying
726these nonthermal methods, bacterial cell membranes can weaken
727or become susceptible to additional antimicrobial agents such as
728bacteriocins, causing lethality. The use of bacteriocins in combi-
729nation with organic acids or other antimicrobials can similarly
730result in enhanced inactivation (216). Studies reporting the
731effective use of nisin against Gram-negative organisms and fungi
732are those in which nisin was used in combination with traditional
733food preservatives such as organic acids and chelating
734agents (217). Rajkovic et al. (218) found that the activity of nisin
735combined with carvacrol was enhanced in a potato puree by
736comparisonwithBHI broth and thatmore obvious effects against
737B. cereus and B. circulans were observed at higher temperatures.
738The application of bacteriocins in combination with treatments
739that could enhance their effectiveness in foods requires investiga-
740tion. Examples of the synergistic effects that can be obtained
741using mild traditional preservation techniques in conjunction
742with novel food processing technologies are better studied in
743vitro but require further investigation in food products to ensure
744successful practical application. The antibacterial activity of
745inhibitory compounds, such as nisin, enterocin, monolaurin,
746and the lactoperoxidase system (LPS), can be enhanced if applied
747in combination (219-221),with chelating agents (182,222,223) or
748with preservative treatments such as high hydrostatic pressure,
749pulsed electric field, low pH, or freeze/thaw cycles (224-228). The
750combination of plant EOs with modified atmosphere packaging
751for control of spoilage species was reported by Skandamis and
752Nychas (229) and Matan et al., (230). Seydim and Sarikus (231)
753also investigated the use of EOs in an active packaging system
754based on an edible whey protein film and concluded that oregano
755was the most effective EO against a range of food pathogens.
756Allyl isothiocyanate was successfully applied to chopped, refri-
757gerated, nitrogen packed beef for the control ofE. coli at levels in
758excess of 1000 ppm.
759Conclusions and Future Trends. Interest in natural antimicro-
760bials has expanded in recent years in response to consumer
761demand for greener additives. During the last two decades,
762natural preservatives have been investigated for practical applica-
763tions. These technologies have been shown to inactivate micro-
764organisms and enzymes without significant adverse effects on
765organoleptic or nutritional properties. Reported studies have
766demonstrated that natural antimicrobial agents described in this
767review may offer unique advantages for food processing. In
768addition to improving the shelf life and safety of foods, natural
769antimicrobial agents may allow novel food products with en-
770hanced quality and nutritional properties to be introduced to the
771market.
772The applications of natural antimicrobial agents are likely to
773grow steadily in the future because of greater consumer demands
774for minimally processed foods and those containing naturally
775derived preservation ingredients. More complex considerations
776arise for combinations of technologies, particularly with respect
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777 to optimization of practical applications. Intelligent selection of
778 appropriate systems based on detailed, sequential studies and
779 quantitative approaches to evaluate the efficiency of antimicro-
780 bials is necessary. The impact of product formulation, extrinsic
781 storage parameters, and intrinsic product parameters on the
782 efficacy of novel applications of combined nonthermal systems
783 requires further study.

784 ABBREVIATIONS USED

785 Abu, amino butyric acid; Ala, alanine; asn, asparagine; Dha,
786 dehydroalanine; Dhb, dehydrobutyrine (β-methyldehydroala-
787 nine); Gly, glycine; His, histidine; Ile, isoleucine; Leu, leucine ;
788 Lys, lysine ;Met,methyonine ; Pro, proline; Ser, serine;Val, valine.
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