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Application of near-infrared spectroscopy for moisture-based sorting of 
green hem-fi r timber

Abstract A rapid, non-destructive, in-line method suitable 
for sorting green hem-fi r timbers (115-mm square) based on 
moisture content was established by near-infrared (NIR) 
spectroscopy. The accuracy of NIR sorting was compared 
with a commercial capacitance-type moisture meter. Mixed-
species samples consisting of three moisture classes were 
assessed in this study. The NIR-based prediction model 
showed positive correlation with the actual calculated 
values as determined by oven-drying, regardless of knots, 
surface roughness, and the mix of two wood species. NIR 
proved to be capable of detecting the moisture content 
between all pairs of the three moisture groups, whereas the 
capacitance-type moisture meter failed to establish a signifi -
cant difference between middle- and high-moisture groups. 
These fi ndings clearly demonstrate that NIR spectroscopy 
has a potential to estimate average moisture of green timber 
indirectly, although it inherently gives only surface moisture 
content values, as it is limited by scan depth.
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Introduction

It has long been recognized that timber moisture uniformity 
can be improved after kiln drying by presorting lumber 
based on green moisture content estimates. Various tech-
niques used to attain the estimates of green moisture 
content to facilitate improved overall recovery of dry 
lumber include weight, density, dielectric properties, and 
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temperature.1 In Canada, the adoption of sorting technolo-
gies by producers of structural timber has been growing 
steadily. In addition, drying schedule optimization com-
bined with sorting strategies has been shown to result in 
better quality and higher yield.2 However, the current pre-
sorting approaches fail to accurately measure the large vari-
ability in moisture content that is inherent in green timber.

Near-infrared (NIR) spectroscopy combined with the 
power of multivariate statistical modeling has been shown 
capable of predicting wood moisture content. For example, 
Hoffmeyer and Pedersen3 developed calibrations for the 
prediction of moisture in the hygroscopic range in Norway 
spruce (Picea abies) and concluded that NIR spectroscopy 
is very versatile for such an application. Karttunen et al.4 
determined the moisture distribution of Scots pine (Pinus 
sylvestris) green logs by NIR spectroscopy and showed the 
existing moisture variation within and between logs. 
Adedipe and Dawson-Andoh5 examined the feasibility of 
using NIR spectroscopy to predict moisture between 0.3% 
and 80% in yellow-poplar (Liriodendron tulipifera L.) 
veneer sheets. Employing a reduced spectral range (1400–
1900 nm), a region ascribed to the two main hydroxyl 
absorption peaks, gave higher predictive capacity compared 
to the full spectra. Defo et al.6 evaluated the effects of grain 
orientation on predicting moisture content and basic density 
of red oak (Quercus spp.); the spectra collected from the 
transverse and radial surfaces provided better predictions 
than those collected from tangential surfaces. Watanabe et 
al.7 recently demonstrated that NIR could accurately detect 
wet-pockets on the surface of kiln-dried western hemlock 
(Tsuga heterophylla). It was also shown that surface mois-
ture content (5–105%) could be predicted in real time at 
relatively rapid line speed (up to 1 m/s) without averaging 
NIR scans into a single spectrum, thus making the system 
very robust and fl exible.8

Although success has been demonstrated using NIR, its 
practical application for the wood industry is somewhat 
restricted because refl ected light inherent to the NIR region 
from the wood surfaces is measured and processed by 
multivariate analysis, and as such only surface information 
can be predicted. Therefore, extrapolation of surface 
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information to the entire timber is required as the dimen-
sions of timber increase. To put NIR technology into com-
mercial application for presorting of green timbers or logs, 
the sorting ability of NIR needs to be assessed in a more 
practical manner. The purpose of this study was to sort 
green hem-fi r9 baby-squares using an in-line NIR system 
based on the predicted moisture content and to evaluate 
sorting accuracy compared with a commercial capacitance-
type moisture meter.

Materials and methods

Derivation of prediction models for moisture content

Forty-three kiln-dried timber specimens (105 × 105 mm in 
cross section and 2.5 m long) of western hemlock (Tsuga 
heterophylla) obtained from two production batches pro-
vided by two different mills were cut into small test samples 
(100 mm long × 105 mm wide × 45 mm thick). NIR spectral 
information was captured from all three surfaces, offering a 
range of grain orientations including fl at-grain, edge-grain, 
and in-between grain. In addition, three types of wood 
(juvenile, sapwood, and heartwood) were evaluated; result-
ing in a total of nine combinations (three orientations × 
three wood types) for a total of 90 samples (10 for each 
combination). The basic density of the samples ranged from 
298 to 508 kg/m3 with a mean value of 368 kg/m3 and a 
standard deviation of 45 kg/m3.

All samples were oven dried at 103° ± 2°C for 24 h and 
weighed with a digital balance. Thereafter, the samples were 
conditioned to target equilibrium moisture contents above 
30% in a conditioning chamber (model CL-5488F; Param-
eter Generation & Control, Black Mountain, NC, USA) for 
4 weeks at a temperature and relative humidity of 50°C and 
99%RH, respectively. Subsequently, each group was soaked 
in distilled water for 10 min and then placed in sealed bags 
for 2 weeks for the water to diffuse and redistribute within 
the samples. Their weight was again measured before NIR 
spectra acquisitions. Consequently, moisture content of the 
samples ranged from 35% to 105% with an average of 64%.

NIR spectra were collected with the LF-1900 spectrom-
eter (Spectral Evolution, North Andover, MA, USA) operat-
ing in a diffuse refl ectance mode at 4-nm intervals between 
1200 and 2116 nm. A fi ber optic probe was oriented at 90° 
above the sample surface, and a piece of commercial micro-
porous Tefl on was used as reference. The samples were illu-
minated with a DC lamp oriented at 30° above the sample 
and aligned parallel to the longitudinal direction of each 
sample. The distance between the sample surface and the 
bottom of the spectrometer was 200 mm. The NIR spot area 
was approximately 77 × 20 mm. A single spectrum was 
obtained by averaging ten independent scans. Two spectra 
were collected from each sample, one from the upper surface 
and the other from the bottom. Thereafter, 108 of the 180 
spectra captured were used as the calibration set and the 
remaining 72 spectra were used as the validation set.

Prior to modeling, spectral data sets were pre-processed 
using the Savitzky–Golay second derivative spectra with 

seven convolution points10 to remove the effects of baseline 
and slope. The wavelength range of 1300–2100 nm, which is 
known to be associated with the hydroxyl groups5,11 and 
which corresponded to the highest predictive capability in 
previous studies,7 was used. In addition, the upper wave-
length limit was reduced to 2050 nm because signifi cant 
spectral noise was detected between 2050 and 2116 nm in 
the initial scans.

Multivariate analysis of the preprocessed spectra was 
performed using Unscrambler version 9.1 software (CAMO, 
Corvallis, OR, USA). A partial least squares (PLS) regres-
sion multivariate technique was used to construct the cali-
bration models consisting of the 108 spectra in the calibration 
set using a complete cross-validation method. The coeffi -
cient of determination (R2) and the root mean square error 
of cross-validation (RMSECV) were used to assess calibra-
tion performance. The RMSECV is a direct estimation of 
the calibration modeling error.

Determination of the optimum number of principal com-
ponents (PCs) is very important to prevent overfi tting and 
underfi tting of calibration models. The optimal PCs were 
determined by observing the response of the residual vari-
ance with added PCs. When additional PCs did not sub-
stantially decrease the residual variance, iterations were 
terminated. Outliers were selected as being those samples 
whose residual standard deviation was greater than two 
times the total standard deviation for all samples. As a 
result, outliers were detected using this method.

The moisture content of each sample in the validation 
set was estimated using the calibration model. Predictive 
quality was evaluated by comparing the calculated values 
to the measured values. The coeffi cient of determination 
(R2), root mean square error of prediction (RMSEP), and 
ratio of performance to deviation (RPD) served as statisti-
cal measures of predictive power. RMSEP values were used 
to measure how well the calibration model predicts the 
parameter of interest for a set of unknown samples, which 
were different from the calibration set. RPD, which is the 
ratio of the standard deviation of the reference data to the 
standard error of prediction, provides a further assessment 
of the calibration model.12 An RPD of greater than 8 is good 
for process control, development, and applied research; 
values of 5 to 8 are adequate for quality control, and 2.5 to 
5 are satisfactory for screening.

Moisture-based sorting of hem-fi r timbers

Freshly sawn hem-fi r timbers were sourced at a local 
sawmill. As defi ned by the Western Wood Products Associa-
tion, hem-fi r is a mixed-species combination of approxi-
mately 70% western hemlock (Tsuga heterophylla) and 
30% amabilis fi r (Abies amabilis)9 well known for its large 
variability of initial moisture content. The acquired samples 
were 115 × 115 mm in cross section and 4 m in length. The 
specimens had knots, rough surfaces, and natural variation 
in color. They were sorted into three moisture/density 
groups, namely low (0–44%), middle (45–59%), and high 
(>59%) moisture content, using an in-line commercial 
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capacitance-type moisture meter (capacitance) designed to 
sort green timber before drying. Fifty timbers were ran-
domly selected for each group, and therefore 150 (50 × 3) 
specimens were evenly preclassifi ed into three groups.

The top and bottom surfaces of each specimen were 
scanned using a pilot-plant in-line NIR system with a line 
speed of 1 m/s. A detailed description of the NIR system 
was reported previously.8 Sixty-six spectra were obtained 
from each surface. Subsequently, the moisture content of 
top and bottom surfaces were predicted using the previ-
ously developed PLS regression model. The total moisture 
content of each specimen was extrapolated by averaging the 
predicted moisture content of both surfaces. All specimens 
were equally sorted into three groups (high, middle, and 
low) based on the averaged moisture content.

Ten small sections (cookies) 50 mm thick were then cut 
from each specimen (Fig. 1a). In addition, the #3 and #8 
cookies were cut into shell and core regions to determine 
their moisture differences (Fig. 1b). As the specimens con-
tained knots and had rough surfaces, the thickness of the 
shell region was kept at 5 mm, the minimal thickness we 
could cut without damage. Ten cookies including shell and 
core regions were weighed individually and then dried in an 
oven at 103° ± 2°C for 2 days. Thereafter, their moisture 
content was calculated gravimetrically. The average mois-
ture content of each specimen was then determined by aver-
aging the moisture contents of the ten cookies.

Results and discussion

Validation of the PLS regression model

The PLS regression model resulted in very high R2 of 0.93 
and 0.93 and low RMSECV/RMSEP of 5.25% and 5.70% 
for the calibration and the validation, respectively (Table 1). 
RPD, which serves as a statistical measure of predictive 
power, was 3.9 in the validation, suggesting that the model 

is adequate for screening. Predicted moisture contents in 
the validation set were plotted as a function of the actual 
values as determined by the oven-dry method (Fig. 2). The 
solid line indicates where a predicted value equals the mea-
sured value (R2 = 1). Deviation from these lines is indicated 
by RMSEP in Table 1. The PLS regression model showed 
good agreement and excellent moisture predictability, dem-
onstrating that the resultant PLS regression model can 
predict moisture content of western hemlock ranging from 
35% to 105%, which is the moisture range of the samples 
used in the model. Industrial moisture meters that have 
been widely used in sawmills, such as capacitance meters, 
require a correction for wood density. In contrast, the PLS 
regression model succeeded in predicting moisture content 
within the range of basic density (298–508 kg/m3) covered 
by the calibration set, demonstrating that NIR spectroscopy 
has the advantage of measuring moisture content without 
the need to correct for wood density.

Defi ned wavelength range correlated to moisture content

The raw absorbance spectra for various moisture contents 
are illustrated in Fig. 3. The two spectral peaks at 1430 
and 1910 nm, which are attributed to OH absorption 
due to water, increased with increasing moisture content 
(Karttunen et al.4). The regression coeffi cients of the PLS 

Fig. 1. Cutting pattern of small 
sections (cookies)

Table 1. Summary statistics of partial least squares (PLS) regression 
model for moisture content

Sample set Optimal PCs n R2 RMSECV/
RMSEP (%)

RPD

Calibration 3 108 0.93 5.25 3.80
Validation 3  72 0.93 5.70 3.90

PC, principal component; RMSECV, root mean square error of cross-
validation; RMSEP, root mean square error of prediction; RPD, ratio 
of performance to deviation
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regression model were useful in determining important 
spectral regions correlated to moisture content. These coef-
fi cients, at 1430 and 1910 nm, were close to zero, indicating 
that the two wavelengths had a small impact on the PLS 
regression model. High negative or positive regression coef-
fi cients were observed at 1363 and 1386 nm, which are 
assigned to the CH deformation and second overtone of CH 
stretching in cellulose,13 and the second overtone of OH 
stretching in water,14 respectively. This wavelength range 
could possibly have an important impact on the prediction 
of moisture content above 30%.

Moisture-based sorting of hem-fi r timbers

Distributions of average moisture contents for the 150 spec-
imens calculated by the oven-dry method (Fig. 4) ranged 
from 37% to 167%, with an average of 72%. Similar varia-
tion in hem-fi r timber has been previously reported.15,16

Figure 5 shows the moisture distributions of the pre-
classifi ed high, middle, and low moisture content groups 
sorted by capacitance and NIR, respectively. Overall, the 
moisture distribution of the low group was the lowest 
among three groups, whereas that of the high group 
appeared to be the highest. However, the average moisture 
content of the middle group sorted by capacitance was 
slightly higher than that of the high group (Fig. 6), illustrat-
ing that capacitance meters inherently lose their accuracy 
at high moisture content, especially when their predictive 
ability is impacted by wood density.

One-way analysis of variance (ANOVA) tested the dif-
ferences in average moisture content among the three 
groups. The Tukey–Kramer multiple comparison test was 
used to compare pairwise means. A signifi cant difference in 
moisture content between all pairs of the three groups was 
observed when sorted by NIR (one-way ANOVA, P < 0.01; 
Tukey–Kramer multiple comparison test, P < 0.01), whereas 
no signifi cant difference between middle and high groups 
was apparent when sorted by capacitance. We considered 
that NIR performed better than the more traditional 
capacitance-type moisture meter and that an NIR approach 
is capable of accurately sorting green timber based on mois-
ture content.

The relationship between shell and core moisture content 
measured from selected cookies was also determined (Fig. 
7). In short, it was apparent that there was a good agreement 
between shell and core moisture content, and as such, dem-
onstrated why NIR can predict average moisture indirectly, 
although it inherently gives us only surface information. 
When measured average moisture content versus NIR pre-
dicted is plotted (Fig. 8), NIR-predicted moisture content 
showed a positive correlation with the measured moisture 

Fig. 2. Near-infrared (NIR) predicted versus measured values in the 
validation set. Dotted line, target line

Fig. 3. NIR raw spectra for various moisture contents and regression 
coeffi cients of the partial least squares (PLS) regression model. Gray 
line, regression coeffi cients; arrows, wavelengths with high positive or 
negative regression coeffi cients

Fig. 4. Distribution of average moisture content of all specimens by 
oven-dry method
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Fig. 5. Moisture distributions of high, middle, and low groups sorted 
by capacitance and NIR, respectively

Fig. 6. Average moisture content of high, middle, and low groups 
sorted by capacitance and NIR, respectively. Plots and error bars indi-
cate mean value and standard deviations, respectively

Fig. 7. Relationship between shell and core moisture content deter-
mined by oven-dry method

content, indicating that the in-line NIR system was capable 
of estimating the average moisture of green timber by scan-
ning the timber surface. It has been demonstrated that NIR 
spectroscopy has the potential to predict many wood traits, 
such as basic density,17,18 shrinkage,19 grain angle,20 micro-
fi bril angle,21 and modulus of elasticity,22,23 which can all 
impact checking and shape distortions that occur during 
drying. By means of multiple trait assessment of green 
timber before drying, more optimized timber sorting could 
be developed in the future. NIR technology has a conspicu-
ous advantage for timber pre-drying sorting over the other 
moisture meters.

Measured and NIR-predicted surface moisture content 
(Fig. 9) showed the R2 values for moisture content below and 
above 105% were 0.55 and 0.18, respectively. Surface mois-
ture content above 105% was underestimated; moisture 
content below 105% showed a positive correlation between 
predicted and measured values regardless of knots and rough 
surface, explained by the limitation of the calibration model 
employed in NIR evaluation. The model was constructed 
from 100% hemlock samples whose moisture content was 
below 105%. Therefore, the model is not, in theory, suitable 
for predicting moisture content of samples over 105%, result-
ing in the underestimation of moisture content. Watanabe 
et al.8 recently reported that moisture content beyond the 

predictive range of the calibration model was indeed under-
estimated. A more suitable model should be developed using 
samples with higher moisture content (over 105%), which 
may improve the sorting ability of NIR.
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Fig. 8. Plots of measured average moisture content by oven-dry 
method against NIR predicted

Fig. 9. Measured and NIR-predicted surface moisture content. Dotted 
line, target line. The plots are separated into two moisture ranges, below 
and above 105%

The PLS regression model tended to underestimate mois-
ture content ranging from 35% to 105% as measured content 
increased (Figs. 8, 9). The relationship between measured and 
predicted moisture content was non-linear and may be a result 
of surface drying. Surface drying during NIR measurement 
was shown to occur (Karttunen et al.4) when the moisture 
distribution of cross sections of logs were scanned. The authors 
suggest that the deviation between measured and NIR-
predicted moisture content resulted from the drying effect on 
the surface, and therefore the effect of surface drying needs to 

be considered. In our study, each NIR scan required less than 
3 s, and therefore surface drying is likely negligible. It should 
be kept in mind, however, that this study was conducted on 
specimens that, although they were “green,” were at least a few 
weeks old. It is well known that timber surfaces will immedi-
ately start drying following sawmilling, and therefore the dif-
ference between surface and core measures will increase with 
time. Such surface drying caused signifi cant moisture gradient 
within a shell region, resulting in the nonlinear relationship in 
Figs. 8 and 9. In general, the moisture gradient perpendicular 
to the surface increases as the measured moisture content of 
a shell region increases. Furthermore, the difference between 
measured and NIR-predicted moisture content increases with 
increasing moisture gradient, because predicted moisture 
content is refl ected on the surface layer of less than 3 mm,7 
whereas measured moisture content shows the average of a 
shell region with 5-mm thickness. This difference is most likely 
the reason the PLS regression model tended to underestimate 
moisture content as the measured shell moisture content 
increased.

Because the rate of surface drying depends on environ-
mental conditions, which vary with season and location, 
improving the PLS regression model to compensate for the 
underestimation of moisture content is diffi cult. Meanwhile, 
surface drying can be prevented if the NIR measurements 
are taken immediately after conversion to timber. This 
method may be the simplest way to solve the surface-drying 
issue that caused the underestimation of moisture content, 
so that the predictive results may be improved.

Conclusion

Partial least squares (PLS) regression models capable of 
predicting the surface moisture content of Tsuga hetero-
phylla timber were developed based on NIR spectra of 
small samples conditioned to set moisture contents above 
30%. Following the establishment of the model, the mois-
ture content of commercially produced green hem-fi r 
timbers (115 mm square) was predicted using the in-line 
NIR system combined with the developed PLS regression 
model with a line speed of 1 m/s. In addition, the timbers 
were sorted into three groups based on the predicted mois-
ture content, and the sorting ability of NIR was compared 
with the commercial capacitance-type moisture meter.

There was a good correlation between shell and core 
moisture content by the oven-dry method, demonstrating 
that moisture content can indeed be predicted by NIR, 
which showed a positive correlation with the measured 
oven-dried values. There was a signifi cant difference in 
moisture content between all pairs of the three groups 
sorted by NIR, whereas no signifi cant difference between 
the middle and high moisture groups were shown when 
sorted by the capacitance-type moisture meter. These results 
demonstrate that an NIR approach is capable of sorting 
green timber based on moisture content.
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