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ABSTRACT

The distribution of the porosity-thickness (∑øh) of the Arab C4 Zone in the offshore El
Bunduq field was estimated using neural network and geostatistical techniques.  The
Arab C4 Zone is approximately 10 to 15 meters thick which corresponds to a time
window of less than 20 milliseconds.  The reservoir is faulted and the reflection has a
poor signal-to-noise ratio.  The study utilizes 21 seismic attributes which were derived
from a 3-D seismic survey calibrated from 42 wells, 27 of which are deviated.  The
attributes include different types of amplitudes, complex trace statistics, sequence
statistics and frequencies.  Three methods are compared: (I) simple kriging using only
well data, (II) the neural network technique using 3-D seismic and well data, and (III)
cokriging using the output of the neural network technique.  Cross validation tests
indicate that Method III is not consistently more precise than Method I.  Also Method
II, in cross-validation tests, demonstrated relatively large dispersion between data and
estimates.  It appears that although neural networks achieve good correlation between
seismic attributes and reservoir properties, the physical relationship remains ambiguous.

INTRODUCTION

El Bunduq field straddles the border between Abu Dhabi and Qatar, in the Arabian Gulf (Figure 1).  The
field is a domal structure with a width of approximately 7 kilometers (km) superimposed on a northeast-
southwest trending anticline (Bashbush et al., 1983).  The main producing oil reservoirs are the Jurassic
Arab C4 and Arab D zones. The Arab Formation consists mainly of carbonates, accompanied by
subordinate anhydrite.  The Arab C4 zone is separated from the Arab D by an anhydrite layer 20 feet (ft)
thick (Honda et al., 1988).

In El Bunduq the Arab reservoirs are vertically and laterally heterogeneous and faulted.  Although log
data from 42 wells are available, the wells are sparsely located.  Therefore, in order to adequately
characterize the reservoir, a 3-D seismic survey was acquired in 1994.  In general, seismic data can be
used to estimate reservoir properties using the cross-correlation between acoustic velocity and porosity
(e.g. Domenico, 1984).

Doyen (1988) first introduced cokriging to estimate the average porosity distribution in a reservoir.
Since then geostatistical techniques which use 3-D seismic data (e.g. cokriging and sequential gaussian
cosimulation, Almeida, 1993) have been widely used in the industry to estimate the distribution of
reservoir properties.  Geostatistical simulation techniques produce equi-probable multi-realizations of
reservoir properties.  These techniques support reservoir management in evaluating reserves or selecting
drilling locations.

However, if the reservoir layer is thinner than seismic resolution, then the well data may not correlate
with the seismic data.  In this case only average reservoir properties (e.g. porosity, water saturation, net
thickness, etc.) can be estimated.  Estimated reservoir properties may also be limited by the frequency
bandwidth of seismic data, low signal-to-noise ratio, and ambiguous physical relationships with seismic
data. Most of the industry’s efforts are focused on such cases (Bashore and Araktingi, 1994).
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Figure 1:  Location of El Bunduq field, wells and 3-D seismic.  Thick line indicates the
location of the section shown in Figure 2.
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In the case of the Arab C4 reservoir in El Bunduq, the seismic wavelets extracted near the wells are
unstable and the thickness of the reservoir is less than the seismic resolution.  Also the seismic attributes
individually have weak cross-correlation coefficients (<0.5) to reservoir properties.  In such an extreme
case the neural network technique may be effective in relating seismic attributes to reservoir properties.

In this study the reservoir property of interest is porosity-thickness ∑øh.  Johnston (1993) used a similar
method to predict the areal distribution of sand/shale percentage.  We evaluate the application of three
methods to predict the spatial distribution of ∑øh for El Bunduq Arab C4 reservoir.  The first is simple
kriging using only wells.  The second is the neural network technique.  The third method uses the
output of the neural network as soft data for cokriging.  In this study we also perform cross-validation
tests to examine the reliability of the neural network approach.

DATA ANALYSIS

The primary objectives in this study are the application of neural networks and geostatistics to an actual
oil field, and examining its validity.

General processing flow is as follows:

(1) Extract seismic attributes.

(2) Train the neural networks. The reservoir property from well log data and the seismic attributes
at well locations are used in the learning data set.

(3) The trained network is applied to the whole processing area.

(4) Cokriging is applied using the result of (3) as soft data, where the data derived from the well
logs are used as hard data.

The data set used here is 3-D seismic data and log data of 42 wells.  Twenty-seven of these are deviation
wells.  The reservoir property to be processed is ∑øh.  An example of the interpreted seismic record
(Final Migrated Stack) is shown in Figure 2.   Several straight lines with steep angles represent normal
faults, while the lower horizon is interpreted as the top of Arab D.  The upper horizon was bulk shifted
20 msec from the lower horizon.  From the time window between the upper and the lower, we extracted
the six types of amplitude statistics, the four types of complex trace statistics, and the two types of
sequence statistics as follows:

Amplitude statistics
RMS Amplitude
Average Absolute Amplitude
Maximum Peak Amplitude
Average Peak Amplitude
Maximum Trough Amplitude
Average Trough Amplitude

Complex trace statistics
Average Reflection Strength
Average Instantaneous Frequency
Slope of Reflection Strength
Slope of Instantaneous Frequency

Sequence statistics
Energy Half Time
Ratio of Positive/Negative
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Brown (1987) provides an overview of the value of seismic amplitude.  In respect to the complex trace
statistics, which were introduced by Taner et al. (1979), White (1991) gives an overview of their  physical
meaning.  Then, from the window of 40 msec above the lower horizon, the following 5 attributes were
extracted:

Peak Spectral Frequency
Spectral Slope from Peak to Maximum Frequency
Dominant Frequency Series F1
Dominant Frequency Series F2
Dominant Frequency Series F3

In calculating the above spectral statistics, the maximum entropy method (Burg, 1967) is used to convert
the input to the frequency domain within a limited time window.
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Figure 2:  An example of interpreted seismic sections.  The steep lines (shown in red) represent normal
faults.  The lower horizon (shown in blue) corresponds to the top of Arab D, and the upper (shown in
green) is the bulk-shifted horizon, 20 msec from the Arab D.
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Although the calibrated time thickness of the Arab C4 are generally less than 20 msec, the window was
extended.  The reason is that a sufficient number of samples is necessary for the calculation of attributes
(sampling rate 4 msec).  For the training data set of neural networks, travel time and amplitude extracted
from the lower horizon, X-Y coordinates were added to the above attributes.

Figure 3 illustrates the neural networks used to predict ∑øh.  The input layer has 21 elements which
correspond to each of the seismic attributes.  These elements are connected to the hidden layer which
consists of 14 elements.  In turn each of the elements of the hidden layer is connected to the output ∑øh
and Bias, which is also connected to the output.  The extracted attributes at 42 well locations are input to
train the neural networks.  Once training is complete, the network is applied to the whole gridded
seismic data.  The grid cell size here is 100 by 100 m.

The predicted ∑øh distribution is shown in Figure 4a.  Figure 4b shows a cross-plot between the value
derived well log data and the estimated value at 42 well locations.  This  figure clearly indicates that the
trained networks reproduce the teacher values with an error less than 1%.

In the next step, cokriging is applied using the grid data estimated by the trained networks as soft data.
In this case, when the lag (h) is zero, the cross-correlogram is 1 (Cpt(0)/σpσt = 1).  Therefore, if cokriging
is applied as it is, the estimation will be almost equivalent to the neural networks output (Figure 4a).
Therefore, we neglected the cross-correlogram at h=0 and modeled the spatial connectivity function in
the range  h≥100 m (see Figure 5).  As shown in Figure 5, the cross-correlogram at h=0 has been set to be
0.75.  Figure 6a shows the cokriged ∑øh distribution, and Figure 6b is that of the estimated standard
deviation.  For the comparison, the ∑øh distribution by simple kriging is shown in Figure 6c and its
standard deviation in Figure 6d.

White small circles in Figure 6 indicate the well locations across the reservoir unit.  The cokriged
distribution in Figure 6a is more heterogeneous than the kriged in Figure 6c.  The standard deviation in
Figure 6b is smaller than the that in Figure 6d.

In the next section, the validity of the above method which is a combination of neural networks and
cokriging will be investigated by some cross-validation tests.
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Figure 3:  Neural network used in this study.
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Figure 5:  The cross-correlogram in 9 directions.
The curves in each panels represent the spatial
connectivity function, modeled in the range more
than 100 m. The data at lag zero was neglected
and was set to be 0.75 for the model function.
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Cross-validation Tests

We use the following two approaches for the cross-validation tests.

Test I. One well is removed from all.  The estimated value is checked at the hidden well location.

Test II. Analyze using only 15 vertical wells.  Check the estimated value at the 27 hidden wells.

The following three characterization approaches are compared for each of the above two tests.

Method I. Simple Kriging
Method II. Neural Networks
Method III. Neural Networks + Cokriging
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Figure 6:  (a) Cokriged ∑øh distribution. (b) The estimated standard deviation by cokriging. (c) Kriged
∑øh distribution. (d) The standard deviation by kriging. White small circles in each figures indicate
the well locations across the reservoir unit.

Downloaded from http://pubs.geoscienceworld.org/geoarabia/article-pdf/1/3/457/5407376/yoshioka.pdf
by guest
on 09 August 2022



465

Predicting ∑øh, El Bunduq Field

Test I
In this cross-validation test, each of the 42 wells
in turn was hidden in the analysis by the above
3 methods, and the estimated value was
checked at the hidden well location for each
method.

Figure 7 shows the example in which the
estimations at the hidden well location are close
to the actual data.  The distribution maps
estimated by Methods I, II and III are shown
in Figure 7a, 7b and 7c, respectively.   The
example in which the estimates at the hidden
well are much different from the actual data is
shown in Figure 8.  The layout of distribution
maps are the same as shown in Figure 8.

After such tests had been applied for each of
the 42 wells, the results of Test I were
summarized in Figure 9.  The cross-plots
between the actual data and the estimation at
the hidden well location, for Method I, II, and
III, is shown in Figure 9a, b, and c, respectively.
The largest dispersion is seen for Method II,
neural networks only, as shown in Figure 9b.
The dispersion for Method I (Figure 9a) is
almost the same as that for Method III (Figure
9c).

For Method I and Method III, the errors
between the actual data and the estimation data
were compared to the estimated standard
deviations.  For Method I, the error exceeded
the estimated standard deviation,

∑øhest-∑øhobs  >σest

in 23 cases, and for Method III, exceeded in 24
cases.  As a result, it seems that neural networks
output as soft data does not necessarily
contribute to an accurate estimation.

Figure 7:  The cross-validation
test hiding well #008 (Test I). (a)
The ∑øh distribution map by
kriging (Method I), (b) by
neural networks (Method II),
and (c) by cokriging using
neural networks output
(Method III). White small
circles in each figures indicate
the well locations across the
reservoir unit.  The gray larger
one shows the hidden well.
These estimations are close to
the actual data.

Kriged ∑øh
(without #008)

5.5

5.0

4.4

3.8

3.3

2.8

2.2

1.7

1.1

0.55

0.0

a

5.5

5.0

4.4

3.8

3.3

2.8

2.2

1.7

1.1

0.55

0.0

Neural Networks Output
(without #008)

b

Cokriged ∑øh using NW
(without #008)

5.5

5.0

4.4

3.8

3.3

2.8

2.2

1.7

1.1

0.55

0.0

c

0

Km

1

 ∑øhest-∑øhobs  >σest

Downloaded from http://pubs.geoscienceworld.org/geoarabia/article-pdf/1/3/457/5407376/yoshioka.pdf
by guest
on 09 August 2022



466

Yoshioka et al.

Figure 8:  The cross-validation test hiding well
#023 (Test I). (a) The ∑øh distribution map by
kriging (Method I), (b) by neural networks
(Method II), and (c) by cokriging using neural
networks output (Method III). The symbols
are same as in Figure 7. These estimations are
much different from the actual data.

Figure 9:  The results of the cross-validation test (Test
I) are summarized in cross-plots between the
estimation at hidden well locations and the actual data
(a) for Method I, (b) for Method II, and (c) for  Method
III.  The largest dispersion is seen in (b). The
dispersion of (c) is slightly smaller than that of (a).
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Figure 10:  The cross-validation test hiding 27 deviation wells (Test II). (a) The ∑øh distribution map by
kriging (Method I) and (b) its cross-plot between the estimations and the actual data, (c) by neural  networks
(Method II) and (d) its cross-plot, and (e) by cokriging using neural networks output (Method  III) and (f)
its cross-plot.  The gray circles indicate the hidden wells.  The largest dispersion is seen in (d).  The dispersion
of (f) is almost same as that of (b).
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Test II
In Test II, the 3 analyses by Method I, II, and III were done, using only 15 wells. Then, the estimated
value was checked at 27 hidden well locations for each method.  The result is summarized in Figure 10.
Figure 10a, Figure 10c, and Figure 10e show the estimated ∑øh distributions by Method I, II, and III,
respectively.  The cross-plots between the actual and the estimated values by Method I, II, and III are
shown in Figure 10b, d and f, respectively.  The larger gray circles represent the hidden well data in each
of the graphs of Figure 10.

As in Test I, the largest dispersion is seen when using Method II (Figure 10d).  The dispersion for Method
I (Figure 10b) is almost the same as that for Method III (Figure 10f).  For Method I, the error exceeded the
estimated standard deviation,

∑ øhest-∑øhobs  >σest

at 11 hidden well locations, while Method III, exceeded it at 15 locations.  In Test II, it also seems that the
estimation accuracy is not always improved, even if using the neural networks output as soft data for
cokriging.

CONCLUSIONS

A case study of reservoir characterization was described.  Neural networks and geostatistical approach
were applied, using 3-D seismic data acquired in El Bunduq field.  Significant correlation cannot be
recognized between the reservoir property to be estimated and each of the seismic attributes.  One
reason is that the wave length of seismic traces, final migrated stack data, seemed to be approximately 7
times longer than the reservoir thickness (10 to 15 m) to be  analyzed.  Another reason is the poor S/N
ratio of seismic data.

In order to overcome this problem, we tried to apply neural networks, inputing the multi-variables.
Though each of the seismic attributes had only weak cross-correlation, the output from the trained
neural network are consistent with actual well  data, which were used as teacher values in a training
data set.  Then, cokriging was applied using neural networks output as soft data.  This approach can
provide plausible distribution maps, which honor both well data and the spatial variation of seismic
data.

However, by conducting cross-validation tests, it was found that relatively large dispersion between the
actual data and the estimation can occur in the case of applying only neural networks (Method II).
Consequently, it seems that cokriging using neural networks output (Method III) cannot always estimate
precisely, compared with kriging using only well data (Method I).  Furthermore, it is possible that the
risk of evaluation error at unknown data points becomes larger, because standard deviations estimated
in cokriging are less than in kriging.  That is, neural networks can easily generate a strong cross-correlation
using multi-variables, but they make it difficult to evaluate uncertainties because their physical
relationships are left ambiguous.

In the future, improved seismic data is a requisite.  Also we need to investigate the sensitivity in changing
neural networks structure.  For example, limiting the types of seismic attributes to input, or adding and
reducing the number of processing elements in the hidden layer.  It is also necessary to check the sensitivity
in changing the time window over which seismic attributes are extracted.
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