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APPLICATION OF NEW MULTIRESOLUTION METHODS FOR
THE COMPARISON OF BIOMOLECULAR ELECTROSTATIC
PROPERTIES IN THE ABSENCE OF GLOBAL STRUCTURAL

SIMILARITY∗
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TODD J. DOLINSKY§ , JENS E. NIELSEN¶, AND NATHAN A. BAKER‖

Abstract. In this paper we present a method for the multiresolution comparison of biomolecular
electrostatic potentials without the need for global structural alignment of the biomolecules. The un-
derlying computational geometry algorithm uses multiresolution attributed contour trees (MACTs)
to compare the topological features of volumetric scalar fields. We apply the MACTs to compute
electrostatic similarity metrics for a large set of protein chains with varying degrees of sequence,
structure, and function similarity. For calibration, we also compute similarity metrics for these
chains by a more traditional approach based upon 3D structural alignment and analysis of Carbo
similarity indices. Moreover, because the MACT approach does not rely upon pairwise structural
alignment, its accuracy and efficiency promise to perform well on future large-scale classification
efforts across groups of structurally diverse proteins. The MACT method discriminates between
protein chains at a level comparable to the Carbo similarity index method; i.e., it is able to accu-
rately cluster proteins into functionally relevant groups which demonstrate strong dependence on
ligand binding sites. The results of the analyses are available from the linked web databases http://
ccvweb.cres.utexas.edu/MolSignature/ and http://agave.wustl.edu/similarity/. The MACT analysis
tools are available as part of the public domain library of the Topological Analysis and Quantitative
Tools (TAQT) from the Center of Computational Visualization at the University of Texas at Austin
(http://ccvweb.csres.utexas.edu/software). The Carbo software is available for download with the
open-source APBS software package at http://apbs.sf.net/.
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1. Introduction. Structural genomics has led to a dramatically increased rate
of biomolecular three-dimensional (3D) structure determination, but relatively few
methods have been developed for analyzing and interpreting all these structural data
in terms of potential physiological functions and biochemical properties. Effective
biomolecular comparison and classification methods are important for understanding
their structural and functional properties. Typical protein comparison methods are
usually based on the similarities of sequences [17] or the 3D structures of biomolec-
ular chains [11]. While such methods have proven to be very powerful for geometric
comparison of protein structures, they lack a description of the chemical features in
atomistic detail because some functions may arise from chemical heterogeneity that
gives (in part) a particular protein structure its unique molecular function. An al-
ternative method of comparing biomolecules is to quantitatively calculate volumetric
functions of their important properties and match those 3D functions. The two most
commonly used functions are molecular shape and electrostatic potential, although
other properties have also been used [20].

The electrostatic potential is an important characteristic of biomolecules and plays
a critical role for interactions within and among biological structures. The electro-
static potential of a biomolecule is generally computed from the atomic charges, radii,
and dielectric characteristics of the biomolecule and solvent via numerical solutions
of partial differential equations such as the Poisson–Boltzmann (PB) equation [4].
Electrostatic properties, especially those obtained by solution of the PB equation,
have found a wide range of uses in the interpretation of biomolecular structure and
functions [4].

Some effort has also been made to pursue more “informatics”-based approaches
to the interpretation of electrostatic properties. Much of this work includes identi-
fication of functionally relevant residues in biomolecules by looking at electrostatic
destabilization of conserved residues [18], highly shifted pKa values [44], clusters of
charged residues [59], protein-membrane interactions [40], and other structural char-
acteristics [55]. Other research has focused on comparisons of electrostatic potentials
including global analyses of the biomolecular structure [38, 9, 40, 51, 37, 30, 36, 47,
43, 8, 53, 34, 46, 35, 52] both in 3D space over the entire biomolecular structure and
at localized regions such as active sites [52, 6, 22]. While the past characterization of
electrostatic properties of biomolecules has provided insight into a variety of biomo-
lecular properties, previous applications focused only on a few quantitative measures
of electrostatic properties and, with a few exceptions [8, 57], limited their studies to
relatively small numbers of biomolecules. However, with the proliferation of protein
structures elucidated by structural genomics efforts and the burgeoning interest in
understanding biomolecular interactions in a proteomics context, tools to facilitate
the analysis of electrostatic properties across thousands of biomolecular structures
will become increasingly important.

In this paper, we present a new multiresolution attributed contour tree (MACT)
method to align local regions of similar electrostatic potential and molecular structure
through local matching of topological features instead of global structural alignment.
While electrostatics and molecular shape are not the sole determinants of chemical
specificity, we believe the current methods show promise for identifying regions of sim-
ilar electrostatic potential between structurally distinct biomolecules. Before present-
ing this new method, we will review some of the existing techniques for electrostatic
comparison.

1.1. Similarity index methods. A standard method for comparing functions
in numerical analysis is the application of various norms and inner products. Many
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methods use the fact that solutions to the PB equation away from the location of
point charges are square-integrable [26], implying finite inner products

(u, v)L2(Ω) =

∫
Ω

u(x)v(x)dx(1)

and norms

‖u‖2
L2(Ω) = (u, u)L2(Ω).(2)

Similarity indices have been popular in QSAR studies [12, 13, 24] and the study of
biomolecular electrostatics [53, 8]. The most popular metrics were introduced by
Hodgkin et al. (see [24, 12])

SH(u, v) =
2(u, v)L2(Ω)

‖u‖2
L2(Ω) + ‖v‖2

L2(Ω)

(3)

and Carbo (see [13])

SC(u, v) =
(u, v)L2(Ω)

‖u‖L2(Ω)‖v‖L2(Ω)
.(4)

As can be seen from their definitions, these indices differ only by their choice of normal-
ization; the Hodgkin index offers the advantage of distinguishing between functions
which differ by a constant multiple, while the Carbo index provides a natural mea-
sure of the extent of orthogonality between two functions. In both cases, these indices
are essentially modified L2(Ω) inner products which return 1 for identical functions,
−1 for functions which are different only by a constant multiple of 1, and 0 for orthog-
onal (i.e., unrelated) functions. To prevent numerical instability due to the singular
nature of the electrostatic potential near atomic point charges, the domain of integra-
tion (Ω) is often chosen to be some space outside the union of biomolecular volumes
[8, 53, 54].

1.2. Topology-based methods. The Carbo/Hodgkin metrics are not invariant
under transformations such as rigid body rotation or translation and are therefore de-
pendent on an initial accurate structural alignment. While there are a number of tools
available for structural alignment [11], including some based on electrostatics [52],
the task of structural alignment is still computationally demanding. Furthermore,
the reliance of similarity index methods on structural alignment severely limits their
applicability to the comparison of electrostatic properties for structurally similar bio-
molecules.

1.2.1. Contour trees. Another approach to developing comparison metrics is
to exploit the topological signatures of volumetric functions in the form of the contour
spectrum [3] and dual contour trees (DCTs) [58]. DCTs are assembled by partitioning
function domains into connected subdomains called interval volumes. These interval
volumes represent regions of the domain where the function values lie between two
specific isovalues. The distribution of the connected interval volumes can represented
by a DCT in which every connected interval volume becomes a node and two nodes
are connected by an edge if the corresponding interval volumes are adjacent (sharing
the same contour at their boundaries). The construction of a simple DCT is depicted
in Figure 1 and described in more detail in [58] and the appendix (of this manuscript).
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(a) (b)

Fig. 1. A simple example of a potential-based DCT. (a) A fictitious two-dimensional elec-
trostatic potential of a model amino acid; colors correspond to potential value from deep red (very
negative) to deep blue (very positive). (b) The DCT constructed from connected subdomains of
the potential; DCT nodes are color-coded to correspond with the appropriate potential subdomains
in (a).

The DCT structure can be simplified by restricting it to a smaller functional
range associated with a particular region of interest. Often, only certain feature
regions of the 3D volume are important for comparing molecular structures, e.g.,
solvent-accessible regions near the surfaces of biomolecules which might influence the
binding properties of other molecules. As with the similarity indices, using a sub-
range outside of the molecular surface removes instabilities due to divergence of the
electrostatic potential near atomic charge positions. DCTs can be further simplified
by representation in a hierarchical multiresolution form. This multiresolution form
is constructed from a DCT by merging adjacent functional intervals (collapsing tree
edges) such that each node corresponds to a larger range of the functional value.
Details are again available from a previous paper [58].

In order to quantitatively measure the similarities of multiresolution DCTs, nu-
merical attributes need to be defined for the DCT nodes. In a previous paper [58],
Zhang, Bajaj, and Baker describe several affine-invariant geometrical, topological,
and functional attributes which can be computed and saved in the DCT nodes. When
combined with the multiresolution approach described above, these attributed DCTs
form the MACT data structure. For the current application, MACTs are assembled
from DCTs constructed on solvent-accessibility functions representing biomolecular
shape. In the present work, the numerical attributes for the nodes of the MACT
include information about the size and shape of the functional interval as well as local
electrostatic potential multipole moments. More information about these attributes
is given in the appendix.

The MACTs are used to compute a similarity measure (score) for various biomol-
ecules in an efficient manner described in [58] and summarized in the appendix. The
MACTs facilitate the finding of matched node pairs in a hierarchical fashion based on
their multiresolution structures [58]. The similarity between two MACTs is evaluated
as the average of the similarity scores of DCTs at all levels, except for the coarsest
one. This score is then used to measure the similarity between molecular structures
with properties.
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2. Methods.

2.1. Biomolecular test set selection. The Carbo and MACT similarity scores
described above were calculated for a total of 494 protein chains (a full list is available
from the linked web databases http://ccvweb.csres.utexas.edu/MolSignature/ and
http://agave.wustl.edu/similarity/) based on the sequence-, structure-, and function-
based subsets described below.

Group I: Structure-based subset. The ASTRAL database [15] was the starting
point for this dataset. In particular, we obtained a nonredundant set of approxi-
mately 5,400 chains from the ASTRAL database indexed based on SCOP [25] assign-
ments and containing less than 40% sequence identity between all pairs. Three SCOP
superfamilies were chosen from this set of 5,400 chains for the present analysis: P-
loop containing nucleotide triphosphate hydrolases (SCOP c.37.1; 112 members used),
NAD(P)-binding Rossmann-fold domains (SCOP c.2.1, 108 members used), and im-
munoglobins (SCOP b.1.1, 75 members used). Together, these superfamilies formed
a structure-based subset of 295 proteins used in the current analysis.

Group II: Sequence- and function-based subset. The second group of calculations
was performed on a set of 199 protein chains assembled from several protein families.
First, sets of cholinesterase-like proteins (acetylcholinesterases, lipases, cholesterol es-
terases, and haloalkane dehalogenases) and kinases (including titin, twitchin, mitogen-
activated, tyrosine, cyclin-dependent, casein, phosphorylase, and cAMP-dependent)
were taken from the combinatorial extension (CE) database [49, 10, 48]. Additionally,
we assembled sets of structures corresponding to the enolase, ferritin, and superoxide
dismutase families studied by Livesay et al. [35].

2.2. Structure preparation and potential calculations. Structures were
compared at the chain level, thus allowing individual subunits of multisubunit pro-
teins to be analyzed. The PDB2PQR service (http://agave.wustl.edu/pdb2pqr/) [16]
was used to prepare each structure for electrostatics calculations by repairing missing
atoms, optimizing H-bonding networks [41], and assigning protonation states. Charges
and radii were assigned to each atom using the AMBER force field [50]. Of the 1557
original structures, 1415 (91%) were parameterized into formats acceptable for sub-
sequent electrostatic calculations; the remaining 142 encountered various problems,
including 19 entries with errors in the PDB format or unknown/unspecified residue
types, 33 entries with unknown posttranslational modifications or covalently bound
ligands, 31 entries with identical atom positions, and 59 entries with errors in residue
composition (missing atoms) or numbering/labeling.

Successfully parameterized structures were then processed by an input generation
script to set up the APBS electrostatic calculations. The electrostatic potentials of
the sample protein chains were computed using the freely available APBS software
package (http://apbs.sf.net/) [5] version 0.3.2 with a protein dielectric of 2, solvent
dielectric of 80, ionic strength of 150 mM (NaCl), and grid spacing chosen for each
protein system such that the grid was always finer than 0.5 Å.

2.3. Similarity score calculations.

2.3.1. Carbo index calculations. We used the implementation of the Carbo
similarity index provided with APBS 0.3.2 [5]. Carbo similarity index calculations
were preceded by structural alignment of all chains using CE [49]. The resulting
alignment translation and rotation information was used to superimpose the poten-
tials and calculate the Carbo similarity index (see above) [13] using all potential
values on the PB calculation grid outside the molecular surface. A total of 243,911
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nonunique pairs of chains were generated from this analysis. Since the Carbo anal-
ysis provides symmetric similarity scores (e.g., comparing chain A to chain B gives
the same result as comparing B to A), only the 122,266 unique similarity pairs (in-
cluding self-comparisons) were used in the analyses described below. A subset of
the biomolecules was analyzed with the Hodgkin similarity index; the results were
indistinguishable from the Carbo metric (data not shown).

2.3.2. MACT calculations. The implementation of the above MACT scoring
and matching algorithms as described by Zhang, Bajaj, and Baker [58] are available
as part of the public domain library of the Topological Analysis and Quantitative
Tools (TAQT) from the Center of Computational Visualization at the University of
Texas at Austin (http://ccvweb.csres.utexas.edu/software). Unlike the Carbo indices,
no alignment of the chains was necessary for this analysis. For these calculations, the
solvent accessibility was represented by a cubic spline function [27] with a window
of 0.3 Å around the standard van der Waals surface. The van der Waals surface
was defined by the union of atomic radii. Unlike the electrostatic calculations, we
used AMBER radii [50] inflated by 1.4 Å (roughly a water molecule radius) to focus
comparison of electrostatic potentials on the region immediately outside the molecular
surface, which is selected as the volume spanned by spline-based solvent-accessibility
values between 0.3 (more internal) to 0.7 (more external). A total of 250,722 pairs
were generated from the MACT analysis. The MACT scores are not necessarily
symmetric; therefore, the results were symmetrized by averaging (A,B) and (B,A)
pair results. This averaging provided a total of 126,254 unique pairs; the average
deviation between (A,B) and (B,A) pairs was 0.01 ± 0.02.

3. Results. The results of these electrostatic comparison analyses are sum-
marized here. All of the calculation data, analysis, and classification results, in-
cluding visualization of structures, are available online as cross-linked web-accessible
databases at http://ccvweb.csres.utexas.edu/MolSignature/ and http://agave.wustl.
edu/similarity/.

3.1. Classification. Several databases were used to provide classification of
the chains during analysis of the results. Enzyme commission (EC) classes [42]
were assigned to all chains using annotation from PDBsum [33] and UniProt [2].
These EC classes were also used to infer ligands for each chain using the KEGG
database [28]. Ligands were identified for all biomolecules using annotation in the
PDBsum database [33] and classified via their ChEBI ID [19] using the ChEBI chem-
ical ontology. To provide a more flexible mechanism for comparison, ChEBI IDs were
clustered at the fifth level of the chemical ontology, e.g., at levels such as “nucleosides,”
“monocarboxylic acids,” “lactones,” etc. Gene ontology (GO) “molecular function”
classes [21] were assigned using entries from the InterPro database [39]. Like the
ChEBI IDs, these GO classes were clustered based on the fifth level of the molecular
function ontology to provide a more general level of comparison, e.g., at descriptive
levels such as “purine nucleotide binding,” “oxidoreductase activity, acting on . . . ,”
“transferase activity, transferring . . . ,” etc.

3.2. Score normalization. Different numbers of score pairs were available for
the Carbo and MACT similarity analyses due to the inability to align some protein
chains with CE. Therefore, the following analyses are limited to the 122,265 unique
pairs of chains for which both MACT and Carbo results are available. Scores from
the Carbo and MACT similarity analyses had very different distributions; the Carbo
scores had a mean value of 1.69 × 10−2 and a standard deviation of 3 × 10−4. The
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MACT scores had a mean value of 3.076×10−1 and a standard deviation of 9×10−4.
To facilitate comparison of the results, raw scores were transformed into the following
quantities:

• P (S): the observed probability of choosing a score that is greater than the
given similarity score S.

• E(S) = − log(1 − P (S)): the expectation value of the given score.
• Z(S) = σ−1

S (S − S): the number of standard deviations σS a given score
deviates from the mean score S.

3.3. Overall comparison. There was very little correlation between the Carbo
and MACT scores, even after transformation to the above scoring schemes; Pearson
correlation coefficients were 0.47 for S and Z, 0.53 for P , and 0.36 for E. However,
strong correlation between the scores should not be expected, as these two methods
represent and compare global and local features of the electrostatic potentials in fun-
damentally different ways. With a few exceptions [52], the Carbo method is used
to provide a global comparison of potentials and therefore relies on the structural
alignment of two chains. As such, the Carbo-based analysis is expected to corre-
late strongly with CE scores (see Figure 2). On the other hand, MACT performs a
more local analysis of the surface shape and potential and does not rely on external
alignment methods and therefore does not necessarily correlate with CE score (see
Figure 2).

3.4. Clustering. The protein chains were clustered using the CLUTO software
package [29] using direct k-way clustering to divide the Carbo- and MACT-scored
datasets into 5, 10, 20, 30, and 40 clusters. The detailed clustering results are pro-
vided on the website http://agave.wustl.edu/similarity/. As expected, increasing k
gave clusters of better internal similarity and external dissimilarity; this behavior is
demonstrated in Table 1.

Table 1

Statistics for k-way clustering of Carbo and MACT similarity scores. Internal similarity is the
average similarity between pairs of data within a cluster; external similarity is the average similarity
between data inside and outside of a cluster.

Cluster size
k Internal External Max Min Avg

similarity similarity

C
a
rb

o

5 0.84 ± 0.06 0.60 ± 0.06 145 47 99 ± 3
10 0.89 ± 0.03 0.56 ± 0.03 86 2 49 ± 4
15 0.90 ± 0.02 0.56 ± 0.03 92 2 33 ± 4
20 0.92 ± 0.01 0.60 ± 0.03 48 2 24.7 ± 0.5
30 0.94 ± 0.01 0.63 ± 0.02 34 2 16.5 ± 0.5
40 0.95 ± 0.01 0.64 ± 0.02 22 2 12.4 ± 0.7

M
A

C
T

5 0.94 ± 0.02 0.84 ± 0.04 209 42 99 ± 3
10 0.95 ± 0.02 0.85 ± 0.03 106 15 49 ± 6
15 0.96 ± 0.01 0.84 ± 0.02 72 2 32.9 ± 0.5
20 0.96 ± 0.01 0.85 ± 0.03 54 2 25 ± 2
30 0.97 ± 0.01 0.86 ± 0.01 42 2 16.5 ± 0.3
40 0.98 ± 0.01 0.86 ± 0.02 34 2 12.35 ± 0.06

The purpose of clustering based on electrostatic similarity is to attempt to de-
rive classes of similar proteins without prior knowledge of their functional role. As
such, we analyzed the clustering results in terms of the ChEBI, GO, and EC classes
described above by calculating p-values for the appearance of each class in a cluster;
these p-values represent the probability of randomly finding a cluster of the same size
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Table 2

Classification statistics (based on the EC, GO, and ChEBI classification schemes) within clus-
ters for Carbo and MACT similarity scores. All entries represent the number of hits. Significant
hits are classes with p-values less than 0.05. Unique significant hits are classes with p-values less
than 0.05 that are not present in any other cluster. Shared hits are classes with p-values less
than 0.05 which are shared by more than one cluster. In total, there were 31 EC, 48 GO, and
54 ChEBI classes with assignments to at least one chain.

Overall EC
Uniq. sig. Uniq. sig.

Sig. hits hits per Shared Sig. hits hits per Shared
per cluster cluster hits per cluster cluster hits

k Max Avg Max Avg Max Avg Max Avg

C
a
rb

o

5 13 7 ± 8 8 4 ± 5 5 3 2 ± 2 2 1 ± 2 1
10 11 6 ± 6 7 3 ± 4 10 2 1 ± 1 1 0.6 ± 0.7 2
15 12 5 ± 6 5 3 ± 3 15 3 1 ± 2 2 0.4 ± 0.8 4
20 12 5 ± 6 7 2 ± 3 20 3 1 ± 2 2 1 ± 1 5
30 10 5 ± 5 9 2 ± 3 25 2 1 ± 1 2 0.4 ± 0.8 5
40 10 4 ± 5 10 2 ± 3 28 3 1 ± 1 2 0.5 ± 0.8 8

M
A

C
T

5 11 7 ± 8 8 5 ± 5 6 3 2 ± 2 3 1 ± 2 2
10 10 6 ± 6 6 3 ± 3 12 2 1 ± 1 2 1 ± 1 2
15 10 5 ± 6 7 3 ± 4 13 2 1 ± 2 2 1 ± 1 3
20 10 5 ± 6 9 3 ± 4 13 2 1 ± 1 2 1 ± 1 3
30 10 5 ± 6 8 3 ± 3 23 3 1 ± 1 3 1 ± 1 4
40 10 4 ± 5 8 2 ± 3 25 3 1 ± 1 3 1 ± 1 4

GO ChEBI
Uniq. sig. Uniq. sig.

Sig. hits hits per Shared Sig. hits hits per Shared
per cluster cluster hits per cluster cluster hits

k Max Avg Max Avg Max Avg Max Avg

C
a
rb

o

5 4 2 ± 3 4 2 ± 2 2 8 3 ± 4 6 2 ± 3 2
10 4 2 ± 2 4 1 ± 2 5 8 3 ± 4 6 2 ± 3 3
15 4 2 ± 2 3 1 ± 1 5 7 2 ± 3 3 2 ± 2 6
20 4 2 ± 2 3 1 ± 1 7 7 2 ± 3 3 2 ± 2 8
30 7 2 ± 2 7 1 ± 2 7 5 2 ± 3 4 1 ± 1 13
40 7 2 ± 2 7 1 ± 2 8 5 2 ± 2 4 1 ± 1 12

M
A

C
T

5 4 2 ± 3 2 1 ± 2 2 6 2 ± 3 4 2 ± 2 2
10 4 2 ± 2 2 1 ± 1 2 8 3 ± 4 3 1 ± 2 8
15 5 2 ± 3 3 1 ± 2 2 8 2 ± 3 4 1 ± 2 8
20 6 2 ± 2 5 1 ± 2 3 8 2 ± 3 4 1 ± 2 7
30 6 2 ± 2 5 1 ± 2 5 8 2 ± 3 4 1 ± 1 14
40 6 2 ± 3 5 1 ± 2 7 7 2 ± 2 4 1 ± 1 14

with the same or greater occurrences of the class. In particular, the hypergeometric
distribution [56] was used to describe the probability of sampling a certain number
of class instances in a cluster without replacement. The results of this analysis are
also provided on the website http://agave.wustl.edu/similarity/ and summarized in
Table 2. As this table demonstrates, each cluster has a substantial number of classes
with significant representation (p < 0.05). Additionally, each cluster has a somewhat
smaller number of unique classes—those which were not found in any other electro-
static cluster. Although there is significant variation in the number of assignments,
most clusters were uniquely associated 2-3 EC categories, 1-2 GO IDs, and 1-2 ChEBI
IDs.

3.5. Subset comparison. In addition to performing analysis on the entire set
of results, we also analyzed subsets of protein chains based on sequence and structure
similarity.
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Table 3

Carbo and MACT score results for subset comparison: SeqStr, protein chains with greater than
60% sequence identity and less than 5 Å RMSD upon structural alignment; Str, nonidentical protein
chains with less than 5 Å structural RMSD; Carbo Sig, pairs with Carbo score p-values less than or
equal to 0.05; MACT Sig, pairs with MACT score p-values less than or equal to 0.05; Carbo SigLow,
proteins in the Carbo Sig set with structural RMSD greater than 4.0 Å and sequence identity less
than 60%; MACT SigLow, proteins in the Carbo Sig set with structural RMSD greater than 4.0 Å
and sequence identity less than 60%. Standard error in the last digit is shown in parentheses.

Cluster Carbo scores MACT scores

Raw (× 101) Z P (× 102) E (× 102) Raw (× 101) Z P (× 102) E (× 102)
SeqStr 2.6(2) 2.6(2) 1.68(9) 1.7(1) 5.4(1) 1.01(5) 26(2) 4.3(3)
Str 3.67(3) 0.217(4) 38.0(2) 73.8(5) 3.48(1) 0.179(6) 44.5(2) 86.4(4)
Carbo Sig 5.34(2) 9.90(8) 23.5(1) 36.27(1)
MACT Sig 0.734(5) 6.18(6) 23.7(3) 33.2(4)
Carbo 5.4(1) 1.01(4) 21.7(7) 28.1(9)
SigLow
MACT 4.027(6) 2.559(7) 31.9(1) 46.2(3)
SigLow

3.5.1. High sequence and structure similarity. As an initial positive con-
trol, we compared Carbo and MACT scores for a subset of protein chains with greater
than 60% sequence identity and less than 5 Å RMSD upon structural alignment. Ig-
noring chain identities,1 this resulted in a subset of 100 pairs of 55 unique protein
chains. Using these sequence and structural criteria, each chain was paired with an
average of 3 ± 3 other chains. The results of this analysis are shown in Table 3
(SeqStr group). Carbo scores were large and significant, while MACT scores were
largely nondiscriminating. This conclusion is supported by the global analysis above;
Carbo scores were much more strongly correlated with RMSD and sequence identity
than the MACT results.

3.5.2. High structural similarity. As a second control, the sequence-simi-
larity constraint was removed to generate a larger subset of 494 (all) nonidentical
protein chains (36,983 unique pairs) with less than 5 Å structural RMSD. Using this
structural criterion, each chain was paired with an average of 150 ± 70 others. The
results of this analysis are shown in Table 3 (Str group). When the constraint of high
sequence identity was removed, both the Carbo and the MACT scores were relatively
nondiscriminating.

3.5.3. Significant similarity scores—all chains. Subsets of “significant”
similarity scores were generated from pairs of nonidentical chains with p-values less
than or equal to 0.05.

For Carbo scores, this criterion resulted in a set of 452 unique protein chains
with 5,117 significant pairs. The average structural RMSD was (3.50 ± 0.02) and
the sequence identity (%) was (1.99 ± 0.02) × 101. MACT scores for this group are
presented in Table 3 (Carbo Sig group). Each of the chains in the subset was assigned
GO, EC, and ChEBI classes based on its partners’ low p-value values. The unions of
these assignments were taken as “predictions” of the true GO, EC, and ChEBI classes
of the chain. Each predicted class was also assigned a probability p based on the
frequency of the class assignment in the database; classes with larger frequencies have
greater chances of spurious association. The results of predictions with p < 0.05 are
given in Table 4 (Carbo Sig group). The accuracy of each prediction was assessed by

1Defined for the purposes of this work they are pairs with greater than 98% sequence identity or
less than 1 Å RMSD.
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Table 4

Functional prediction (based on the EC, GO, and ChEBI classification schemes) performance
for subset comparisons: SeqStr, protein chains with greater than 60% sequence identity and less
than 5 Å RMSD upon structural alignment; Str, nonidentical protein chains with less than 5 Å
structural RMSD; Carbo Sig, pairs with Carbo score p-values less than or equal to 0.05; MACT Sig,
pairs with MACT score p-values less than or equal to 0.05; Carbo SigLow, proteins in the Carbo Sig
set with structural RMSD greater than 4.0 Å and sequence identity less than 60%; MACT SigLow,
proteins in the Carbo Sig set with structural RMSD greater than 4.0 Å and sequence identity less
than 60%.

Carbo Sig MACT Sig Carbo SigLow MACT SigLow

C
h
E

B
I Predicted 11 ± 9 11 ± 6 9 ± 8 9 ± 5

True 3 ± 2 2 ± 1 2 ± 1 2 ± 1
False positive 0.7 0.8 0.8 0.8
Coverage 1 0.5 0.5 0.5

E
C

Predicted 4 ± 4 4 ± 3 4 ± 4 4 ± 3
True 0.5 ± 0.5 0.5 ± 0.5 0.6 ± 0.5 0.6 ± 0.5
False positive 0.8 0.9 0.9 0.9
Coverage 1 1 0.5 0.5

G
O

Predicted 6 ± 4 6 ± 3 4 ± 4 5 ± 3
True 1 ± 1 1 ± 1 1 ± 1 1 ± 1
False positive 0.8 0.8 0.8 0.8
Coverage 1 1 0.4 0.6

the size of the intersection between the predicted classes and the actual assignments.
The false positive rate was defined as α = 1−m/N and the coverage rate was defined
as β = n/N , where m is the number of predictions, n the size of the intersection,
and N the number of actual classes. False positive and coverage rates are shown in
Table 4 (Carbo Sig group). Carbo-based predictions resulted in a fairly high false
positive rate for all assignments; however, the predictions also had a high coverage,
indicating that the answer was usually in the predicted results.

For MACT scores, the significant similarity score criterion resulted in a set of
474 unique protein chains with 5,352 significant pairs. Average pairwise values for
these significant pairs included structural RMSD (5.18 ± 0.03) and sequence iden-
tity (%) (1.252 ± 0.002) × 101. Carbo scores for this group are presented in Table 3
(MACT Sig group). As described above, each of the chains in the subset of signifi-
cant MACT scores was assigned GO, EC, and ChEBI classes. The predictions, true
assignments, false positive rates, and coverage values are given in Table 4 (MACT
Sig group). As with the Carbo-based predictions, this method generally obtained the
correct result, albeit with a high false positive rate.

Note that the information in Table 4 cannot be directly compared with scatter
plots of Z-scores in Figure 2. In particular, Table 4 compares Carbo and MACT
classification for subsets of protein pairs with known EC, GO, or ChEBI classifi-
cations, while Figure 2 compares Carbo and MACT scores for all possible pairs of
proteins. In particular, Figure 2 demonstrates the strong correlation of Carbo scores
with RMSD and sequence identity but does not indicate the fidelity of matching by
either algorithm.

3.5.4. Significant similarity scores—low sequence and structure iden-
tity. The previous analysis demonstrated that low p-value Carbo and MACT scores
could accurately reproduce EC, GO, and ChEBI classification. However, it should
be noted that such classification could have probably been determined without elec-
trostatic analysis through sequence analysis via Pfam [7], PSI-BLAST [1], etc. or
structural analysis via services such as CE [49], SCOP [25], or CATH [45]. Therefore,
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Fig. 2. Dependence of Carbo and MACT Z-scores on CE alignment RMSD and alignment
sequence identity.

it is important to assess the ability of the Carbo and MACT electrostatic analyses to
classify the properties of the protein chains in the absence of significant sequence or
structure identity. As such, we defined subsets of “significant” similarity scores with
p-values less than or equal to 0.05 and further filtered these subsets to include only
chains with structural RMSD greater than 4.0 Å and sequence identity less than 60%.

For Carbo scores, this criterion resulted in a set of 298 protein chains with
974 unique pairs. Average pairwise values for these significant pairs included struc-
tural RMSD (6.25± 0.02) and sequence identity (%) (7.42± 0.02). MACT scores for
this group are presented in Table 3 (Carbo SigLow group). As described above, each
of the chains in the subset of significant MACT scores were assigned “predicted” func-
tional classes. These predictions, true assignments, false positive rates, and coverage
values are given in Table 4 (Carbo SigLow group). This group showed a high false
positive rate while capturing only 40–50% of the true assignments in the predictions.

For MACT scores, this criterion resulted in a set of 462 protein chains in 2,875
unique pairs. The large increase over the Carbo set is due to the lack of structural
alignment as a step in the MACT analysis. Average pairwise values for these sig-
nificant pairs included structural RMSD (6.853 ± 0.006) and sequence identity (%)
(6.73 ± 0.08). Carbo scores for this group are presented in Table 3 (MACT SigLow
group). As described above, each of the chains in the subset of significant MACT
scores was assigned “predicted” functional classes. These predictions, true assign-
ments, false positive rates, and coverage values are given in Table 4 (MACT SigLow
group). Like the Carbo method, this group showed a high false positive rate while
capturing only 40–60% of the true assignments in the predictions.
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4. Discussion and conclusions. The above results demonstrate that MACT
similarity metrics provide a complement to Carbo similarity methods and show po-
tential for future work comparing biomolecules with very different structures where
existing structural alignment methods may be insufficient. While both methods have
very different overall dependences on structural RMSD and sequence identity, they
were both sufficient to cluster protein chains into functionally relevant groups. Fur-
thermore, analysis of chains with statistically significant similarity scores revealed
pairings which had a number of functional attributes (GO, EC, and ChEBI IDs) in
common.

However, MACT methods provide two very important benefits which are not
available with the Carbo methods. First, the MACT method is affine-invariant—it
does not require the structural alignment of biomolecules before electrostatic compar-
ison. Second, as a related benefit, MACT methods can potentially match electrostatic
potentials at a local level—as such, they can detect locally similar electrostatic motifs
in the absence of global similarity. These aspects of the MACT method suggest future
work detecting electrostatic motifs across structurally diverse protein families, e.g.,
resolving ligand binding sites and other electrostatic features shared by proteins with
different global structural characteristics.

We have described the initial application of MACT methods to demonstrate the
ability of these new methods to correctly cluster protein chains based on electrostatic
and biomolecular surface properties without the need for prior structural alignment.
The goal of this initial work was to demonstrate that these methods could provide a
level of robustness equivalent to traditional Carbo or Hodgkin measures for compar-
ison of electrostatic properties for biomolecules with very different structures. While
the current results of MACT methods were obtained in regions near the biomolecular
surface defined by solvent-accessibility functions, we are also implementing new algo-
rithms to automatically construct volumetric functions representing potential binding
sites (e.g., pockets). We shall continue to explore ways to further improve the results
by using these pocket functions to specifically compare the electrostatic potential
and other features at binding sites. Furthermore, there are numerous possibilities for
other applications of this pattern recognition methodology, including automated iden-
tification of ligand binding sites and incorporation of this information into docking
algorithms.

Appendix. This appendix describes the MACT matching algorithm used in this
paper. Interested readers may refer to [58] for more details. The major steps of the
algorithm are outlined below.

Step 1. Compute a contour tree (CT) for volumetric functions representing molec-
ular shapes, e.g., solvent accessibility functions. The CT [32, 14] was introduced to
find the connected contours of level sets of volumetric functions. The topology of a
level set changes only at the critical points of the function. The CT captures these
topological changes of the level sets for the entire range of the function of interest.
Each node of the CT corresponds to a critical point of the function and each arc
corresponds to a contour class connecting two critical points. A cut on an arc (v1, v2)
of the tree by an isovalue v1 ≤ w ≤ v2 corresponds to a connected contour of the
level set L(w). Due to the large number of critical points in biomolecular solvent
accessibility and electrostatic potential functions, CTs are usually too complex to be
compared directly.

Step 2. Construct the finest level dual contour tree (DCT) from the CT in Step 1.
A DCT can be constructed by partitioning arcs of a CT into sets of connected seg-
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ments, each of which corresponds to a connected interval volume of the function
domain. These interval volumes represent regions of the domain where the function
values lie between two specific isovalues. The distribution of the connected interval
volumes contains important topological information about the original function. Each
connected interval volume becomes a node in a DCT, and two nodes are connected by
an edge if the corresponding interval volumes are adjacent (sharing the same contour
at their boundaries). A DCT can be constructed from a given CT as follows:

i. Divide the functional range [fmin, fmax] of a scalar function into N intervals,
which cut the CT arcs into segments in N ranges.

ii. For all cut arc segments of CT in range i (1 ≤ i ≤ N), we use a Union Find
data structure to assign them into disconnected sets. Each set of connected
arc segments becomes a node of DCT at level i.

iii. If there exists in a node n at level i one arc segment that is connected to
that of another DCT node m at level i− 1, a DCT edge is inserted between
n and m.

The DCT provides a simpler representation of the original function than the
CT by eliminating small undulations in the function while preserving potentially
significant features such as high mounds and deep pits. Additionally, analysis can be
focused on the important regions of molecular structures by restricting the DCT to
a smaller functional range of particular interest, e.g., solvent-accessible regions near
the surfaces of biomolecules.

Step 3. Compute the geometrical, topological, and functional attributes for the
nodes in the DCT. In order to quantitatively measure the similarities of DCTs, we
define some geometrical, topological, and functional attributes for the DCT nodes.
The function (e.g., solvent accessibility) used to represent the molecule shapes and
construct the DCT is called shape function. Additional volumetric functions, such as
electrostatic potentials, can be treated as properties defined on the shapes and used
for computing functional attributes of the DCT nodes. Each node m of the DCT is
assigned a set of attributes based on the geometry and topology of its corresponding
connected interval volume: the normalized size of the interval volume, V (m); the
principal values of the moments of inertia of the interval volume, I(m); and the Betti
numbers [23] of the interval volume boundaries, B(m). Additionally, the interval
volume is then used to compute additional electrostatic potential attributes for the
DCT, namely the local potential monopole P (m); dipole �D(M); and quadrupole
moments Q(m).

Step 4. Build a multiresolution hierarchy of the attributed dual contour tree
(MACT) by merging adjacent functional intervals. In order to facilitate the compari-
son of attributed DCTs, they can be further organized in a hierarchical multiresolution
form. This MACT is constructed from a fine DCT by merging its adjacent functional
intervals. Without loss of generality, we assume that the finest DCT D has N = 2k

intervals. The DCT at the next coarser resolution would have N/2 intervals, each of
which is merged from two of the finer DCTs. A set S of connected DCT nodes in the
two combined intervals is merged into a single node n in the coarser DCT. This can
be achieved again by using a Union Find data structure [31]. The node n is called the
parent of nodes in the set S, which are the children of n. The merging process can
be recursively applied to the coarser DCTs until there is only a single interval span-
ning the entire functional range under consideration. If a DCT is constructed using
a restricted functional range, there may be multiple nodes even in the coarsest DCT
because the regions of interest may have many disconnected components. However,
most of those nodes are very small in size and can often be pruned as noise. The
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attributes of a node in the coarser level of the hierarchy can be easily evaluated from
the attributes of its children.

Step 5. Match two MACTs and compute their similarity score. The MACT
matching algorithm is applied from the coarsest to the finest level of the hierarchies,
where we assume that the MACTs to be compared have the same number of levels.
The matching algorithm attempts to find the maximal set of matched MACT node
pairs between two MACTs M and M ′. The MACT nodes m ∈ M and n ∈ M ′ of a
matched pair must satisfy the following conditions:

• The nodes m and n do not belong to any other pairs.
• m and n must belong to the DCTs of the same resolution, i.e., m ∈ Di ⊂ M

and n ∈ D′
i ⊂ M ′, where Di and D′

i have the same number of functional
intervals.

• m and n must belong to the same functional interval of Di and D′
i.

• The parents p(m) of m and p(n) of n are also a matched pair (p(m), p(n))
in the coarser DCTs. The only exception is level 0, at which nodes have no
parents.

We use a greedy algorithm to find the maximal set of matched node pairs, starting
from level 0 of the hierarchies. The steps to match the DCT Di ⊂ M and D′

i ⊂ M ′

at resolution level i (i = 0, . . . , k) are as follows:
i. Add all nodes of the DCT Di into a priority queue Q, in which the nodes are

ranked by their volumes.
ii. Remove the node m with the highest priority from Q. Search for the best

matched node n from possible candidates in the other DCT D′
i, constrained

by the conditions mentioned above. The best match should have the highest
score similarity 〈m,n〉 (defined below) weighted by their average volumes.

iii. If a node n is found, the pair (m,n) is added to the set of matched pairs at
resolution level i, and n is also removed from future consideration.

iv. Repeat steps ii and iii until the queue Q is empty or there are no more
candidates in D′

i.
v. Calculate the similarity score 〈Di, D

′
i〉 by using the pairs of matched nodes

in level i.
vi. Repeat steps i–v from level i = 0 to k. Calculate the similarity score 〈M,M ′〉

as the similarity score of two biomolecules.
For two nodes m and n in a matched pair, the similarity score is the weighted

average of the similarities of individual attributes defined previously:

〈m,n〉 = w1〈V (m), V (n)〉 + w2〈B(m), B(n)〉
+ w3〈I(m), I(n)〉 + w4〈P (m), P (n)〉
+ w5〈D(m), D(n)〉 + w6〈Q(m), Q(n)〉,

where the weights satisfying 0 ≤ wi ≤ 1 and
∑

wi = 1 control the relative importance
of different attributes for comparison. As expected, the maximum similarity score
between two nodes is 1, which is achieved when they have exactly the same attributes.
Additionally, the similarity score can also become negative when opposite electrostatic
potential moments are encountered. In this work, the weights were estimated by
maximizing MACT scores for pairs of similar proteins (members of the same family
and/or different X-ray structures) in a small subset of 20 proteins. Specifically, the
weights were chosen to maximize the ratio of the total similarity scores of sample
pairs within the same families to that of different families. The results presented in
this paper were calculated with weights w1 = 0.03, w2 = 0.08, w3 = 0.21, w4 = 0.44,
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w5 = 0.1, and w6 = 0.14, where the electrostatic weights (w4, w5, w6) dominate the
overall metric.

The individual terms in the equation above are computed as follows:

• 〈V (m), V (n)〉 = 1 − |V (m)−V (n)|
max(V (m),V (n)) : the similarity score of the volumes.

• 〈B(m), B(n)〉 = 1
3

∑2
i=0

min(βi(m),βi(n))
max(βi(m),βi(n)) : the similarity of the Betti numbers

of lower and upper boundaries.

• 〈I(m), I(n)〉 = 1 − maxj=1,2,3(|Ij(m)−Ij(n)|)
max(I1(m),I1(n)) : the similarity of the moment of

inertia.
• 〈P (m), P (n)〉 = 1 − |P (m)−P (n)|

max(|P (m)|,|P (n)|) : the similarity of the integrals of prop-
erties.

• 〈D(m), D(n)〉 = 1 − |D(m)|−|D(n)|
max(|D(m)|,|D(n)|) : the similarity of the dipole moments.

• 〈Q(m), Q(n)〉 = 1 − maxj=1,2,3 |Qj(m)−Qj(n)|
max(|Q1(m)|,|Q1(n)|) : the similarity of the quadrupole

moments.
The maximum similarity score between two nodes is 1, which is achieved when

they have exactly the same attributes. Additionally, the similarity score may also
become negative when opposite electrostatic potential moments are encountered. The
similarity score between the DCTs D and D′ is computed as weighted average of scores
of matched node pairs:

〈D,D′〉 =
∑
i

1

2
(V (mi) + V (ni)) · 〈mi, ni〉,

where (mi, ni), with mi ∈ D and ni ∈ D′, is a matched pair and the weights are the
sum of their normalized volumes. As a result of this weighting, larger interval volumes
have bigger contributions to the score. The similarity between MACTs M and M ′ is
evaluated as the average of the similarity scores of DCTs from resolution level 1 to k:

〈M,M ′〉 =
1

k

k∑
i=1

〈Di, D
′
i〉.

The similarity score 〈M,M ′〉, which clearly satisfies 〈M,M ′〉 ≤ 1, is used to measure
the similarity between the molecular structures with properties and compute the
results presented in this paper.
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