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An overview of the application of the band-limitation properties and nonredundant sampling representations of electromagnetic
fields to NF-FF transformations is presented. The progresses achieved by applying them to data acquired on conventional NF
scanning surfaces are discussed, outlining the remarkable reduction in the number of needed NF samples and measurement time.
An optimal sampling interpolation expansion for reconstructing the probe response on a rotational scanning surface from a non-
redundant number of its samples is also discussed. A unified theory of the NF-FF transformations with spiral scannings, which
allow a remarkable reduction of the measurement time, is then reviewed by describing a sampling representation of the voltage on
a quite arbitrary rotational surface from its nonredundant samples collected on a proper spiral wrapping it. Some numerical and
experimental results assessing the effectiveness of the considered NF-FF transformations are shown too.

1. Introduction

Sampling representations play a significant role in many
topics of applied electromagnetism, such as antenna analysis,
synthesis and diagnostics, antenna near-field (NF) and far-
field (FF) measurements, microwave nondestructive testing
and imaging, and so forth. They are usually more convenient
and efficient than the representations of electromagnetic
(EM) fields based on modal or asymptotic expansions. This
is due to the fact that the expansion coefficients are the field
values at the sampling points (i.e., the available measured or
computed quantities), and the basis functions are simple and
universal. Accordingly, they can be employed to represent
in an efficient and accurate way the radiated (or scattered)
EM field on substantially arbitrary surfaces. The possibility
and effectiveness of the sampling representations rely on
the quasi-band-limitedness property of the field radiated (or
scattered) by arbitrary (non super directive) sources. As a
matter of fact, it is shown in [1] that the fields radiated

by sources enclosed in a sphere of radius a and observed
on an analytical curve C external to it can be very well
approximated by spatially band-limited functions. For large
sources, the bandwidth is practically equal to βa (β being the
wave number), provided that the phase propagation factor
is extracted from the field expression, that a normalized
arc length is used to parameterize C and that C is some
wavelength far from the source. Since a regular surface M

can be described by two families of coordinate curves, the
extension to this last case is straightforward. This property
implies that the field over any regular surface surrounding
the source can be accurately represented by a standard
cardinal series (CS).

This possibility has been first successfully applied to the
NF-FF transformation with cylindrical scanning [2]. Unlike
the standard approaches [3, 4], the number of samples on
each ring decreases as we move from the central rings to the
peripheral ones, and the linear spacing between the rings also
grows when the radius of the scanning cylinder increases.
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Accordingly, it can become significantly greater than half-
wavelength, then commonly accepted in literature as the
maximum possible sampling interval. However, the use of
the CS, while completely satisfactory from the accuracy
point of view, has the drawback that all samples (or, at least,
all the relevant ones) must be considered in evaluating the
field at a given point, otherwise a relatively large truncation
error is introduced, due to the slow decay of the sampling
functions (It must be noted that this slow decay becomes
beneficial when we want extrapolate the measured data, f. i.,
to reduce the error due to the unavoidable truncation of
the measurement zone [5]). Such a slow decay leads to a
further difficulty related to the fact that in practice we deal
with inaccurate data. Provided that we are well above the
noise level, the measured results are usually affected by an
approximately constant relative error, so that the absolute
error corresponding to the highest field values can be rela-
tively large. This error is spread out by the sampling func-
tions without a severe attenuation, and this can induce sig-
nificant relative error in the zones where the field level is low.

The above difficulties have been overcome by resorting to
optimal sampling interpolations (OSIs) of central type [6, 7],
in which only relatively few samples in the neighbourhood
of the output point are used in the reconstruction. These alg-
orithms minimize the truncation error for a given number of
retained samples and are more stable than the CS expansions
with respect to random errors affecting the data. By taking
advantage of the aforementioned band-limitation prop-
erty, effective NF-FF transformations with plane-polar [8]
and bipolar scanning [9–12] have been developed. They
make use of efficient OSI expansions to reconstruct the NF
data needed by the classical plane-rectangular NF-FF trans-
formation from the knowledge of the acquired ones. Al-
though a significant reduction on the number of required
samples is obtained in such a way, their number increases
indefinitely when the cylinder height or the radius of the
scanning zone approach infinity. This shortcoming is a typ-
ical companion of unbounded observation surfaces, such as
the cylinder and the plane. On the other hand, for a spherical
scanning geometry, the number of needed samples is finite,
independent of the sphere size, and essentially coincident
with the number of degrees of freedom of the field [13],
that is, the number of independent parameters necessary to
represent it with a given precision. As the knowledge of the
field on a sphere encircling the source uniquely determines
the field at its exterior, this clearly shows that above rep-
resentations are redundant.

Apart from above drawback, the hypothesis that the an-
tenna is contained in a sphere is not always the most natural
one. If the source geometry departs significantly from the
spherical one, this choice leads again to redundancy (see
Section 2) and does not make it possible to consider obser-
vation domains close to the source.

Note that the redundancy of the representation, which
in direct type problems affects the efficiency but not the
stability of the algorithms, becomes of crucial importance
in inverse problems (antenna synthesis, inverse scattering,
phase retrieval, image restoration, etc.) where, due to ill-
posedness, it is not possible to recover a number of inde-

pendent parameters greater than the number of degrees of
freedom [14].

Nonredundant sampling representations of the EM fields
radiated or scattered by sources enclosed in a convex domain
D of finite size, bounded by a surface Σ with rotational
symmetry, and observed on a regular surface M external
to D and having the same symmetry have been developed
in [15], by properly generalizing the approach introduced
in [1]. Now, the number of required samples is finite also
for an unbounded observation domain, independent of its
shape and size, and essentially coincident with the number
of degrees of freedom of the field. This is obtained by a
proper choice of the phase factor to extract from the field
and of the parameterizations adopted to describe M. Of
course, OSI expansions can be exploited for minimizing the
truncation error, allowing effective sampling representations
also on subdomains of M. Moreover, since, as shown in [16],
the output of a nondirective probe (the voltage, say) has the
same effective spatial bandwidth of the field radiated by the
source, the nonredundant sampling representations can be
directly applied to it. This allows to accurately reconstruct
the NF data required to carry out the corresponding NF-
FF transformation, starting from a nonredundant set of
measurements. In this way, effective NF-FF transformations
requiring a minimum number of measurements have been
developed, for various source shapes, in plane-polar [16–
18], bipolar [19], planar wide mesh [20], cylindrical [21–
23], and spherical [24, 25] scanning geometries. It must be
stressed that the reduction in the number of the NF samples
to be acquired reflects in a decrease of the measurement
time, which is a very important issue, since nowadays such
a time is much larger than that needed to carry out the NF-
FF transformation.

For drastically reducing the acquisition time, the use
of the modulated scattering technique, employing arrays
of scattering probes, which allows a very fast electronic
scanning, has been proposed since 1988 [26]. However, apart
from measurement precision issues, antenna testing facilities
based on such a technique are not very flexible. Anyway,
exploitation of nonredundant sampling theory could allow
to reduce the number of required probes. Moreover, scan-
ning schemes for reducing the NF data acquisition time in
the spherical near- field measurements of electrically large
antennas have been recently proposed and experimentally
validated in [27–29].

Another way to reduce the measurement time is the use
of spiral scanning techniques. They have been implemented,
as suggested by Yaccarino et al. in [30], by means of continu-
ous and synchronized movements of the positioning systems
of the probe and antenna under test (AUT). Accurate, stable
and efficient NF-FF transformations with helicoidal, planar
and spherical spiral scanning have been developed in the
last decade [31–41]. They rely on nonredundant sampling
representations to reconstruct the NF data needed by the
classical NF-FF transformation corresponding to the adopt-
ed scanning surface, by interpolating, via appropriate OSI
formulas, the nonredundant samples collected on the spiral.
The AUT has been assumed enclosed in the smallest sphere
able to contain it in [31–34], whereas more effective AUT
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modellings, that allow a further reduction of required NF
samples when dealing with antennas having one or two
predominant dimensions, have been adopted in [35–41]. A
unified theory for spiral scanning and nonspherical antennas
is reported in [41].

However, when dealing with aperture antennas, such an
additional a priori information available on the AUT can be
conveniently exploited to provide the aperture field with an
effective representation, suitably accounting for its shape and
size as well as for its radiating features, thus further reducing
the number of required samples [42–44].

As a final remark, note that sampling representations
have been also employed to develop NF-FF transformation
techniques from phaseless NF data in the plane-polar [45],
bipolar [46, 47], or cylindrical [48] scanning geometries.

In this paper we provide an overview of the application of
the nonredundant sampling representations to NF-FF trans-
formations, with particular emphasis on spiral scanning. The
paper is organized as follows. The theoretical results concern-
ing the nonredundant sampling representation of EM fields
are summarized in Section 2, highlighting the role of the
optimal parameterization and phase factor. The ellipsoidal
(oblate and prolate) modelling of the source, suitable for
quasiplanar and elongated antennas, is explicitly reported. In
Section 3, a two-dimensional OSI expansion for reconstruct-
ing the probe voltage on an arbitrary rotational scanning
surface from its nonredundant samples is presented, and rep-
resentative numerical and experimental results relevant to
the cylindrical scanning case are reported. The unified theory
of the NF-FF transformations with spiral scanning, for an-
tennas with two dimensions very different from the third
one [41], is described in Section 4, by presenting a sampling
representation of the probe voltage on a quite arbitrary ro-
tational surface from its nonredundant samples collected on
a proper spiral wrapping the surface. Application of this
theory to helicoidal scanning and elongated antennas is
also reported in the same Section, and experimental results
validating the related NF-FF transformation are shown. At
last, conclusions are summarized in Section 5.

2. Nonredundant Sampling Representations
of Electromagnetic Fields

Let us consider the field radiated by a nonsuperdirective
source S, enclosed in a convex domain D of finite size,
bounded by a surface Σ with rotational symmetry, and
observed on a regular surface M, external to D and with
the same symmetry. Since M can be described by two
families of coordinate curves, namely meridian curves and
azimuthal circumferences, in the following we deal with the
field representation over a regular curve C described by a
regular parameterization r = r(ξ). As shown in [1, 15],
the “band-limitation” error, which occurs when the “reduced
electric field”

F(ξ) = E(ξ)ejγ(ξ), (1)

γ(ξ), being a regular function of ξ, is approximated by a
spatially band-limited function, becomes negligible as the
bandwidth exceeds the critical value

Wξ = max
ξ

[w(ξ)] = max
ξ

[
max
r′

∣∣∣∣∣
dγ(ξ)

dξ
− β

∂R(ξ, r′)

∂ξ

∣∣∣∣∣

]
.

(2)

In (2), r′ denotes the source point and R = |r(ξ) −
r′|. In fact, for large sources and observation curves, some
wavelengths far from D , such an error exhibits a step-
like behaviour, decreasing more than exponentially as the
bandwidth exceeds Wξ [1, 15]. Accordingly, it can be
effectively controlled by choosing a bandwidth slightly larger
than Wξ . And so, F(ξ) can be represented on C by a CS
in ξ, with a sampling rate slightly larger than Wξ /π. To
obtain a nonredundant representation, that is, to minimize
the number of required samples, it is shown in [15] that two
conditions must be satisfied; namely,

(1) γ must be chosen in such a way that its derivative
is equal to the mean between the maximum and
minimum values of β ∂R/∂ξ when r′ varies in D ;

(2) the parameter ξ must be such that the local band-
width w(ξ) is constant with ξ.

Condition (2) arises from the fact that if w(ξ) is variable
with ξ, the sample spacing becomes unnecessary small in the
zones wherein w(ξ) is smaller than its maximum value Wξ .

According to the above conditions, by denoting with s,
the curvilinear abscissa along the curve C and assuming
γ(0) = 0 and ξ(0) = 0, it results in [15]:

γ = γ(ξ) = β

2

∫ s(ξ)

0

[
max
r′

∂R

∂s
+ min

r′

∂R

∂s

]
ds

= β

2

∫ s

0

[
max
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R̂ · t̂ + min
r′

R̂ · t̂
]

ds,

(3)

ξ = β

2Wξ

∫ s

0

[
max
r′

∂R

∂s
−min

r′

∂R

∂s

]
ds

= β

2Wξ

∫ s

0

[
max
r′

R̂ · t̂ −min
r′

R̂ · t̂
]

ds,

(4)

where t̂ is the unit vector tangent to C at the observation

point P, R̂ is the unit vector pointing from the source point
to P, and (·) denotes the inner product. According to (4), a
change of Wξ is reflected in a simple change of scale for ξ.

When C is a meridian curve (see Figure 1) and t̂ is
external to the cone of vertex P tangent to Σ, the extreme

values of R̂ · t̂ occur at the two tangency points P1,2 on C′

(intersection curve between the meridian plane and Σ). By
taking into account that [15]

∂R

∂s

∣∣∣∣
s′1,2

= dR1,2

ds
±

ds′1,2

ds
, (5)
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Figure 1: Relevant to a meridian observation curve.

where s′1,2 are the arc length coordinates of P1,2 and R1,2 the
distances from P to P1,2 (see Figure 1), and choosing Wξ =
βℓ′/2π (ℓ′ being the length of C′), we have

γ = β

2

[
R1 + R2 + s′1 − s′2

]
, (6)

ξ = π

ℓ′
[
R1 − R2 + s′1 + s′2

]
. (7)

It is useful to note that, according to (7), the angular-
like parameter ξ covers a 2π range when P encircles the
source once. Moreover, the number of samples at Nyquist
spacing (∆ξ = π/Wξ) on a closed meridian curve C is always
finite (also when this last is unbounded) and equal to Nξ =
2π/∆ξ = 2ℓ′/λ, λ being the wavelength.

When C is an azimuthal circumference of radius ρ, the

extreme values of R̂ · t̂ are opposite and constant along it. It
follows from (3) and (4) that γ is constant, and any parameter
proportional to the arc length is optimal. Accordingly, it is
convenient to use the azimuthal angle ϕ as parameter and to
choose for γ the value relevant to any meridian curve passing
through the observation point on C. The corresponding
bandwidth is [15]

Wϕ =
β

2
max
z′

(R+ − R−)

= β

2
max
z′

(√
(z − z′)2 +

(
ρ + ρ′(z′)

)2

−
√

(z − z′)2 +
(
ρ − ρ′(z′)

)2
)

,

(8)

wherein ρ′(z′) is the equation of Σ in cylindrical coordinates,
and R+, R− are the maximum and minimum distance,
respectively, from each circumference describing the surface
Σ to the observation point P. It can be easily shown that the

maximum is attained on that zone of the surface Σ lying on
the same side of the observation circumference with respect
to its maximum transverse circle. When the observation
circle moves toward infinity, it results in R+ = R− + 2ρ′ sin ϑ,
and, accordingly, we have

Wϕ = β ρ′max sin ϑ, (9)

ρ′max being the maximum transverse radius of Σ and ϑ the
polar angle of the circle points. It can be shown [15] that the
number of field samples on any closed observation surface
(also unbounded) surrounding the source is

N0
∼= area ofΣ

(λ/2)2 . (10)

Taking into account that the two tangential components
of the electric field over any surface enclosing the source
uniquely determine the field outside it, we realize that the
number of degrees of freedom of the field radiated by an
arbitrary source within D is practically equal to 2N0, as a
number of samples slightly larger than N0 ensures a negligi-
ble representation error.

According to (10), D must fit the antenna geometry, as
much as possible, in order to minimize the overall number of
samples.

As representative examples, we report in the following
the results relative to ellipsoidal geometries. A prolate ellip-
soid, having major and minor semiaxes equal to a and b
(Figure 2), is an effective modelling for elongated antennas,
whereas an appropriate modelling for quasiplanar ones is
obtained by choosing Σ coincident with an oblate ellipsoid.
These models are quite general and contain the spherical and
planar ones as particular cases. For both types of ellipsoids,
it can be shown [15] that in any meridian plane the curves
γ = const and ξ = const are ellipses and hyperbolas confocal
to C′. Accordingly, ξ and γ are functions only of the elliptic
coordinates u = (r1 − r2)/2 f and v = (r1 + r2)/2a, where 2f
is the focal distance of the ellipse C′ and r1,2 the distances
from observation point P on the meridian curve to the foci
(Figure 2).

By straightforward but lengthy computations, from (6)
and (7), it results in [15]

γ = βa

⎡
⎣v

√
v2 − 1

v2 − ε2
− E

⎛
⎝cos−1

√
1− ε2

v2 − ε2
| ε2

⎞
⎠
⎤
⎦, (11)

ξ = π

2

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

E
(
sin−1u | ε2

)

E(π/2 | ε2)
+ 1 prolate ellipsoid,

E
(
sin−1u | ε2

)

E(π/2 | ε2)
oblate ellipsoid,

(12)

where ε = f /a is the eccentricity of C′, and E(·|·) denotes
the elliptic integral of second kind.

Relation (12) is valid when the angle ϑ lies in the range [0,
π/2]. The case in which ϑ belongs to [π/2, π] can be easily
handled by determining the value ξ′ corresponding to the
point specified by the angle π−ϑ and then putting ξ = π−ξ′.
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Figure 2: Ellipsoidal source modelling: prolate case.

With reference to an azimuthal circumference, it can be
shown [15] that the same value of Wϕ corresponds to all
transverse circles on the hyperboloid of rotation fixed by ξ.
Accordingly, moving the circle to infinity and taking (9) into
account, we get the following:

Wϕ(ξ) =
{
β b sin ϑ∞(ξ) prolate ellipsoid,

β a sin ϑ∞(ξ) oblate ellipsoid,
(13)

wherein ϑ∞ is the polar angle of the asymptote to the
hyperbola through P (Figure 2) and is given by

ϑ∞ =

⎧⎨
⎩

sin−1u +
π

2
prolate ellipsoid,

sin−1u oblate ellipsoid.
(14)

In order to show the effect of multiplying the field by
the factor ejγ(ξ), the real part of the electric field and of the
reduced electric field y-component radiated by an antenna
along a line are reported in Figure 3. The considered antenna
is a uniform planar circular array with radius equal to 20 λ,
lying in the plane z = 0. Its elements, radially and azimuthally
spaced of 0.8λ, are elementary Huygens sources linearly
polarized along the y axis. Accordingly, an oblate ellipsoidal
modelling with 2a = 40λ and 2b = 5λ has been used.
The straight line is the x-directed line at y = 0, lying on a
plane at distance d = 12λ from the antenna. As can be seen,
as x increases, the spatial variations of the real part of the
reduced field become increasingly slower than those of the
electric field, since the local bandwidth has been minimized
by choosing the optimal phase function. Quite analogous
results are obtained for the imaginary parts.

To highlight the role of the optimal parameter ξ, the
amplitude of the electric field y-component along the same
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line is plotted as function of x and ξ in Figures 4 and 5. As
can be seen, when using ξ, the spatial variations are made
uniform, by reducing the scale when these variations slow
down. Thus, a uniform sampling in ξ gives rise to a denser
samples distribution where w(ξ) is greater and to a sparser
one in the zones characterized by smaller values of w(ξ) (see
Figure 4).

3. Representation of the Probe Voltage
on a Scanning Surface

Let us consider an AUT enclosed in a convex domain
bounded by a rotational surface Σ and a nondirective
probe scanning an arbitrary surface obtained by rotating
a meridian curve always external to the cone of vertex at
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the observation point P and tangent to Σ. Since the voltage
V measured by such a kind of probe has essentially the
same effective spatial bandwidth of the AUT field [16], the
nonredundant sampling representations of EM fields can be
applied to it.

As a consequence, the reduced voltage Ṽ(ξ) = V(ξ)ejγ(ξ)

at P(ξ(ϑ),ϕ) on the meridian curve fixed by ϕ can be
evaluated via the OSI expansion

Ṽ
(
ξ(ϑ),ϕ

)
=

m0+q∑
m=m0−q+1

Ṽ
(
ξm,ϕ

)
ΩM(ξ − ξm)DM′′ (ξ − ξm),

(15)

where m0 = Int[ξ/∆ξ] is the index of sample nearest
(on the left) to P, 2q is the number of the retained

intermediate samples Ṽ(ξm,ϕ), that is, the reduced voltages
at the intersection points between the sampling parallels and
the considered meridian curve, and

ξm = m∆ξ = 2πm
(2M′′ + 1)

, (16)

M
′′ = Int

(
χM′

)
+ 1, M′ = Int

(
χ′Wξ

)
+ 1, (17)

χ′ being a factor, slightly larger than one, controlling the
band-limitation error, χ an analogous one controlling the
truncation error [7, 15], and Int(x) denoting the integer part
of x. Moreover,

DM′′ (ξ) = sin
[(

2M
′′

+ 1
)
ξ/2

]

(2M′′ + 1) sin(ξ/2)
,

ΩM(ξ) =
TM

[
2cos2(ξ/2)/cos2

(
ξ/2

)
− 1

]

TM

[
2/cos2

(
ξ/2

)
− 1

] ,

(18)

are the Dirichlet and Tschebyscheff Sampling functions,
respectively, TM(·) being the Tschebyscheff polynomial of

degree M =M
′′ −M′ and ξ = q∆ξ.

The intermediate samples Ṽ(ξm,ϕ) can be evaluated via
the OSI formula

Ṽ
(
ξm,ϕ

)

=
n0+p∑

n=n0−p+1

Ṽ
(
ξm,ϕn,m

)
ΩNm

(
ϕ− ϕn,m

)
DN ′′

m

(
ϕ− ϕn,m

)
,

(19)

where Ṽ(ξm,ϕn,m) are the reduced samples on the parallel
fixed by ξm, 2p is the retained samples number, n0 =
Int(ϕ/∆ϕm), and

ϕn,m = n∆ϕm =
2πn

2N ′′
m + 1

,

N
′′
m = Int

(
χN ′

m

)
+ 1,

N ′
m = Int

[
χ∗Wϕ(ξm)

]
+ 1,

Nm = N
′′
m −N ′

m,

χ∗ = 1 +
(
χ′ − 1

)
[sin ϑ(ξm)]

−2/3.

(20)
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Figure 5: Amplitude of the NF y-component on the line y = 0, z =

12λ as function of the optimal parameter ξ.

The variation of χ∗ with ξ is required to ensure a band-
limitation error constant with respect to ξ [1].

As mentioned in the Introduction, above representations
have been applied to a large variety of source and scanning
geometries, showing that they are indeed robust against noise
and that with χ′ = χ ≈ 1.2 and p = 6-7 we get absolute
relative errors of the order of −60 dB and a mean square one
about 10 dB lower.

As an example of these performances, we report in the
following some numerical and experimental results relative
to the cylindrical scanning geometry. Experimental results
relative to the plane-polar geometry can be found in [16].

We consider an elongated AUT and a scanning cylinder
of radius d. An effective modelling for such an antenna is
obtained by choosing the surface Σ enclosing it coincident
with the smallest prolate ellipsoid having major and minor
semiaxes equal to a and b (see Figure 6). By properly
employing the OSI expansions (Note that, to have an equal
amount of truncation error at both the cylinder ends, the
distribution of rings must be symmetrical with respect to
z = 0. Therefore, their position is fixed according to the
sampling law ξm = m∆ξ + ∆ξ/4, instead of (16). Moreover,
in (15), m0 = Int[(ξ − ∆ξ/4)/∆ξ]) (15) and (19), it is so
possible to recover the probe and rotated probe voltages V
and V ′ at the points needed to carry out the classical NF-FF
transformation with cylindrical scanning [3].

The effectiveness and robustness of the so-developed
nonredundant cylindrical NF-FF transformation have been
assessed by many numerical tests. The reported simulations
refer to a uniform planar array of λ/2-spaced elementary
Huygens sources, polarized along the z axis, and covering
an elliptical zone in the plane y = 0, with major and
minor semiaxes equal to 25λ and 6λ. Accordingly, a prolate
ellipsoidal modelling with 2a = 50λ and 2b = 12λ has been
used. The radius d of the scanning cylinder is equal to 12λ,
and its height h is 160λ. The working frequency is 10 GHz,
and an open-ended WR-90 rectangular waveguide is chosen
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Figure 6: Cylindrical scanning: the prolate ellipsoidal modelling.
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Figure 7: Amplitude of the probe output voltage V on the
generatrix at ϕ = 90◦. Solid line: exact. Crosses: interpolated.

as probe. Figure 7 shows a representative reconstruction
example of the amplitude of the voltage V (the most
significant one) over the cylinder generatrix at ϕ = 90◦. As
can be seen, there is an excellent agreement between the exact
voltage and the reconstructed one. The accuracy in the NF
interpolation is confirmed also by the maximum and mean-
square error values. They are obtained by comparing the
interpolated values of V with those directly evaluated on a
close grid in the central zone of the scanning cylinder, so
that the existence of the guard samples is assured. Figure 8
shows the mean-square error, normalized to the voltage
maximum value over the cylinder, for p = q ranging from
3 to 12, χ′ = 1.20, and χ = 1.10, 1.15, 1.20, and 1.25. As
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Figure 8: Mean-square reconstruction error of the probe voltage V.

expected, it decreases up to very low values on increasing
the oversampling factor and/or the retained samples number.
The algorithm stability has been investigated by adding
random errors to the exact samples. These errors simulate
a background noise (bounded to ∆a dB in amplitude and
with arbitrary phase) and an uncertainty on the data of±∆ar
dB in amplitude and ±∆α degrees in phase. As shown in
Figure 9, the algorithm is stable. The algorithm has been
applied to recover the NF data needed for the classical probe
compensated NF-FF transformation [3]. The reconstruction
of the antenna FF pattern in the E-plane is reported in
Figure 10. As can be seen, the exact and recovered fields are
practically indistinguishable. It can be interesting to compare
the number of the used NF samples (13 566) with that
(40 960) required by the classical NF-FF transformation [3].

The nonredundant NF-FF transformation with cylindri-
cal scanning has been experimentally validated using the
facilities available at the antenna characterization laboratory
of the University of Salerno, where an advanced cylindrical
NF measurement facility supplied by MI Technologies is
available, and at the anechoic chamber of the University of
Naples Parthenope, provided with a FF measurement range.
The AUT, located in the plane x = 0, is a very simple H-plane
monopulse antenna, operating at 10 GHz in the difference
mode. It has been realized by using two pyramidal horns
(8.9 × 6.8 cm) of Lectronic Research Labs at a distance of
26 cm (between centers) and a hybrid Tee. The AUT has
been modelled as enclosed in a prolate ellipsoid with major
and minor semiaxes equal to 27 cm and 5 cm. The probe
voltages have been acquired on a cylinder with d = 16.6 cm
and h = 240 cm. To assess the effectiveness of the sampling
representation, the amplitude and phase (in the range [–
20 cm, 120 cm], to improve its readability) of the recon-
structed probe voltage relevant to the generatrix at ϕ = 0◦
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are compared in Figures 11 and 12, respectively, with those
directly measured on the same generatrix. As can be seen,
the reconstruction is everywhere very good, save for the
peripheral zone (below about –60 dB). The reconstructed
voltage exhibits a smoother behaviour as compared to
the measured one. This is due to the low pass filtering
properties of the interpolation functions, which cut away the
noise outside the AUT spatial bandwidth. All the reported
reconstructions have been obtained by using χ′ = 1.35,
χ = 1.20, and p = q = 8. The comparison between the H-plane
FF pattern reconstructed from the acquired nonredundant
cylindrical NF data and that obtained directly from the data
measured on the classical cylindrical grid (see Figure 13)
assesses the overall effectiveness of the NF-FF transformation
technique. In both cases, the software package MI-3000 has
been used to get the FF reconstructions.
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Figure 11: Amplitude of the probe output voltage V on the
generatrix at ϕ = 0◦. Solid line: measured. Crosses: interpolated.
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The accuracy of the FF reconstruction process is further
confirmed by comparing (see Figure 14) the H-plane pattern
obtained from the nonredundant measurements with that
directly measured in the FF region at the anechoic chamber
of the University of Naples Parthenope. As can be seen,
although the measurements have been carried out with
quite different techniques and environmental conditions, a
very good agreement results, save for small discrepancies
in the far-out side lobes region, due to the truncation of
the scanning zone. It must be stressed that the described
technique allows a significant reduction of the number of
measurements, without losing the accuracy of the classical
approach. As a matter of fact, the number of samples needed
by the described NF-FF transformation with cylindrical scan
is 1 895 against that (5 760) required by MI-3000 package to
cover the same scanning zone.
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4. Voltage Reconstruction from
Nonredundant Samples along a Spiral

As emphasized in the Introduction, the adoption of a spiral
scanning can improve the performance of NF-FF measure-
ment techniques by significantly reducing the measurement
time. Accordingly, in this Section, we report the main results
concerning the reconstruction of the probe voltage on a quite
arbitrary rotational surface M (with the same rotational
symmetry of the surface Σ bounding the source) from the
knowledge of a nonredundant number of its samples lying
on a spiral wrapping the surface [34, 41].

In order to get such a sampling representation of the
voltage, it is necessary [34]

(i) to choose the pitch of the spiral coincident with the
sample spacing needed for the interpolation along a
meridian curve,

(ii) to develop a nonredundant sampling representation
of the voltage on the spiral, based on the theoretical
results in [15].

As the sample spacing is uniform in the ξ variable
associated to Σ (see formula (7)), condition (i) implies that
the spiral equation is

ξ = kφ, (21)

where φ is the angular parameter describing the spiral.
Such a spiral can be viewed as intersection of the surface

M with the line ξ = const in the meridian plane, emanating
from a point which moves on a spiral that wraps, with
a constant pitch, the surface Σ enclosing the AUT. As the
variable ξ varies in the range [−π, π], the aforementioned
condition on the spiral pitch implies that the constant k must
be such that the interval ∆ξ = 2πk between two consecutive
intersections of the spiral with the meridian curve is equal
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Figure 14: H-plane pattern. Solid line: direct FF measurements.
Crosses: reconstructed from NF data acquired via the nonredun-
dant cylindrical scanning.

to 2π/(2M
′′

+ 1), with M
′′ = Int(χM′) + 1, and M′ =

Int(χ′Wξ) + 1. It follows that k = 1/(2M′′ + 1).
The determination of optimal phase factor ψ and param-

eter η to get a nonredundant representation of the voltage
along the spiral is a more difficult task, as the influence of the
source geometry is more involved. In the case of a spherical
source, the result can be obtained [34] by observing that the

extreme values of R̂ · t̂ in (3) and (4) are determined by
considering the intersection of the plane defined by t̂ and the
unit vector r̂ with the cone having the vertex at the generic
point Q on the spiral and the generatrices coincident with
the tangents to the sphere modelling the AUT. Denoting by

R̂1,2 the related unit vectors and by ε the angle between r̂ and
t̂ (Figure 15), we get [34] the following

(
R̂1 + R̂2

)

2
= r̂ sin δ = r̂

√
1− a2

r2
, (22)

(
R̂1 − R̂2

)
· t̂

2
= cos δ sin ε =

(
a

r

)
sin ε. (23)

By substituting (22) in (3), and taking into account that
dr = r̂ · t̂ ds, it results in the following:

ψ = β
∫ r

0

√
1− a2

r2
dr

= β
√
r2 − a2 − βa cos−1

(
a

r

)
.

(24)

On the other hand [34],

ds =
√
r2sin2θ + k2r2 + k2ṙ2 dφ,

sin ε =
√

1−
(
r̂ · t̂

)2
,

(25)
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Figure 15: Geometry of the problem in the plane t̂, r̂.

wherein ṙ = dr/dϑ and, being in such a case ξ equal to the
polar angle ϑ,

r̂ · t̂ = dr

ds
= dr

dφ

dφ

ds

=
[

dr

dϑ

dϑ

dφ

]
dφ

ds

= kṙ
dφ

ds
= kṙ√

r2sin2ϑ + k2r2 + k2ṙ2
.

(26)

By substituting relations (23) and (25) in (4), it results:

η = βa

Wη

∫ φ

0

√
k2 + sin2kφ dφ. (27)

It is worth noting that the expression (24) of the phase
function ψ relevant to the sampling representation along the
spiral coincides with that γ relevant to the representation on
a meridian curve [15].

According to (27), the parameter η is β/Wη times the arc-
length along the spiral which wraps the sphere modelling the
AUT. Since such a spiral is a closed curve, it is convenient
to choose the bandwidth Wη such that η covers a 2π range
when the whole projecting curve on the sphere is described.
As a consequence,

Wη =
βa

π

∫ (2M
′′

+1)π

0

√
k2 + sin2kφ dφ, (28)

namely, the bandwidth Wη is β/π times the length of the
spiral that wraps from pole to pole the sphere modelling the
AUT.

Let us now turn to the case of nonspherical modelling of
the source. By following a heuristic reasoning, one can deter-
mine [41] the phase factor ψ and parameterization η also
in this case. In particular, by generalizing the corresponding
relations for the case of spherical modelling (see (24), (27),
and (28)), ψ coincides with the phase function γ relevant
to a meridian curve, η is β/Wη times the arc length of the
projecting point that lies on the spiral wrapping the surface

Σ, and the bandwidth Wη is β/π times the length of the spiral
wrapping Σ from pole to pole. Namely, the spiral, ψ and η are
such that they coincide with those relevant to the spherical
modelling when the surface Σ leads to a sphere.

According to the above results, the OSI formula for
reconstructing the reduced voltage at any point Q of the
spiral is [34, 41]

Ṽ
(
η
)
=

n0+p∑
n=n0−p+1

Ṽ
(
ηn
)
ΩN

(
η − ηn

)
DN ′′

(
η− ηn

)
, (29)

where n0 = Int(η/∆η) is the index of the sample nearest (on
the left) to the point Q, 2p the number of retained samples

Ṽ(ηn), and

ηn = n∆η = 2πn/
(

2N
′′

+ 1
)

, (30)

with N
′′ = Int(χ N ′) + 1 and N ′ = Int(χ′Wη) + 1.

It must be stressed that, when interpolating the voltage
in the neighbourhood of the poles (ϑ = 0 and ϑ = π), the
enlargement bandwidth factor χ′ must be properly increased
to avoid a significant growth of the band-limitation error.
This is due to the fact that small variations of η correspond
to very large changes of φ in these zones.

The OSI expansion (29) can be employed to evaluate the
reduced voltage values at the intersection points between the
spiral and the meridian curve passing through the obser-
vation point P. Once these intermediate samples have been
determined, the reduced voltage at P can be reconstructed
via the following OSI formula:

Ṽ
(
ξ(ϑ),ϕ

)
=

m0+q∑
m=m0−q+1

Ṽ(ξm)ΩM(ξ − ξm)DM′′ (ξ − ξm),

(31)

wherein m0 = Int[(ξ − ξ0)/∆ξ] is the index of sample nearest

(on the left) to P, Ṽ(ξm) are the intermediate samples,

ξm = ξm
(
ϕ
)
= kϕ + m∆ξ = ξ0 + m∆ξ, (32)

and the other symbols have the same meanings as in (15).
In order to illustrate above results and for its practical

relevance, let us consider the case of an elongated AUT
whose NF is probed on a proper helix lying on a cylinder of
radius d (Figure 16). For such a kind of antenna, a flexible
modelling, which can be a convenient alternative to the
prolate ellipsoidal one, is the rounded cylinder modelling.
It is obtained by choosing Σ coincident with a cylinder of
height h′ ended in two half-spheres of radius a′ (Figure 16).
By taking into account that in the helicoidal scanning case
r(ϑ) = d/ sin ϑ and imposing the passage of the helix through
a fixed pointQ0 of the generatrix at ϕ = 0, the helix equations
read

x = d cos
(
φ − φs

)
,

y = d sin
(
φ − φs

)
,

z = d cot[ϑ(ξ)],

(33)

wherein φs is the value of φ at Q0.
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Figure 16: Helicoidal scanning: the rounded cylinder modelling.

It can be easily verified (see Figure 17) that, for the
considered source modelling, the parameters involved in the
expressions (6) and (7) of the phase factor and optimal pa-
rameter relevant to the nonredundant representation along a
generatrix are [22, 36]

ℓ′ = 2(h′ + πa′),

R1,2 =
√(

z ∓ h′

2

)2

+ d2 − a′2,

s′1 = a′sin−1

⎛
⎜⎜⎝
a′d + R1

((
h′

2

)
− z

)

R2
1 + a′2

⎞
⎟⎟⎠,

s′2 = h′ + a′

⎡
⎢⎢⎣π − sin−1

⎛
⎜⎜⎝
a′d + R2

((
h′

2

)
+ z

)

R2
2 + a′2

⎞
⎟⎟⎠

⎤
⎥⎥⎦.

(34)

The reduced voltage at P can be again reconstructed by
means of (31), wherein the intermediate samples are still
determined via (29), but, having imposed in such a case the
passage of the helix through the point Q0, the expressions of
ξm, ηn, and n0 become ξm = ξm(ϕ) = ξ(φs) + kϕ + m∆ξ =
ξ0 + m∆ξ, n0 = Int[(η − η0)/∆η], and ηn = η(φs) + n ∆η =
η0 + 2 πn/(2N

′′
+ 1).

By properly employing the OSI expansions (29) and (31),
it is so possible to recover the probe and rotated probe
voltages V and V ′ at the points needed to perform the
classical NF-FF transformation with cylindrical scanning [3],
thus getting a nonredundant NF-FF transformation with
helicoidal scanning.

Such a NF-FF transformation has been numerically
assessed in [36], obtaining results quite similar (in terms
of accuracy and data reduction) to those reported in
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Figure 17: Relevant to a cylinder generatrix.

−80

−70

−60

−50

−40

−30

−20

−10

−120 −90 −60 −30 0 30 60 90 120

P
ro

b
e 

vo
lt

ag
e 

am
p

li
tu

d
e 

(d
B

)

q = p = 6

χ = 1.2

z (cm)

χ = 1.35

Figure 18: Amplitude of the probe output voltage V on the
generatrix at ϕ = 0◦. Solid line: measured. Crosses: interpolated.

the previous section with reference to the nonredundant
cylindrical NF-FF transformation.

Some experimental results performed at the antenna
characterization laboratory of the University of Salerno and
assessing the validity of the technique are reported in the
following. The dimensions of the cylinder wrapped by the
helix, the probe, the working frequency, and the AUT are
the same as in Section 3. In such a case, the AUT operates
in the sum mode and is modelled by a rounded cylinder
with h′ = 35 cm and a′ = 3.4 cm. In Figures 18 and 19,
the amplitude and phase of the reconstructed probe voltage
relevant to the generatrix at ϕ = 0◦ are compared with
those directly measured on the same generatrix. The same
comments already done with reference to Figures 11 and 12
hold. The overall effectiveness of the described NF-FF trans-
formation is assessed by comparing (Figures 20 and 21) the
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Figure 19: Phase of the probe output voltage V on the generatrix at
ϕ = 0◦. Solid line: measured. Crosses: interpolated.
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Figure 20: E-plane pattern. Solid line: reference. Crosses: recon-
structed from NF data acquired via the helicoidal scanning.

FF patterns in the principal planes E and H reconstructed
from the acquired NF data with those (references) obtained
by using the software package MI-3000 from the data
directly measured on the classical cylindrical grid. The same
software has been used to get the FF reconstruction from the
helicoidal NF data. To this end, the described OSI algorithm
has been used for recovering the required cylindrical NF data.
Moreover, the H-plane pattern obtained from the helicoidal
measurements is compared in Figure 22 with that directly
measured in the FF zone. As can be seen, in all the cases, there
is a very good agreement, thus confirming the effectiveness of
the technique.

It is interesting to compare the number of samples (948)
needed by such a NF-FF transformation with helicoidal scan
with that (5 760) required by the traditional NF cylindrical
scanning to cover the same measurement zone. As shown,
the described technique allows a significant reduction of the
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Figure 21: H-plane pattern. Solid line: reference. Crosses: recon-
structed from NF data acquired via the helicoidal scanning.
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Figure 22: H-plane pattern. Solid line: direct FF measurements.
Crosses: reconstructed from NF data acquired via the helicoidal
scanning.

number of measurements, without losing the accuracy of the
classical approach.

5. Conclusions

In this paper, we have presented an overview of the appli-
cation of the band-limitation properties and nonredundant
sampling representations of EM fields to NF-FF transforma-
tion techniques, outlining the remarkable reduction in the
number of needed NF samples and measurement time so
achievable in all conventional scannings. Then, the unified
theory of the NF-FF transformations with spiral scannings
has been reviewed highlighting that these transformations
allow a further substantial reduction of the measurement
time. In both cases, proper OSI formulas to efficiently
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reconstruct the NF data needed by the classical NF-FF trans-
formation corresponding to the adopted scanning surface
from the acquired nonredundant samples are reported. At
last numerical, as well as, experimental results assessing the
effectiveness of the considered NF-FF transformations are
shown.
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