
99

Application of OpenMP to weather, wave and

ocean codes

Paolo Malfetti
CINECA, via Magnanelli 6/3, I-40033 Casalecchio di

Reno, Italy

Tel.: +39 051 6171411; Fax: +39 051 6132198;

E-mail: p.malfetti@cineca.it

Weather forecast limited area models, wave models and ocean

models run commonly on vector machines or on MPP sys-

tems. Recently shared memory multiprocessor systems with

ccNUMA architecture (SMP-ccNUMA) have been shown to

deliver very good performances on many applications. It is

important to know that the SMP-ccNUMA systems perform

and scale well even for the above mentioned models and that

a relatively simple effort is needed to parallelize the codes

on these systems due to the availability of OpenMP as stan-

dard shared memory paradigm. This paper will deal with the

implementation on a SGI Origin 2000 of a weather forecast

model (LAMBO – Limited Area Model Bologna, the NCEP

ETA model adapted to the Italian territory), a wave model

(WA.M. – Wave Model, on the Mediterranean Sea and on the

Adriatic Sea) and an ocean model (M.O.M. – Modular Ocean

Model, used with data assimilation). These three models

were written for vector machines, so the paper will describe

the technique used to port a vector code to a SMP-ccNUMA

architecture. Another aspect covered by this paper are the

performances that these models have on these systems.

1. Introduction

In recent years it has been a common perception

that only vector processor machines are appropriate for

running limited area weather forecast models, wave

models and ocean models. Few recent models have

been developed on MPP systems, while others have

been ported using the message passing paradigm.

This paper will deal with the implementation, the

porting and the performances on a SGI Origin 2000 of

a weather forecast model, a wave model and an ocean

model.

After the description of the memory and commu-

nication architecture of the SGI Origin 2000 in Sec-

tion 1, Section 2 describes a weather forecast model

(LAMBO – Limited Area Model Bologna), a wave

model (WA.M. – Wave Model) and an ocean model

(M.O.M. – Modular Ocean Model). Section 3 describes

the parallelization techniques adopted at CINECA to

port these array-native codes from a vector to a shared

memory multiprocessor machine using OpenMP [5].

In order to evaluate the parallel execution time perfor-

mance, results are compared with those theoretically

predicted. Section 4 also shows how different scalabil-

ity curves can be experimentally obtained varying the

size of input data; this will be done on data coming

from a realistic case using three different spatial reso-

lutions. Moreover the paper will point out the effects

on the efficiency curve of the cpu upgrade without up-

grading the interconnection network. Numerical rep-

resentation effects on weather forecast will be briefly

studied. Finally the paper provides some conclusions.

1.1. Programming environment

The SGI Origin 2000 [9] is a scalable shared-memory

multiprocessing architecture. It provides global ad-

dress spaces for memory and for the I/O subsystem.

The communication architecture is much more tightly

integrated than in other recent commercial distributed

shared memory (DSM) systems, with the stated goal

of treating a local access as simply an optimization of

a general DSM memory reference. The two proces-

sors within a node do not work as a snoopy SMP clus-

ter but operate separately over the single multiplexed

physical bus and are governed by the same, on-level

directory protocol. Less snooping keeps low both ab-

solute memory latency and the ratio of remote to local

latency, and provides remote memory bandwidth equal

to local memory bandwidth (380 MB/s each). The two

processors within a node share a hardwired coherence

controller, called a hub, that implements the directory

based cache coherence protocol.

The Origin includes other architectural features for

good performance, including support for dynamic page

migration and prefetching, a high-performance local

and global interconnect design, coherence protocol fea-

Scientific Programming 9 (2001) 99–107

ISSN 1058-9244 / $8.00 2001, IOS Press. All rights reserved

100 P. Malfetti / Application of OpenMP to weather, wave and ocean codes

tures to minimize latency and bandwidth needs per ac-
cess, and synchronization primitives like LL/SC and
at-memory fetch-and-op to reduce the serialization for
highly contended synchronization events.

Within a node each processor has separate 32 KB
first-level instruction and data caches (L1 cache) and
a unified 4 MB second-level cache (L2 cache) with 2-
way associativity on R10000 processor (from now on
indicated by R10K); second level cache is 8 MB on
R12000 processor (R12K).

2. Applications

2.1. LAMBO

LAMBO, Limited Area Model BOlogna, is a grid-
point primitive equations model, based on the 1989 and
1993 versions of the ETA model, operationally used
at the National Centre for Environmental Prediction
of Washington. The model, originally developed in
its former adiabatic version during the early seventies,
has been consistently improved during the years, both
with regards to numerical schemes, related to the adi-
abatic part of the model, and also with respect to the
parametrization of the physical processes [2,8,12].

LAMBO has been running operationally since
1993 [14] at Agenzia Regionale Prevenzione Ambi-
ente – Servizio Meteorologico Regionale where it has
been almost completely reformulated in its pre- and
post-processing sections.

As mentioned earlier, LAMBO is a grid-point, prim-
itive equations limited-area model: in such models the
only basic approximation, which is well justified by the
scale analysis of the vertical component of the momen-
tum equation, is the hydrostatic approximation, which
assumes that the pressure at any point is simply equal to
the weight of the unit cross-section column of air above
that point. In general, a primitive equations model is
a model in which, assuming that the atmosphere is in
hydrostatic equilibrium, the motion is predicted by ap-
plying the principles of conservation of momentum,
energy and mass (separately for dry air and moisture)
and using the law of ideal gases. Such a set of differen-
tial equations constitutes the initial and boundary value
problem, the solution of which provides the future state
of the atmosphere. The equations of motion are solved
in practice using finite difference methods and all model
variables are defined on the so-called Arakawa E-type
grid. Particular numerical schemes were developed to
integrate on the E-grid the part of the equations re-
lated to adiabatic processes and precisely to horizontal
advection [7] and geostrophic adjustment [11].

2.2. WA.M.

The Wave Model, WA.M., has been developed by a

group of international scientists with the aim of pro-

ducing a tool for the forecast of the waves based only

on physical principles.

The WA.M. describes the sea state at a certain time

in a certain position as the overlapping of many sinu-

soidals with different frequencies and directions. The

energy distribution on these components is called the

“sea spectrum”.

The model integrates numerically the “energy bal-

ance equation”, that expresses the equilibrium between

the energy associated to the sea state in a fixed position,

its advection energy and the local velocity to produce

and dissipate the undulatory motion. This includes the

generation from wind, energy exchange between the

wave components, dissipation phenomena (as white-

capping and sea bottom friction), shoaling, refraction

from the bottom and interaction with the streams. The

equations are solved on all the grid points and for each

spectrum component.

2.3. M.O.M.

Any Ocean Data Assimilation system consists of

three components: the dynamical model, the data and

quality control procedures and the insertion technique.

The numerical model is a modified version of the Mod-

ular Ocean Model, M.O.M., implementation in the

global ocean [4,16]. M.O.M. solves the primitive equa-

tions under hydrostatic, Boussinesq and rigid lid ap-

proximations using finite difference methods. All vari-

ables are defined on the so called “B-grid” of Arakawa

and Lamb [1]. The horizontal resolution is 1x1 degree

almost everywhere except in the tropical area where

the north-south resolution is increased to 1/3 of a de-

gree. There are 15 levels unevenly spaced down to 3000

meters and the first 11 levels are confined in the first

250 m. The vertical diffusion and horizontal viscosity

are parameterized with the Mellor-Yamada [10] turbu-

lence closure scheme and Smagorinsky non-linear vis-

cosity [17], respectively. At the surface the ECMWF

atmospheric reanalysis fields are used to compute mo-

mentum and heat fluxes with the method implemented

by Rosati and Miyakoda [13]. The surface salinity

boundary condition is still a relaxation to climatologi-

cal monthly mean values.

The data set assimilated into the ocean model con-

sists of both XBT and CTD temperature profiles con-

tained in the World Ocean Data Bank-94 [3] and

P. Malfetti / Application of OpenMP to weather, wave and ocean codes 101

the Reynolds weekly sea surface temperature analy-

ses [15].

The preassimilation procedure has been imple-

mented and checked in order to ensure the most effec-

tive use of the observations.

The assimilation scheme consists of the univariate

variational optimal interpolation scheme developed by

Derber and Rosati [6].

3. Porting techniques

All the three codes described were running on

CINECA CRAY C90 (from now on indicated with C90)

and had to be ported on a Origin with 16 R10K pro-

cessors at 195 MHz, with 8 GB global shared mem-

ory (from now on indicated with Origin-R10K). Later

CINECA’s Origin was upgraded to a 64 R12K proces-

sors at 300 MHz, with 32 GB of global shared memory

(from now on indicated with Origin-R12K).

The migration of these codes to the parallel Origin

system has been structured in four major steps:

– porting;

– single processor tuning;

– parallelization;

– performance analysis.

In order to obtain good MFLOP performance from

porting a code written for a vector machine to a RISC

processor, it is necessary to use well all memory hier-

archies (especially the L1 and L2 caches) to minimize

data movement from RAM and feed the cpu registers;

for this reason single processor tuning is a crucial step

for the scalability of these codes.

The parallel version of these codes has been writ-

ten in a shared memory programming model, which is

by far the most natural and efficient way to implement

parallel code on Origin systems. Thus the parallelism

has been achieved by the insertion of OpenMP stan-

dard directives and by exploiting the auto-parallelizing

compiler features.

OpenMP permits the use of different parallelization

schemes inside the same code; this flexibility is not

present with other programming models (e.g. message

passing).

Another advantage given by OpenMP is the possi-

bility of using an incremental code parallelization ap-

proach: at the beginning the parallelization effort has

been applied to the most time consuming routines, in-

crementally considering other routines to reach the de-

sired parallelization level. SGI’s ssrun tool has been

fundamental in recognizing the most time consuming

subroutines.
Unless specified the experiments were run using

SGI’s miser (or equivalent tool), so that the CPUs were
dedicated to the application.

3.1. LAMBO

The purpose of this work was to follow two basic
criteria:

– the parallel version of LAMBO had to run on the
Origin-R10K at least in the same time as the serial

C90 version;
– to retain code readability and portability the code

modifications had to be kept to a minimum.

The porting process has been straightforward: the
only important issue was related to the numerical preci-
sion required, due to the different default variable size

on C90 (64 bits) and on Origin-R10K (32 bits).
Single processor tuning: in order to run efficiently

the LAMBO vector code on the cache-based Origin ar-
chitecture, aggressive optimization compiler flags had
to be turned on, in particular for loop nesting and cache
prefetching analysis.

The major problem arose when considering the code
parallelization: the original version of LAMBO made
a large use of equivalenced variables, to save memory,
but the presence of an equivalenced variable in a loop
inhibits its parallelization. In order to achieve a sig-
nificant level of parallelism, it has been necessary to
remove most of the EQUIVALENCE statements, thus

reducing the code readability for the original authors.
Different parallelization schemes have been applied

to different subroutines, always choosing the best ap-
proach according to the algorithm implemented: as an
example, in the horizontal diffusion subroutine, HD-
IFF, the vertical level outer loop has been chosen for

parallelization, while in the vertical advection subrou-
tine, VTADV, the parallelization has been applied to
the horizontal inner loop.

In the end it turned out that 10 subroutines were
manually parallelized by the insertion of OpenMP di-
rectives and 6 were automatically parallelized by the

compiler. In the case of the radiation package, the
parallelization has been achieved at a higher level, by
parallelizing the main loop in the driver routine which
calls the other radiation routines.

The experiment was done on a 125× 111× 31 grid,
with a 60 seconds timestep, for 20 timesteps, and time

redistribution between LAMBO subroutines is shown
in Table 1.

102 P. Malfetti / Application of OpenMP to weather, wave and ocean codes

Table 1

Time redistribution between LAMBO subroutines

Function Time (s) %

Hdiff 60,2 22

Hzadv 56,5 21

Pfdht 41,7 15

Vtadv 16,6 7

Profq2 19,1 6

Profs 14,0 5

Cucnvc 7,1 3

Ddamp 6,9 2

Rain 7,9 3
Pargel 6,6 2

Tridi 5,1 2

Qsmth 5,7 2

Pdte 4,7 2

Cloudcov 2,3 1

Rdtemp 1,5 1

Radiaz 2,0 1

Radgel 3,1 1
Comp sp 1,2 0

Ritem 0,8 0

Table 2
cpu time varying optimization level

Optimization level Time (s)

O2 1289

O3 1038
Ofast 918

Ofast+IEEE+r12k+lno 878

Table 3
Time redistribution between WA.M. subroutines

Function Time (s) %

Snonlin 4056,550 40.2

Implsch 3510,170 34.8

Propags 1562,490 15.5

Wamodel 370,056 3.7

qerf 184,012 1.8

Stresso 178,986 1.8
qj1 174,706 1.7

Other ∼ 40,000 0.5

3.2. WA.M.

Porting: this code needed minor modifications, such

as the modularization of some PARAMETERs and

EQUIVALENCEs and the substitution of some CRAY

proprietary subroutines.

This model was tested with a 1/8 of a degree config-

uration on the Mediterranean Sea, so the grid is made

by 337 longitudinal points by 129 latitudinal points;

moreover for each grid point 25 frequencies and 12

angles have been considered.

Single processor tuning: this model works with

64 bit numerical precision (both real and integer arith-

metic) and doesn’t show any numerical instabilities.

For a 6 hour time integration run Table 2 shows that

cpu time decreases when the optimization level grows;

the code is fastest when the optimization is refined

asking for an arithmetic not compliant to the IEEE-754

standard, a code optimized for the R12K processor,

with aggressive prefetching and loop fusion.

Time redistribution between WA.M. subroutines for

a 72 hours run is summarized in Table 3.

Parallelization: the first four subroutines listed in

Table 3 (and six subroutines called by them) were par-

allelized manually inserting OpenMP directives.

3.3. M.O.M.

Porting: initially the model was run with a 32 bit

arithmetic and numerical representation to obtain

higher execution speed but losing numerical precision.

This test, however, didn’t give the expected benefits,

because the model has some numerically unstable ker-

nels and it diverges when a 32 bit arithmetic is used.

The model instability has been shown also for the 64 bit

numerical representation when the high optimization

level (that implies a non standard IEEE-754 arithmetic)

has been used, in particular some transformations, such

as x/y = x∗1/y, introduced the presence of NaN (Not

a Number) quantities.
Single processor tuning: due to numerical instability

a non highly aggressive optimization level was selected

for the numerical point of view and performance of

the model was improved using the software pipelining

option. The introduction of a flag that switches on the

data caches prefetch (both primary and secondary) has

slightly lowered the execution time, while loop fusion

and loop fission flags didn’t give any substantial bene-

fit; the same happened for the interprocedural analysis

option.

Profiling tools have been useful in analyzing the

model behaviour and in locating a numerical kernel

where most of the execution time is spent. This kernel
is a nested do loop containing an instruction similar to:

aij = (bij ∗ hij + cij−1 ∗ hij−1 + dij+1 ∗ hij+1

+eij ∗ (hi+1j + hi−1j)) ∗ fij

A floating point analysis shows that this instruction

can’t exceed the 45 MFLOP/s on the Origin-R12K. The

performance tools showed that with all the optimization

options turned on the compiler doesn’t reach this upper

bound.

Loop fission, array automatic padding, array group-

ing (automatic and manual) inside a common block

didn’t give any performance gain as well as re-writing

P. Malfetti / Application of OpenMP to weather, wave and ocean codes 103

Fig. 1. Time redistribution between M.O.M. subroutines varying the

number of timesteps.

the code using FORTRAN 90 for grouping the data

structures involved in the loop – so to use better the

primary data cache.

The cpu time redistribution of M.O.M. subroutines

has been studied varying the number of timesteps, to

find out a number of timesteps sufficiently small to be

a good and representative sample of the model for long

integrations and to minimize the execution time. The

behaviour of the seven most time consuming subrou-

tines has been observed for 4, 8, 16, 32, 64, 128 and

256 timesteps configurations.

The redistribution time in the two last configurations

is almost the same. For previous configurations only

a high evolution (when the configuration passes from

4 to 8, from 8 to 16 and from 16 to 32 timesteps)

can be observed, then a smooth evolution (when the

configuration passes from 32 to 64 and from 64 to128

timesteps) up to reach an arrangement when the con-

figuration passes from 128 to 256 timesteps, as shown

in Fig. 1.

Parallelization: the code has been passed in the

Power Fortran Accelerator (pfa) to obtain a parallel

version of the code.

4. Experimental results

In order to evaluate the parallel performance, the re-

sults are compared with those predicted by the so-called

Amdhal’s law which represents the parallel execution

time T (p) as a function of the number of processor p
and of the parallel fraction fp of the serial time Ts.

According to Amdhal’s law:

Table 4

LAMBO parallel execution: cpu time, theoretical speedup for fp =

0.90, real speedup, theoretical speedup for fp = 0.92

CPUs Time (s) S fp = 0.90 S S fp = 0.92

1 275 1,00 1,00 1,00

2 150 1,82 1,83 1,85
4 87 3,08 3,16 3,23

6 66 4,00 4,17 4,29

8 56 4,71 4,91 5,13

10 50 5,26 5,50 5,81

12 46 5,71 5,98 6,38

14 43 6,09 6,40 6,86

16 40 6,40 6,88 7,27

T (p) ≡ Ts

[

(1 − fp) +
fp

p

]

;

S(p) ≡
T (1)

T (p)
=

Ts

T (p)

where S(p) is the speed-up function definition. Speed-

up is used to evaluate the parallel performance; in the

ideal case, when all the code is perfectly parallel (fp =
1), the speed-up function is the linear function S(p) =
p.

4.1. LAMBO performance analysis

Since only routines that together account for the

96% of the total execution time were considered for

parallelization, the Amdhal’s curve corresponding to

fp = 0.92 should be considered.

Due to imperfect load balancing, cache misses and

data contention between processors that fraction is po-

sitioned between 90% and 92%.

Table 4 reports the parallel execution time obtained

running the experiment described previously in Sec-

tion 3.1 for 20 timesteps on Origin-R10K.

Table 4 reports also the real speedup between the

theoretical speedup calculated for fp = 0.90 and for

fp = 0.92.

LAMBO has been operative on CINECA’s Origin-

R10K since the 1st July 1998. Using 10 R10K proces-

sors the first run takes about 5 minutes while the second

takes about 32 minutes. This should be compared with

the 10 minutes and 50 minutes, respectively required

by the previous C90 runs.

4.2. WA.M. performance analysis

Parallel execution time obtained running the experi-

ment described before in Section 3.2 for an integration

of 72 hours on Origin-R12K are shown in Table 5.

104 P. Malfetti / Application of OpenMP to weather, wave and ocean codes

Table 5

WA.M. parallel execution: cpu time, theoretical speedup for fp =

0.90, real speedup, theoretical speedup for fp = 0.92

CPUs Time (s) S fp=.90 S S fp=.92

1 878,708 1,00 1,00 1,00

2 546,574 1,82 1,61 1,85

4 290,694 3,08 3,02 3,23

8 175,943 4,71 4,99 5,13

16 129,220 6,40 6,80 7,27

Table 6

M.O.M. parallel execution: elapsed time, theoretical speedup for

fp = 0.90, real speedup, theoretical speedup for fp = 0.92

CPUs Time (h) S fp=.90 S S fp=.92

1 34:34 1,00 1,00 1,00

8 7:02 4,71 4,91 5,13

10 6.11 5,26 5,59 5,81

12 5.46 5,71 5,99 6,38
14 6.14 6,09 5,55 6,86

Performance tools demonstrate that the subroutines
that have been parallelized sum up to the 92% of the
serial execution time. The asymptotic behaviour of
the two curves is similar so the parallelization can be
considered satisfactory.

4.3. M.O.M. performance analysis

The elapsed time on Origin-R12K for one month
integration shown in the Table 6 were obtained with a
partially loaded machine and without using miser.

The higher execution time when the number of pro-
cessor passes from 12 to 14 is probably due to a high
machine load. Another cause that can generate such
behaviour is a bad process workload distribution or
when an higher number of processors is not exploited
fully in terms of memory use. In addition, the usage
of another router on the communication network can
increase the communication overhead because of the
growth of the bisection bandwidth, in other words the
maximum number of hops required for a message to
reach another node grows.

M.O.M. on 12 R12K processors outperforms the 10
hours needed by the C90 run.

4.4. Input size effects

Some experiments taking as input the dataset relating
to the south Ticino flood (Sept. 1995) have been done
to understand the impact on the model scalability when
the resolution is changed.

Under the IRIX 6.5.2 environment LAMBO has been
compiled with MIPSpro 7.3 and has been run using
miser on Origin-R12K.

The experiments had these configurations:

– Father: 65 × 65 × 32 grid, timestep 120 seconds

– Son: 129 × 129 × 32 grid, timestep 60 seconds

– Grandson: 197 × 197 × 32 grid, timestep 30 sec-

onds

Figure 2 summarizes the efficiencies coming from

experimental results together with the efficiencies pre-

dicted by Amdhal’s law when the parallel fraction fp is
70%, 80% and 90%. It’s easy to see that LAMBO scal-

ability (and in general all model scalability) is strongly

related to the configuration of the experiment or bet-

ter to the input size. This observation leads to two
other considerations: to obtain models that scale well

on shared memory machines, data structures have to

be large enough to be distributed among the proces-
sors that have to be used, otherwise the overhead that

comes from remote memory access will bring down the

performances; OpenMP implementation overhead (al-
ways present) can be percentually reduced increasing

the input size so as to enlarge the computational part of

the model.

All these three configurations scale up to 16 pro-
cessors with quite different efficiencies but when more

CPUs are added there is no gain in time performance

due to overheads (synchronization and remote ac-
cesses). LAMBO scales up to 32 processors if the con-

figuration is greater than Grandson but, as mentioned

earlier, LAMBO is a hydrostatic model and this kind

of model can not be used for very fine grids. It has
been noticed that the thread control overhead explodes

over 16 processors: the experiment configuration has

to be very big so that the computational part hides the
overhead.

Moreover it is possible to observe that the Son con-

figuration on Origin-R12K is larger than the one that
has been used to port the code on the Origin-R10K but

the former configuration has a poorer scalability: this

behaviour is due to the change of cpu. Passing from

R10K, 195 MHz, 4 MB L2 cache to R12K, 300 MHz,
8 MB L2 cache leads the model to run faster on a single

cpu and to fit in a secondary data cache using a smaller

number of processors.
The same behaviour can be observed in Fig. 3:

this picture shows the WA.M. cpu time obtained on

the CINECA’s Origin-R12K and on CINECA’s Onyx
equipped with 8 R10K processors, running at 275 MHz,

with 64 KB L1 cache, 4 MB L2 cache and 4 GB of

memory. The experiment configuration in this case

was 1/12 of a degree on the Adriatic Sea represented
as a 97 × 73 grid, for each grid point 25 frequencies

and 12 angles have been considered. The model in-

tegrates 6 hours forecast. Since the WA.M. for this

P. Malfetti / Application of OpenMP to weather, wave and ocean codes 105

Fig. 2. Father, Son, Grandson and theoretical Amdhal’s efficiencies for fp = 0.7, fp = 0.8, fp = 0.9.

Fig. 3. W.A.M. cpu Time on R12K and R10K.

configuration scales up to 4 processors there is no more

benefit in adding CPUs infact the model is quite small.

WA.M. on the Mediterranean Sea, instead, scales up to

12 processors.

4.5. Effect on numerical representation

Some experiments has been done in order to evaluate

the relation between LAMBO output and numerical

106 P. Malfetti / Application of OpenMP to weather, wave and ocean codes

Fig. 4. Total precipitation 72 hours forecast 32 bit numerical representation.

Fig. 5. Total precipitation 72 hours forecast 64 bit numerical representation.

representation. The input dataset chosen is still the one

related to the south Ticino flood. This meteorological

situation has been chosen because it is characterized

by intense phenomena in order to have extreme values

for some model variables and to highlight numerical

differences and any fatal errors; moreover, with such

a situation, the convective scheme has been frequently

used during the computation.

P. Malfetti / Application of OpenMP to weather, wave and ocean codes 107

The variable chosen for the comparison is the total

precipitation (which is the most interesting variable for

the end users). The comparison has been done on the

last snapshot released by the model (after 72 hours in-

tegration) because numerical differences between two

different computations grow with integration time.

Figures 4 and 5 shows respectively the total precipi-

tation for a run with 32 bit numerical representation and

a 64 bit one: the areas where total precipitation is inten-

sive have the same structure in both the figures, while

some differences are present where total precipitation

is light. This qualitative analysis has been completed

with a statistical analysis and also other model variables

have been examined (relative humidity at 850 hPa and

mean sea level pressure).

A similar comparison has been done between a scalar

and a parallel run in order to test the numerical impact

of parallelization on the output. Also in this case there

were not quantitative and qualitative differences in test

variables.

5. Conclusions

During this paper it has been shown that:

– these kinds of models do not seem to be suited

only for vector machines: it has been observed

that cpu time performances for all these three con-

figurations can be better than the respective ones

obtained on a CRAY C90;

– the possibility of using an incremental code par-

allelization approach and of using different paral-

lelization schemes inside the same code are two big

advantages given by OpenMP. A relatively sim-

ple parallelization effort has been done for port-

ing these codes: a much greater effort would have

been necessary in the case of a message passing

implementation;

– single processor tuning is a crucial step: the port-

ing of a vector code requires particular attention,

especially loop nesting, prefetching and cache op-

timization;

– scalability is strictly dependent on the input size,

the processor, the L1 and L2 cache sizes;

– these models can perform well on scalable shared

memory parallel computers providing satisfactory

operational forecasts also with 32 bit numerical

representation.

Future work: to experiment with new commercial

systems. The LAMBO serial version has been run on

IBM Power3 processor at 200 MHz with 128 KB of

L1 cache and 4 MB of L2 cache: a 6 hour integration

takes 1823 and 4500 seconds respectively for the south

Ticino flood Son and Grandson configurations, instead

of 2207 and 7247 seconds were necessary for the same

configurations on a R12K.

References

[1] A. Arakawa and V.R. Lamb, Computational design of the basic

dynamical processes of the UCLA general circulation model,

Methods in Computational Physics 17, Academic Press, 1977,

pp. 174–265.

[2] T.L. Black, The step mountain, eta coordinate regional model:

a documentation, NOAA/NWS/NMC, 1988.
[3] T.P. Boyer and S. Levitus, NOAA Technical Report NESDIS

81 (1994), 65.

[4] M.D. Cox, GFDL Ocean Group Tech. Rep. 1 (1984), 143.

[5] L. Dagum and R. Menon, OpenMP: An Industry-Standard

API for Shared-Memory Programming, Computational Sci-

ence and Engineering 5(1) (1998).

[6] J. Derber and A. Rosati, J. Phys. Oceanogr. 19 (1989), 1333.
[7] Z. Janjic, Non linear advection schemes and energy cascade on

semistaggered grids, Mon. Wea. Rev. 112 (1984), 1234–1245.

[8] Z. Janjic, The step-mountain coordinate: physical package,

Mon. Wea. Rev. 118 (1990), 1429–1443.

[9] J. Laudon and D. Lenoski, The SGI Origin: a ccNUMA highly

scalable server, in Proceeedings of the 24th Annual Interna-

tional Symposium on Computer Architecture, 1997.

[10] G.L. Mellor and T. Yamada, Rev. Geophys. Space Phys. 20

(1982), 851.

[11] F. Mesinger, A method for construction of second-order accu-

racy difference schemes permitting no false two-grid interval

wave in the height field, Tellus 25 (1973), 444–458.

[12] F. Mesinger, Z.I. Janjic, S. Nickovic, D. Gavrilov and D.G.

Deaven, The step-mountain coordinate: Model description

and performance for cases of Alpine lee cyclogenesis and for

a case of Appalachian redevelopment, Mon. Wea. Rev. 116

(1988), 1493–1518.

[13] K. Miyakoda, A. Rosati and R.G. Gudgel, Prediction of In-

ternal Climate Variations, NATO-ASI series, 16, Springer-

Verlag, Berlin, 1997, pp. 125.

[14] T. Paccagnella, Operativo un Modello ad Area Limitata Presso

il Servizio Meteorologico Regionale dell’Emilia-Romagna.

AER available at Regional Meteorological Service of Emilia-

Romagna, 1994.
[15] R.W. Reynolds and T.M. Smith, J. Climate 7 (1994), 929.

[16] A. Rosati and K. Miyakoda, J. Phys. Oceanogr. 18 (1988),

1601.

[17] J. Smagorinsky, Large Eddy Simulation of Complex Engi-

neering and Geophysical Flows, Cambridge University Press,

1997.

Submit your manuscripts at

http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable

Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in

Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

