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Abstract The goal of this paper is to give useful method for solving a problem in biologic system that
is formulated by stochastic Volterra integral equations. Here, we consider triangular functions, block pulse
functions and their operational matrices of integration. Illustrative example is included to demonstrate the
validity and applicability of the operational matrices.
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1 Introduction

Studies in economics, sociology, various biological and medical models lead to the stochastic Volterra integral
equations (SVIEs). These systems are dependent on a noise source, a Gaussian white noise, so that modeling
such phenomena naturally requires the use of various stochastic Volterra integral equations. Here, we consider
stochastic SIR model.

In many fields of science, engineering and various physical phenomena there is a large number of problems
which are intrinsically nonlinear and complex in nature, involving stochastic excitations of a Gaussian white
noise type. In these various physical phenomena, some quantity is constantly undergoing small, random
fluctuations. Having in mind that a Gaussian white noise mathematically described as a formal derivative of a
Brownian motion process, all such problems are mathematically modeled by stochastic differential equations,
or in more complicated cases, by stochastic Volterra integro-differential (SVID) equations of the Ito type.

In modeling the spread process of infectious diseases, many classical epidemic models have been proposed
and studied, such as SIR, SEIR and SIRS models. The SIR infections disease model is an important biologic
model and has been studied by many authors [6–8,11,16–19]. Epidemiology is the study of the spread of
diseases with the objective to trace factors that are responsible for or contribute to their occurrence. Significant
progress has been made in the theory and application of epidemiology modeling by mathematical research.

Triangular functions (TFs) were introduced by Deb et al. [5]. TF approximation has been successfully
used to analysis of dynamic systems [5], variational problems [1], integral equations [2], integro-differential
equations [3], and Volterra–Fredholm integral equations [4].
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The numerical study and simulation of stochastic Volterra integral equations have been an active field of
research for the last years [9,12]. Most SVIEs do not have analytic solutions and hence it is of great importance
to provide numerical schemes. The paper [12] solved stochastic Volterra integral equations by stochastic
operational matrix based on block pulse functions (BPFs). Also, [9] considered stochastic operational matrix
of triangular functions.

In the next section, stochastic concepts of Brownian motion and Ito integral are presented. In Sect. 3, we
review block pulse functions, triangular functions and their operational matrices of integration both in the
deterministic and stochastic case. In Sect. 4, mathematical model of SIR is presented, then these operational
matrices are applied to solve stochastic SIR model and numerical results are shown. Finally, Sect. 5 provides
a brief conclusion of this work.

2 Stochastic concepts of Ito integral

Definition 2.1 (Brownian motion process) A real-valued stochastic process {B(t), t ≥ 0} is called Brownian
motion, if it satisfies the following properties:

(i) (Independence of increments) B(t)− B(s), t > s, is independent of the past, that is, of B(u), 0 ≤ u ≤ s,
or of Fs , the σ -field generated by B(u), u ≤ s.

(ii) (Normal increments) B(t) − B(s) has Normal distribution with mean 0 and variance t − s.

(iii) (Continuity of paths) B(t), t ≥ 0 are continuous functions of t .

Definition 2.2 Let {N (t)}t≥0 be an increasing family of σ -algebras of sub-sets of �. A process g(t, ω) from
[0, ∞) × � to Rn is called N (t)-adapted if for each t ≥ 0 the function ω −→ g(t, ω) is N (t)-measurable
[15].

Definition 2.3 Let ν = ν(S, T ) be the class of functions f (t, ω) : [0,∞) × � −→ R such that,

(i) (t, ω) −→ f (t, ω) is B × F-measurable, where B denotes the Borel σ -algebra on [0,∞) and F is the
σ -algebra on �.

(ii) f (t, ω) is Ft -adapted, where Ft is the σ -algebra generated by the random variables B(s); s ≤ t .

(iii) E[
∫ T

S
f 2(t, ω)dt] < ∞.

Proof See [15]. ⊓⊔

Definition 2.4 (The Itô integral) [15] Let f ∈ ν(S, T ). Then the Itô integral of f (from S to T) is defined by

∫ T

S

f (t, ω)dB(t)(ω) = lim
n→∞

∫ T

S

φn(t, ω)dB(t)(ω), (limit in L2(P))

where φn is a sequence of elementary functions such that

E

[∫ T

S

( f (t, ω) − φn(t, ω))2dt

]

→ 0, as n → ∞.

Theorem 2.5 (The Itô isometry) Let f ∈ ν(S, T ). Then

E

[(∫ T

S

( f (t, ω)d B(t)(w))2

)]

= E

[∫ T

S

f 2(t, ω)d(t)

]

.

Proof See [15]. ⊓⊔

Definition 2.6 (one-dimensional Itô processes) [15] Let B(t) be one-dimensional Brownian motion on
(�, F, P). A one-dimensional Itô process (stochastic integral) is a stochastic process X (t) on (�, F, P)

of the form

X (t) = X (0) +

∫ t

0

u(s, ω)ds +

∫ t

0

v(s, ω)dB(s),

or

dX (t) = udt + vdB(t), (1)
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where

P

[∫ t

0

v2(s, ω)ds < ∞, for all t ≥ 0

]

= 1,

P

[∫ t

0

| u(s, ω) | ds < ∞, for all t ≥ 0

]

= 1.

Theorem 2.7 (The one-dimensional Itô formula) Let X (t) be an Itô process given by (1) and g(t, x) ∈

C2([0,∞) × R). Then

Y (t) = g(t, X (t)),

is again an Itô process, and

dY (t) =
∂g

∂t

(

t, X (t)
)

dt +
∂g

∂x

(

t, X (t)
)

d X (t) +
1

2

∂2g

∂x2

(

t, X (t)
)(

d X (t)
)2

, (2)

where (d X (t))2 = (d X (t))(d X (t)) is computed according to the rules

dt.dt = dt.dB(t) = dB(t).dt = 0, dB(t).dB(t) = dt. (3)

Proof See [15]. ⊓⊔

Some properties of the Itô integral are listed as follows. Let f, g ∈ ν(0, T ) and let 0 ≤ S < U < T . Then

1.
∫ T

S
f (t)dB(t) =

∫ U

S
f (t)dB(t) +

∫ T

U
f (t)dB(t)

2.
∫ T

S
(c f (t) + g(t))dB(t) = c

∫ T

S
f (t)dB(t) +

∫ T

S
g(t)dB(t)

3. E(
∫ T

S
f (t)dB(t)) = 0

4.
∫ T

S
f (t)dB(t) is Ft measurable.

For more details see [10,15].

3 Operational matrix of integration for some typical functions

The goal of this section is to recall notations and definitions of some typical functions that are used in the next
sections. Their properties and operational matrices are reviewed.

3.1 Block pulse functions (BPFs)

BPFs have been variously studied [13,14] and applied for solving different problems.
The BPFs are defined on the time interval [0, T ) by

ψi (t) =

{

1 (i − 1) T
m

≤ t < i T
m

,

0 elsewhere
(4)

where i = 1, . . . , m and for convenience we put h = T
m

.
The BPFs on [0, T ) have disjointness, orthogonality and completeness property.
The set of BPFs can be written as a vector

	(t) = [ψ1(t), . . . , ψm(t)]T t ∈ [0, T ). (5)

From the above representation and disjointness property, it follows that

	(t)	T (t) =

⎛

⎜

⎜

⎝

ψ1(t) 0 0 · · · 0
0 ψ2(t) 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · ψm(t)

⎞

⎟

⎟

⎠

m×m

. (6)
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	T (t)	(t) = 1, (7)

	(t)	T (t)F = F̃	(t), (8)

where F is a m-dimensional vector and F̃ = diag(F). The expansion of a function f (t) over [0, T ) with
respect to ψi (t) , i = 1, . . . , m is given by

f (t) ≃

m
∑

i=1

fiψi (t) = FT 	(t) = 	T (t)F, (9)

where F = [ f1, . . . , fm]T and fi is

fi =
1

h

∫ T

0

f (t)ψi (t)dt. (10)

Now, operational matrix of integration is considered

∫ t

0

	(s)ds ≃ Q	(t), (11)

where Q is operational matrix of integration that is given by

Q =
h

2

⎛

⎜

⎜

⎜

⎜

⎝

1 2 2 · · · 2
0 1 2 · · · 2
0 0 1 · · · 2
...

...
...

. . .
...

0 0 0 · · · 1

⎞

⎟

⎟

⎟

⎟

⎠

. (12)

So,

∫ t

0

f (s)ds ≃

∫ t

0

FT 	(s)ds ≃ FT Q	(t). (13)

The Itô integral of BPFs is defined by

∫ t

0


(s)dB(s) ≃ QS
(t), (14)

where stochastic operational matrix of integration is given by

QS =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

B( h
2
) B(h) B(h) · · · B(h)

0 B( 3h
2

) − B(h) B(2h) − B(h) · · · B(2h) − B(h)

0 0 B( 5h
2

) − B(2h) · · · B(3h) − B(2h)
...

...
...

. . .
...

0 0 0 · · · B(
(2m−1)h

2
) − B((m − 1)h)

⎞

⎟

⎟

⎟

⎟

⎟

⎠

m×m

(15)

So, the Itô integral of every function f (t) can be approximated by

∫ t

0

f (s)dB(s) ≃

∫ t

0

FT 
(s)dB(s) ≃ FT QS
(t). (16)
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3.2 Triangular functions (TFs)

Two m-sets of triangular functions are defined [5] over the interval [0, T ) as

T 1
i (t) =

{

1 − t−ih
h

ih ≤ t < (i + 1))h,

0 elsewhere
(17)

T 2
i (t) =

{

t−ih
h

ih ≤ t < (i + 1))h,

0 elsewhere
(18)

where i = 0, . . . , m − 1 and m is the number of elementary functions and h = T
m

. Moreover,

T 1
i (t) + T 2

i (t) = ψi (t). (19)

From the definition of TFs, it is clear that TFs are disjoint, orthogonal, and complete [5].
We can write TFs in vector form

T 1(t) = [T 1
0 (t), . . . , T 1

m−1(t)]
T ,

T 2(t) = [T 2
0 (t), . . . , T 2

m−1(t)]
T , (20)

and

T (t) = [T 1(t), T 2(t)]T , (21)

where T (t) is called the TF vector.
Put

T (t).T T (t) ≃ diag(T (t)), (22)

where diag(T (t)) is a 2m × 2m diagonal matrix.
Furthermore,

T (t)T T (t)F ≃ F̃T (t),

where F is a 2m-dimensional vector and F̃ = diag(F) is 2m × 2m diagonal matrix.
The expansion of f (t) over [0, T ) with respect to 1D-TFs, is given by

f (t) ≃

m−1
∑

i=0

C1i T
1

i (t) +

m−1
∑

i=0

C2i T
2

i (t) = C1T .T 1(t) + C2T .T 2(t)

= [C1, C2]T .[T 1(t), T 2(t)] = CT .T (t), (23)

where C1i and C2i are samples of f , for example, C1i = f (ih) and C2i = f ((i+1)h) for i = 0, 1, . . . , m−1.
The vector C is called the TF coefficient vector.

Consider
∫ t

0

T 1(s)ds = M1.T 1(t) + M2.T 2(t), (24)

∫ t

0

T 2(s)ds = M1.T 1(t) + M2.T 2(t), (25)

where

M1 =
h

2

⎛

⎜

⎜

⎜

⎜

⎝

0 1 1 · · · 1
0 0 1 · · · 1
0 0 0 · · · 1
...

...
...

. . .
...

0 0 0 · · · 0

⎞

⎟

⎟

⎟

⎟

⎠

m×m

, (26)
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M2 =
h

2

⎛

⎜

⎜

⎜

⎜

⎝

1 1 1 · · · 1
0 1 1 · · · 1
0 0 1 · · · 1
...

...
...

. . .
...

0 0 0 · · · 1

⎞

⎟

⎟

⎟

⎟

⎠

m×m

. (27)

So,

∫ t

0

T (s)ds ≃ MT (t), (28)

M =

(

M1 M2
M1 M2

)

, (29)

where M is operational matrix of integration base on TFs.
Therefore, we can use the below approximation

∫ t

0

f (s)ds ≃

∫ t

0

CT T (s)ds ≃ CT MT (t). (30)

Now, consider the following definitions:

α(i) := (i + 1)[B((i + 0.5)h) − B(ih)] −

∫ (i+0.5)h

ih

s

h
dB(s),

β(i) := (i + 1)[B((i + 1)h) − B(ih)] −

∫ (i+1)h

ih

s

h
dB(s),

γ (i) := −i[B((i + 0.5)h) − B(ih)] +

∫ (i+0.5)h

ih

s

h
dB(s),

ρ(i) := −i[B((i + 1)h) − B(ih)] +

∫ (i+1)h

ih

s

h
dB(s),

let

M1S =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

α(0) β(0) β(0) · · · β(0)

0 α(1) β(1) · · · β(1)

0 0 α(2) · · · β(2)
...

...
...

. . .
...

0 0 0 · · · β(m − 2)

0 0 0 · · · α(m − 1)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

m×m

, (31)

M2S =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

γ (0) ρ(0) ρ(0) · · · ρ(0)

0 γ (1) ρ(1) · · · ρ(1)

0 0 γ (2) · · · ρ(2)
...

...
...

. . .
...

0 0 0 · · · ρ(m − 2)

0 0 0 · · · γ (m − 1)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

m×m

, (32)

and
∫ t

0

T 1(s)dB(s) = M1s .T 1(t) + M1s .T 2(t), (33)

∫ t

0

T 2(s)dB(s) = M2S.T 1(t) + M2S .T 2(t). (34)
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Therefore,

∫ t

0

T (s)dB(s) ≃ MS .T (t), (35)

where

MS =

(

M1S M1S

M2S M2S

)

(36)

is stochastic operational matrix of integration in the TF domain.

So, the Itô integral of f (t) is approximated with

∫ t

0

f (s)dB(s) ≃

∫ t

0

CT T (s)dB(s) ≃ CT MST (t). (37)

4 Stochastic SIR model

Most models for the transmission of infectious diseases descend from the classical SIR model of Kermack and
McKendrick established in 1927, [8]. One of the most basic SIR models is

⎧

⎨

⎩

˙S(t) = � − βS(t)I (t) − μS(t),
˙I (t) = βS(t)I (t) − (μ + ǫ + γ )I (t),
˙R(t) = γ I (t) − μR(t),

(38)

where the parameters �, β, ǫ, μ, γ are positive constants, and S(t), I (t), R(t) denote the number of the
individuals susceptible to the disease, number of infected members and number of members who have been
removed from the possibility of infection through full immunity, respectively. Some notable features of the
model: The influx of individuals into the susceptibles is given by a constant �, it is assumed that the natural
death rates are assumed to be equal (denoted by constant μ) and individuals in I (t) suffer an additional death
due to disease with rate constant ǫ, β and γ represent the disease transmission coefficient and the rate of

recovery from infection respectively. The basic reproduction number R0 =
β�

μ(μ+ǫ+γ )
is the threshold of the

system for an epidemic to occur. If R0 ≤ 1, model (38) has only the disease-free equilibrium E0 = (�
μ

, 0, 0)

which is globally asymptotical stable. This means the disease will disappear and the entire population will
become susceptible. If R0 > 1, E0 becomes unstable and there exists a global asymptotically stable endemic

equilibrium E∗ = (
μ+ǫ+γ

β
, �

μ+ǫ+γ
−

μ
β
,

�γ
μ(μ+ǫ+γ )

−
γ
β
) which implies the disease always remains [7].

However, in the real world, epidemic models are inevitably affected by environmental noise, which is an
important component in realism. Environmental noise can provide an additional degree of realism compared
to their deterministic counterparts. Stochastic models depend on the chance variations in risk of exposure,
disease and other illness dynamics. In this paper, our approach to include stochastic perturbation is analogous
to that of Imhof and Walcher [6]. Here we assume that stochastic perturbations are of a white noise type which
are directly proportional to S(t), I (t), R(t), influenced on the Ṡ(t), İ (t), Ṙ(t) in the model (38). By this way,
the model (38) will be deduced to the form:

⎧

⎨

⎩

dS(t) = (� − βS(t)I (t) − μS(t))dt + σ1S(t)dB1(t),

dI (t) = (βS(t)I (t) − (μ + ǫ + γ )I (t))dt + σ2 I (t)dB2(t),

dR(t) = (γ I (t) − μR(t))dt + σ3 R(t)dB3(t),
(39)

where Bi (t) are independent standard Brownian motions and σ 2
i ≥ 0 represent the intensities of Bi (t), i =

1, 2, 3.

It is proved that the stochastic model led to extinction even though the deterministic counterpart predicts
persistence. In paper [7], unique global positive solution of this model was considered. Also, the asymptotic
behavior of this solution was investigated.
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Theorem 4.1 If R0 =
β�

μ(μ+ǫ+γ )
< 1 and the following condition is satisfied

σ 2
1 < μ, σ 2

2 < 2(μ + ǫ + γ ),

then for any given initial value (S(0), I (0), R(0)) ∈ R3
+, the solution of model (39) has the property

limsupt→∞

1

t
E

∫ t

0

[

(s(r) −
�

μ
)2 + I 2(r) + R(r)

]

dr ≤
2σ 2

1 �2

μ2 K1
, (40)

where

K1 = min

{

2(μ − σ 2
1 ), 2(μ + ǫ + γ ) − σ 2

2 ,
2(2μ + ǫ + γ )[μ(μ + ǫ + γ ) − β�]

βγ

}

.

Proof See [7]. ⊓⊔

4.1 Application of operational matrices to solve SIR model

By integration of Eq. (39), this method is applied for the following system

⎧

⎪

⎪

⎨

⎪

⎪

⎩

S(t) = S0(t) +
∫ t

0 �ds −
∫ t

0 βS(s)I (s)ds −
∫ t

0 μS(s)ds +
∫ t

0 σ1S(s)dB1(s),

I (t) = I0(t) +
∫ t

0 βS(s)I (s)ds −
∫ t

0 (μ + ǫ + γ )I (s)ds +
∫ t

0 σ2 I (s)dB2(s),

R(t) = R0(t) +
∫ t

0 γ I (s)ds −
∫ t

0 μR(s)ds +
∫ t

0 σ3 R(s)dB3(s).

(41)

We approximate function S(t), S0(t), I (t), I0(t), R(t), R0(t) and �t by BPFs and TFs.
For convenient, we choose 
(t), as a vector form of these functions: (	(t), m-dimensional vector form

of BPFs, T (t), 2m-dimensional vector form of TFs and P as a operational matrix of them, also, we put PS as
a stochastic operational matrix of the discussed functions.)

S(t) ≃ S̄(t) = ST 
(t) = 
T (t)S, (42)

S0(t) ≃ ST
0 
(t) = 
T (t)S0, (43)

I (t) ≃ Ī (t) = I T 
(t) = 
T (t)I, (44)

I0(t) ≃ I T
0 
(t) = 
T (t)I0, (45)

R(t) ≃ R̄(t) = RT 
(t) = 
T (t)R, (46)

R0(t) ≃ RT
0 
(t) = 
T (t)R0, (47)

�t ≃ λT 
(t) = 
T (t)λ, (48)

where the vectors S, S0, I, I0, R, R0 are function coefficient of S(t), S0(t), I (t), I0(t), R(t), R0(t).

Substituting (42, 43, 44, 45, 46, 47, 48) into (41), we get

⎧

⎪

⎪

⎨

⎪

⎪

⎩

ST 
(t) = ST
0 
(t) + λT 
(t) − β

∫ T

0 ST 
(s)
T (s)I ds − μ
∫ t

0 ST 
(s)ds + σ1

∫ t

0 ST 
(s)dB1(s),

I T 
(t) = I T
0 
(t) +

∫ t

0 βST 
(s)
T (s)I ds − (μ + ǫ + γ )
∫ t

0 I T 
(s)ds + σ2

∫ t

0 I T 
(s)dB2(s),

RT 
(t) = RT
0 
(t) + γ

∫ t

0 I T 
(t)dt − μ
∫ t

0 RT 
(t)dt + σ3

∫ t

0 RT 
(s)dB3(s).

(49)
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We replace ST 
(t)
T (t)I by ST Ĩ
(t). So,

⎧

⎪

⎪

⎨

⎪

⎪

⎩

ST 
(t) ≃ ST
0 
(t) + λT 
(t) − βST Ĩ P
(t) − μST P
(t) + σ1ST PS
(t),

I T 
(t) ≃ I T
0 
(t) + βST Ĩ P
(t) − (μ + ǫ + γ )I T P
(t) + σ2 I T PS
(t),

RT 
(t) ≃ RT
0 
(t) + γ I T P
(t) − μRT P
(t) + σ3 RT PS
(t),

(50)

After replacing ≃ with =,

⎧

⎪

⎪

⎨

⎪

⎪

⎩

ST = ST
0 + λT − βST Ĩ P − μST P + σ1ST PS,

I T = I T
0 + βST Ĩ P − (μ + ǫ + γ )I T P + σ2 I T PS,

RT = RT
0 + γ I T P − μRT P + σ3 RT PS .

(51)

By solving nonlinear system (51) we find S, I, R and finally S(t), I (t), R(t) of (41) are approximated.

4.2 Numerical example

In practice, we typically observed only a single realization of this process, a single path, out of a multitude of
possible paths. The simulated sample path can then be analyzed by usual statistical method to determine how
good the approximation is and in what sense it is closed to the exact solution.

In this section, we solve Eq. (41) by presented methods. Initial values S(0) = 0.7, I (0) = 0.2, R(0) = 0.1
are chosen and parameters � = 0.2, β = 0.4, μ = 0.2, ǫ = 0.1, γ = 0.2, σ1 = 0.04, σ2 = 0.03, σ3 = 0.02.

Then the trajectory of S(t), I (t) and R(t) is shown in the below Figs. (1, 2).

Fig. 1 Results of S(t), I (t), R(t) function by BPFs, respectively

Fig. 2 Results of S(t), I (t), R(t) function by TFs, respectively
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It is easy to compute that R0 = 0.8 ≤ 1. The computing result is in good agreement with Theorem (4.1).
It is obvious that the fluctuations of the curves increase as the noise level increases. Also, we can believe the
solution is stochastically asymptotically stable in the large.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate
if changes were made.

5 Conclusion

Because we cannot solve some stochastic problems analytically, in this article we presented a new technique for
solving systems of SVIEs numerically. We considered some operational matrices of integration. The benefits
of this method are lower cost of setting up the system of equations without any integration, coupled with the
low computational operation cost. Finally, convergence of TFs is faster than BPFs [9] and order of convergence
is O(h2). These advantages make the method very simple.
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