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Abstract. The usual time domain Boundary Element Method (BEM) contains fundamental solutions which are
convoluted with time-dependent boundary data and integrated over the boundary surface. Here, a new approach for
the evaluation of the convolution integrals, the so-called ‘Operational Quadrature Methods’ developed by Lubich,
is presented. In this formulation, the convolution integral is numerically approximated by a quadrature formula
whose weights are determined using the Laplace transform of the fundamental solution and a linear multistep
method. To study the behaviour of the method, the numerical convolution of a fundamental solution with a unit
step function is compared with the analytical result. Then, a time domain Boundary Element formulation applying
the ‘Operational Quadrature Methods’ is derived. For this formulation only the fundamental solutions in Laplace
domain are necessary. The properties of the new formulation are studied with a numerical example.

Sommario. L’usuale metodo agli elementi di contorno (BEM) nel dominio del tempo contiene soluzioni fon-
damentali che sono convolute con dati al contorno dipendenti dal tempo e integrati superficie di contorno. Nel
presente articolo viene presentato un nuovo approccio per la valutazione degli integrali di convoluzione svilluppato
da Lubich, i cosiddetti ‘metodi operazionali di quadratura’. In questa formulazione, l’integrale di convoluzione
viene approssimato numericamente con una formula di quadratura i cui pesi sono determinati usando la trasformata
di Laplace della soluzione fondamentale e un metodo lineare a più passi. Per studiare il comportamento del metodo,
la convoluzione numerica di una soluzione fondamentale con una funzione di passo unitario viene comparata con i
risultati analitici. Infine, una formulazione agli elementi di contorno nel dominio del tempo viene derivata applican-
do i ‘metodi operazionali di quadratura’. Per questa formulazione sono necessarie solo le soluzioni fondamentali
nel dominio di Laplace. Le proprietà di una nuova formulazione sono studiate con un esempio numerico.
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1. Introduction

The Boundary Element Method (BEM) has become a widely used numerical method. In the
case of transient elastodynamic problems, the BEM is mostly used in frequency or Laplace
domain followed by an inverse transformation, e.g., [1]. Mansur [11] developed one of the first
Boundary Element formulations directly in time domain. It was formulated for the scalar wave
equation, and later on extended by Antes [2] to elastodynamics. This formulation was, e.g.,
applied to three dimensional contact problems by Steinfeld [14] and extended to viscoelasticity
by Schanz [12].

All formulations in time domain, however, require an adequate choice of the time step
size. An improper chosen time step size leads to instabilities or numerical damping. A first
improvement of this behaviour is shown by Jäger [6] for acoustics and by Schanz et al. [13]
for elastodynamics. Another disadvantage of the formulation in time domain is, however, that
not for all physical problems time-dependent fundamental solutions are known in an explicit
analytical form, e.g., in poroelasto dynamics [15].

JEFF/J.N.B. (Corr.) INTERPRINT: PIPS Nr.:134061 ENGI
mec2042.tex; 26/08/1997; 12:27; v.7; p.1



180 M. Schanz and H. Antes

Therefore, here, a BE formulation in time domain is presented which is based on the
‘Operational Quadrature Methods’ published by Lubich [7]. This method is a quadrature
formula which approximates the convolution integral in the time domain boundary integral
equation. The quadrature weights are determined from the fundamental solutions in Laplace
domain. In Section 2, this quadrature method is summarized. In Section 3, the boundary
element formulation for elastodynamics is developed using this quadrature method. After
that, numerical results of a 3-d bar are presented.

2. Convolution Quadrature

In the following, the convolution in the time domain boundary integral equation is approxi-
mated by the so-called ‘Operational Quadrature Method’ developed by Lubich [7]:

a convolution integral of the form

y(t) = f(t) � g(t) =
Z

t

0
f(t� �)g(�) d� (1)

can be approximated by the ‘Operational Quadrature Method’ using the Laplace transformed
function f̂(s). Substituting f(t) by the inverse Laplace transformation of f̂(s) in the convo-
lution integral (1) and exchanging the integrals leads to

Z
t

0
f(t� �)g(�) d� =

1
2�i

lim
R!1

Z
c+iR

c�iR

f̂(s)

Z
t

0
es(t��)g(�) d�| {z }

x(t)

ds; (2)

with a real constant c. The inner integral, abbreviated with x(t), is a solution of the differential
equation of first order

d
dt
x(t) = sx(t) + g(t) with x(0) = 0; (3)

with vanishing initial conditions. Therefore, x(t) can be approximated by a linear multistep
method

x(t) �
kX

j=0

�jxn�j = �t

kX
j=0

�j(sxn�j + g((n� j)�t)); (4)

with equal time steps�t; t = n�t and the starting valuesx�k = � � � = x�1 = 0. Unfortunate-
ly, this representation of the multistep method does not allow to extract the discrete values xn
which shall be used to approximate Equation (2). Taking a representation with (formal) power
series for x(t) =

P
1

n=0 xnz
n and g(t) =

P
1

n=0 g(n�t)zn the multistep method becomes

�
(z)

�t
� s

� 1X
n=0

xnz
n =

1X
n=0

g(n�t)zn; (z) =
�0 + � � �+ �kz

k

�0 + � � �+ �kz
k
: (5)

The used multistep method, characterized by the quotient of the generating polynomials (z),
should be A(�)-stable with positive angle �, stable in a neighbourhood of infinity, strongly
zero-stable and consistent of order p, (see [10]). Well known examples of possible generating
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polynomials are the backward differentiation formulas of order p 6 6, e.g., of order 2 given
by (z) = 3

2 � 2z + 1
2z

2.
With the representation of x(t) in Equation (5) the convolution (1) is approximated by

1X
n=0

y(n�t)zn =
1

2�i
lim
R!1

Z
c+iR

c�iR

f̂(s)
1

(z)
�t

� s
ds

1X
n=0

g(n�t)zn: (6)

The integration along the curve c� iR to c+ iR is changed to a closed contour, by adding a
half circle at its ends. If the function f̂(s) satisfies the assumption

jf̂(s)j ! 0 for R(s) > c and jsj ! 1; (7)

the integral in Equation (6) can be determined by the value of the integrand at the singular
point s = (z)=�t (Cauchy’s integral formula)

1
2�i

lim
R!1

Z
c+iR

c�iR

f̂(s)
1

(z)
�t

� s
ds = f̂

�
(z)

�t

�
: (8)

Representing the function f̂(z) by a power series

f̂

�
(z)

�t

�
=

1X
n=0

!n(�t)zn; (9)

with the coefficients

!n(�t) =
1

2�i

Z
jzj=r

f̂

�
(z)

�t

�
z
�n�1 dz (10)

and r being the radius of a circle in the domain of analyticity of f̂(z), Equation (8) can be
simplified by Cauchy’s product of two series

1X
n=0

!n(�t)zn
1X
n=0

g(n�t)zn =
1X
n=0

nX
j=0

!n�j(�t)g(j�t)zn: (11)

Taking now the nth coefficient of the power series (11), the final quadrature formula reads

y(n�t) =
nX

k=0

!n�k(�t)g(k�t); n = 0; 1; : : : ; N: (12)

The integration weights !n are determined by Equation (10). After a polar coordinate trans-
formation this integral is approximated by a trapezoidal rule with L equal steps 2�=L ([8])

!n(�t) =
r
�n

L

L�1X
`=0

f̂

 
(r ei`

2�
L )

�t

!
e�in`

2�
L : (13)

Now, using the technique of the Fast Fourier Transformation (FFT), the weights !n can be
calculated very fast for all n = 0; 1; : : : ; N . If one assumes that the values of f̂(z) in Equation
(13) are computed with an error bounded by �, then the choice L = N and rN =

p
� yields an

error in !n of size O(
p
�), (see [8]).
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Figure 1. Numerical and exact evaluation of the convolution U10(t) �H(t).

To check the procedure, the convolution between the fundamental solution of the displace-
ment (r =

p
riri with ri = xi � yi)

Uij(x; y; t� �) =

1
4�%
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� 1
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2
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t� � � r

c2

�#
+

�ij

rc2
2
�

�
t� � � r

c2

�)
(14)

and the unit step function H(t) are calculated. Figure 1 shows the numerical and exact
evaluation of the convolution integralU10(t)�H(t). Obviously, the agreement of the analytical
and numerical solution is good, with the exception of the neighbourhood of the jumps. There,
an overshooting is observed depending on the choice of the multistep method and the time
step size �t. The parameters in this test are chosen as suggested above with � = 10�10. The
used multistep method is a backward differential formula of second order.

3. BE Formulation

For consistency, the boundary integral equation for elastodynamics in time domain is recalled.
The field equations of a homogeneous elastic domain 
 (Young’s Modulus E, density % and
Poisson’s ratio �) are given by

(c2
1 � c

2
2)ui;ij + c

2
2uj;ii +

bj

%
= �uj (15)

with displacements uj and wave speeds

c
2
1 =

E(1 � �)

%(1� 2�)(1 + �)
; c

2
2 =

E

%2(1 + �)
: (16)

In the above equations, ( );i denotes the derivative with respect to the spatial coordinate xi,
and �uj is the acceleration. On the boundary � = �u [ �t of the domain 
, the boundary
conditions

ti(x; t) = �ijnj = pi(x; t) x 2 �t; ui(x; t) = qi(x; t) x 2 �u (17)
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are given. �ij is the stress tensor and nj the outward normal on the boundary�. For a complete
initial boundary value problem also the initial conditions ui(x; 0) and _ui(x; 0); x 2 
, have to
be prescribed. Here, they are assumed to be zero

ui(x; 0) = 0; _ui(x; 0) = 0 x 2 
: (18)

Assuming also vanishing volume forces, the dynamic extension of Betti’s reciprocal work
theorem leads to the integral equation (see [2])

cij(y)uj(y; t) =
Z
�x

[Uij(x; y; t) � tj(x; t)� Tij(x; y; t) � uj(x; t)] d�x; (19)

where Uij and Tij are the time-dependent fundamental solutions of the displacements and
tractions, respectively. The integral free term cij(y) is the same as in elastostatics [14], e.g.,
cij(y) = �ij=2 for a smooth boundary. As shown by Bonnet [3], the first integral in Equation
(19) is weakly and the second strongly singular. Therefore, the second integral can only be
defined in the sense of a Cauchy Principal Value.

For the numerical solution of the boundary integral Equation (19) in an arbitrary domain
,
a discretization must be introduced. Therefore, the boundary � is divided in E iso-parametric
elements �e where F polynomial shape functions Nf

e (x) for the spatial variable are defined.
This procedure yields

uj(x; t) =
EX
e=1

FX
f=1

N
f

e (x)u
ef

j
(t); tj(x; t) =

EX
e=1

FX
f=1

N
f

e (x)t
ef

j
(t); (20)

with the time dependent nodal values uef
j
(t) and t

ef

j
(t). Inserting these ‘ansatz’ functions in

Equation (19) leads to

cij(y)uj(y; t) =
EX
e=1

FX
f=1

�Z
�e

Uij(x; y; t)Nf

e (x) d�e � tefj (t)

�
I
�e

Tij(x; y; t)Nf

e
(x)d�e � uefj (t)

�
: (21)

If the time t is discretized in N equal time steps �t, the convolution between the fundamental
solutions Uij or Tij and the nodal values tef

j
(t) or uef

j
(t), respectively, is approximated by the

Convolution Quadrature formula (12). This results in the new boundary element formulation
in time domain

cij(y)uj(y; n�t) =
EX
e=1

FX
f=1

nX
k=0

f!ef

n�k
(Û ; y;�t)tef

j
(k�t)

�!ef

n�k
(T̂ ; y;�t)u

ef

j
(k�t)g (22)

for n = 0; 1; : : : ; N , with the weights

!
ef

n
(Û ; y;�t) =

r
�n

L

L�1X
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Z
�e

Û

�
x; y;

(r�`)

�t

�
N

f

e
(x) d�e�

�n

`
; (23)

for the displacements (�` = ei`
2�
L ) and a similar expression for the weights of the tractions.
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Figure 2. Discretization, loading and boundary conditions of the bar.

Figure 3. Longitudinal displacement at point P versus time for different values of �t.

Note that the calculation of the integration weights (23) is only based on the Laplace
transformed fundamental solution. Therefore, for the spatial integration in Equation (23),
the techniques well known from the elastodynamic frequency domain formulation are used.
Finally, Equation (22) is solved with the collocation method and a direct equation solver.

4. Numerical Example

As a first application, a bar (geometry: 3 m� 1 m� 1 m, material:E = 1 N

m2 ; � = 0; % = 1 kg

m3 )
is considered (see Figure 2). The bar is taken to be fixed on one end, and is loaded with a unit
step function in time on the other free end. The remaining surfaces are traction free. The bar
is discretized with 56 triangles, and linear shape functions are used. The parameter r and L

are chosen as suggested in Section 2: L = N and rN =
p
�, with the error bound � = 10�10.

Smaller values of �, e.g., below � = 10�30, lead to completely unstable results.
The spatial integration is done with standard Gauß quadrature formulas. The weakly

singular integrals in Equation (22) are regularized with a coordinate transformation and the
strongly singular integrals with the method suggested by [5].

Results for the longitudinal displacement at the point P versus time are plotted for different
time step sizes in Figure 3. There, a backward differential formula of second order is applied for
the underlying multistep method. These results are compared with the 1-d solution [4], which
is denoted with ‘exact’. Obviously, there exists a critical value of the time step size, below
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Figure 4. Comparison of different multistep methods.

which the results are unstable (�t < 0:15). This is in accordance with the investigations
for the boundary integral equation of the wave equation by [9]. For larger time step sizes
(�t = 0:9), a kind of phase shifting is observed because the time step size is too large to
approximate the peaks correctly.

Since the method suggested by Antes [2] shows an unstable behaviour using small time
steps and numerical damping for large time steps, the time step size has there be restricted
to the interval [0.7, 1.0]. In comparison with this formulation, here, a smaller lower critical
value and no numerical damping is observed. However, this behaviour depends heavily on the
underlying multistep method.

Therefore, finally the influence of the underlying multistep method is studied in Figure 4.
There, the results with a backward differentiation formula of the first order (BDF 1) and those
of the second order (BDF 2) are compared. An optimal choice of the time step size �t is used
in both calculations. The results of the BDF 2 are closer to the 1-d solution than the results of
BDF 1, but with the BDF 1 procedure much smaller time step sizes are possible.

5. Conclusions

The present paper describes a boundary element formulation directly in time domain where
only the fundamental solutions in Laplace domain are used. This formulation is based on
the ‘Operational Quadrature Methods’ developed by Lubich [7]. Applying these quadrature
formulas to the convolution integral in the boundary integral equation, a numerical integration
formula is obtained where the weights depend only on the Laplace transformed fundamental
solutions. With these formulas, a new time domain boundary element formulation is derived.

A numerical example shows that a critical time step size exists, below which the method
becomes unstable. This critical value depends on the underlying multistep method. Compared
with the direct time domain based formulation suggested by [2], the critical time step size is
much smaller.

Furthermore, all advantages of the Laplace domain boundary element formulation can be
used. Therefore, this method seems to be suitable also in the case of the hypersingular traction
boundary integral equation, and for all cases where the time-dependent fundamental solution
is not known, e.g., in viscoelasticity or poroelasto dynamics.

mec2042.tex; 26/08/1997; 12:27; v.7; p.7



186 M. Schanz and H. Antes

References

1. Ahmad, S. and Manolis, G.D., ‘Dynamic analysis of 3-d structures by a transformed boundary element
method’, Computational Mechanics, 2 (1987) 185–196.

2. Antes, H., Anwendungen der Methode der Randelemente in der Elastodynamik und der Fluiddynamik,
Mathematische Methoden in der Technik 9, B. G. Teubner, Stuttgart, 1988.

3. Bonnet, M., ‘Regular boundary integral equations for three-dimensional finite or infinite bodies with and with-
out curved cracks in elastodynamics’, in Brebbia, C.A., Zamani, N.G., (Eds.), Boundary Element Techniques:
Applications in Engineering, Southampton, Computational Mechanics Publications, 1989.

4. Graff, K. F., Wave Motion in Elastic Solids, Oxford University Press, 1975.
5. Guiggiani, M. and Gigante, A., ‘A general algorithm for multidimensional cauchy principal value integrals

in the boundary element method’, ASME Journal of Applied Mechanics, 57 (1990) 906–915.
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