
ARTICLE

Application of optimal band-limited
control protocols to quantum noise sensing
V.M. Frey1,2, S. Mavadia1,2, L.M. Norris3, W. de Ferranti1,2, D. Lucarelli4, L. Viola3 & M.J. Biercuk1,2

Essential to the functionality of qubit-based sensors are control protocols, which shape their

response in frequency space. However, in common control routines out-of-band spectral

leakage complicates interpretation of the sensor’s signal. In this work, we leverage discrete

prolate spheroidal sequences (a.k.a. Slepian sequences) to synthesize provably optimal

narrowband controls ideally suited to spectral estimation of a qubit’s noisy environment.

Experiments with trapped ions demonstrate how spectral leakage may be reduced by orders

of magnitude over conventional controls when a near resonant driving field is modulated by

Slepians, and how the desired narrowband sensitivity may be tuned using concepts from RF

engineering. We demonstrate that classical multitaper techniques for spectral analysis can be

ported to the quantum domain and combined with Bayesian estimation tools to experi-

mentally reconstruct complex noise spectra. We then deploy these techniques to identify

previously immeasurable frequency-resolved amplitude noise in our qubit’s microwave

synthesis chain.
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I
ndustrial, metrological, and medical applications provide a
strong pull for advanced nanoscale sensing techniques1,
exploiting the exquisite sensitivity of quantum coherent sys-

tems to their environments2–4. Qubits naturally exhibit broad-
band coupling to their environments, but the application of a
temporally modulated driving field can alter their frequency
response in a desired way. For instance, application of modula-
tion which periodically flips the qubit’s state has allowed for a
narrowband spectral response5, which may be tuned by adjusting
the interpulse spacing or extending the sequence duration. This
general approach to “dynamical decoupling noise spectroscopy”
has seen broad adoption in quantum information6–11, as well as
in nanoscale diamond sensors for biomedical and physics-based
applications12–15. However, control implemented in this form
suffers from the significant complication of spectral leakage,
where signals outside of a target sensing frequency band can
contribute to the sensor’s response (Fig. 1b), and if not properly
accounted for, can lead to bias when estimating the spectral
density of a signal from experimental data16,17.

In an ideal scenario, for frequency domain spectral estimation
applications, the chosen control protocol would be sensitive only
within a user-determined band. Pulsed dynamical decoupling is
often employed because the leading component of the filter
transfer function describing the modulated sensor’s performance
is narrowly peaked5,7. Examination of the control propagator
describing the time–domain response of a qubit subject to this
control, however, reveals that the effective square-waveform of

the control propagator (Fig. 1c) leads to the appearance of an
infinite chain of harmonics in the Fourier domain (Fig. 1e). These
out-of-band harmonics can then contribute bias in noise spec-
troscopy protocols.

The problem of spectral leakage is well known in classical
signal processing and has led to the development of
time–bandwidth-optimized functions for use in spectral estima-
tion. The discrete prolate spheroidal sequences (DPSS)18 are an
orthogonal set of discrete time functions that maximize a signal’s
energy within a predefined frequency band (Fig. 1d)19. The DPSS
form the basis of the multitaper method of spectral analysis20,
which is employed in estimation problems across a wide range of
physical, computational, and biomedical disciplines21,22. Addi-
tionally, DPSS have also been suggested in magnetic resonance
imaging to avoid out-of-band excitation (so-called Gibbs arti-
fact23) and have recently enabled the design of optimal control
algorithms for unitary quantum dynamics, that incorporate
bandwidth constraints24. This strong base of demonstrations
motivates our use of DPSS-modulated pulses for quantum
sensing.

In this work, we adapt DPSS functions to the problem of
spectral leakage in quantum control for qubit-based sensors. We
introduce the concept of continuously amplitude-modulated
control waveforms defined by DPSS functions as effective win-
dow functions, and we demonstrate that such controls afford
suppression of spectral leakage in the quantum setting. Experi-
ments with trapped atomic ions are used to reconstruct the filter
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Fig. 1 Illustration of frequency response of time–domain control protocols. a Sensor signal for a driven qubit is derived from the spectral overlap of the noise

and control, producing a detectable rotation error. b Sensor spectral response for a given control protocol (inset) may show leakage outside of the desired

target band, which makes an undesired contribution to the signal in a. c, d Sample control sequences for flat-top echo protocols and their DPSS-modulated

counterparts. Orders shown here: k= 0, 1, 2, 3, and NW= 4. Note that k is equal to the number of zero crossings in the time domain and, by construction,

odd-order pulses, with zero net rotation, have no DC susceptibility. e FΩ(ω) capturing the frequency response of the control envelopes in c, d. The dotted

line indicates the boundary of the target band along the positive frequency axis, ωB= 2πW/Δt, where τ= NΔt is the pulse duration. Inferior spectral

concentration of flat-top (FT) pulses, manifested as spectral weight beyond ωB, is highlighted with shading. Out-of-band power relative to kth order DPSS-

modulated pulses is calculated as Lk � 1� λFTk
� �

= 1� λDPSSk

� �

, where λ‘k ¼
R ωB

0
dωF‘

Ω
ðωÞ=

R1
0
dωF‘

Ω
ðωÞ, for the appropriate kth order filter functions
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transfer functions and show orders of magnitude improvement in
suppression of out-of-band signals relative to conventional square
waveforms (e.g., pulsed dynamical decoupling or instantaneous
phase-flips under driven rotary echo25,26). We then present a
series of RF engineering-inspired techniques to shift the band
center of the control’s frequency response and combine this with
tomographic measurements to allow disambiguation of sensor
response in a cluttered background. Two techniques for spectral
reconstruction are presented, both inspired by the original clas-
sical multitaper method, and we compare their performance for
experimentally reconstructed spectra. Experimental results show
that our new non-inverting quantum multitaper performs simi-
larly to more computationally intensive Bayesian estimation
routines, at the expense of frequency resolution in the recon-
struction. Finally, we employ these techniques to characterize
otherwise inaccessible properties of our qubit drive system and
provide frequency-resolved characterization of system noise and
non-linearities with calibrated sensitivity to 0.001 dB.

Results
The DPSS functions. For a time–domain sequence consisting of
N elements, characterized by sampling interval Δt, and half-
bandwidth parameter W ∈ (0, 1/2), the DPSS may be defined as
real solutions to the eigenvalue problem

X

N�1

m¼0

sin 2πWðn�mÞ
πðn�mÞ vðkÞm ðN;WÞ ¼ λkðN;WÞvðkÞn ðN;WÞ; ð1Þ

where vðkÞm ðN;WÞ is the nth element of the kth order DPSS for k,
n ∈ {0, 1, …, N − 1}. The discrete Fourier transform of vðkÞm ðN;WÞ
into the (angular) frequency domain [−π/Δt, π/Δt] is the discrete
prolate spheroidal wavefunction, U(k)(N, W;ω), which is spec-
trally concentrated in [−ωB, ωB] ≡ [−2πW/Δt, 2πW/Δt].

The eigenvalue λk(N, W) directly quantifies the spectral
concentration of U(k)(N, W;ω), i.e., the fraction of spectral power
within the target band compared to the total spectral power, as

λkðN;WÞ ¼
R ωB

�ωB
dωUðkÞðN;W;ωÞ2

R π=Δt

�π=Δt
dωUðkÞðN;W;ωÞ2

: DPSS are optimal in the sense

that, among all sequences with fixed N and W, they are the ones
that maximize the above ratio. Spectral concentration is highest
for k = 0, and decreases with increasing k; the DPSS of order
k<2 NWb c � 1 have ≥70% of their spectral weight within the
target band (Fig. 1e; Supplementary Table 1). Physically, the
time–bandwidth product NW controls the fraction of the desired
pulse energy within the pulse time τ =NΔt. Increasing NW
enables concentration to be maintained for higher k, but this has
the disadvantage of extending the target band in the frequency
domain. In practice, setting NW = k + 1 is usually a satisfactory
compromise between these factors.

DPSS filter transfer function reconstruction. To characterize
the frequency response of a qubit-based sensor undergoing an
arbitrary control protocol in the presence of multi-axis classical
noise, we rely on the filter transfer function formalism5,27–31,
which we also outline in the Supplementary Note 4. The qubit
sensor’s response to its environment under the application of
control is given approximately by the average measured fidelity of
the operation, denoted here as F av. This is captured, in the
weak-noise limit (Methods), by the spectral overlap of the
noise power spectral density in multiple quadratures, Si(ω),
with a transfer function describing the control, Fi(ω), as F av �
1� exp �π�1

P

i¼Ω;z

R

dωFiðωÞSiðωÞ
h i

: Here, the sum is taken

over noise contributions in the amplitude quadrature, propor-
tional to the applied control, i.e., the qubit Rabi frequency ∝Ωσx,

and in the dephasing quadrature, ∝σz. The presence of a signal in
the sensor’s target band, defined by the applied control mod-
ulation, will be manifested as a reduction in the fidelity of the
operation implemented. The latter may be the identity, for odd k,
or, in general, another non-trivial quantum state transformation
(Fig. 1a).

Analytic calculation of FΩ(ω) both for flat-top modulation
(commonly associated with dynamical decoupling protocols and
here a rotary spin echo, Fig. 1c) and for piecewise-constant
modulation defined by the DPSS-modulated pulses, reveals the
superior spectral concentration of the latter (Fig. 1e). While the
main lobe of FΩ(ω) is broader inside the target band (blue
shading) for DPSS modulation as compared to the rotary spin
echo, leakage outside the target band is significantly suppressed.
For the rotary spin echo, spectral leakage increases out-of-band
sensitivity by 30–80 dB relative to the DPSS, quantified by the
value Lk (Fig. 1e).

We perform experiments to directly test the spectral response
of a driven qubit-based sensor using trapped 171Yb+ ions, where
the qubit is realized through the hyperfine splitting of the 1S1/2
ground state with a transition frequency ~12.6 GHz. We can
modulate the amplitude and phase of the driving microwave field
arbitrarily using a vector signal generator, providing full control
of the qubit state on the Bloch sphere. We employ projective
measurements of the qubit state in the z-basis and average over
experiments to identify deviations from ideal control operations,
which constitute our signal of interest, P(↑z). Details of the
experimental system appear in refs. 32,33 and in the Supplemen-
tary Note 1.

We verify the spectral properties of DPSS-modulated
qubit sensors by performing frequency-selective system identifi-
cation to map out the effective spectral response of the
driven qubit (Fig. 2a). A small single-frequency perturbation
βΩ(t) = α cos(ωsidt + φ) is added to the applied control envelope of
the driving field, producing ΩðtÞ7!ΩðtÞð1þ βΩðtÞÞ. Since this
results in SΩ(ω) ∝ δ(ω −ωsid), by scanning the tunable
modulation frequency ωsid and averaging over phase φ for
fixed modulation depth α, we effectively reconstruct the filter
transfer function of the control, FΩ(ω), through measurements
of the average fidelity metric F av . In this setting, we obtain
F av directly from the projective measurements via
P "zð Þ ¼ 1� F av � 1� exp �π�1

R

dωFΩðωÞSΩðωÞ
� �

, where we
assume negligible dephasing. Experimental reconstruction of the
qubits’ spectral response under DPSS-modulated pulses for k =
1 shows good agreement with the analytically calculated fidelity,
in addition to the expected broadening as NW is increased
(Fig. 2b).

Using the same technique, we can experimentally compare the
frequency response of qubits driven by DPSS-modulated pulses to
their flat-top counterparts, as shown in Fig. 2c–e. These
experiments demonstrate the superior spectral concentration in
the target band (shaded region); measurements on qubits subject
to DPSS-modulated pulses show no detectable sensitivity to
perturbations (given by βΩ(t)) outside of the target band, whereas
flat-top pulses exhibit significant out-of-band harmonics (marked
by arrows). Such sensor responses outside of the target band
constitute a source of spectral leakage in sensing applications.

Extending DPSS control capabilities. In order to implement
DPSS-modulated pulses for spectral reconstruction applications,
we apply additional analog modulation techniques designed to
shift the band center from zero to a user-defined frequency ωs

34

(Methods). We employ two modulation protocols: cosinusoidal
(COS) modulation shifts both positive and negative frequency
components by ωs, while single-sideband (SSB) modulation shifts
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the band center by ωs and suppresses either the positive or
negative frequencies, thereby reducing the bandwidth by one half.
Experiments using both techniques demonstrate maintenance of
the critical spectral concentration of the DPSS-modulated pulses
within the shifted bands (Fig. 3a, b). Further details are included
in Supplementary Note 6.

Quantum sensing applications also require the ability to
disambiguate changes in the measured operational fidelity due to
target signals within a single quadrature, e.g., Ωσx, from alternate
“interfering” sources, which may be manifested similarly in
projective measurements. For instance, the presence of a
Hamiltonian term ∝σz during a driven operation ∝σx will reduce
the measured fidelity of the driven operation in a manner similar
to the presence of noise only proportional to the control30.
Consequently, a single measurement is insufficient to determine

which process is at play. To detect and compensate for such
effects, we use tomographic reconstruction35, by preparing the
qubit state along the three Cartesian directions, applying DPSS
control, and performing independent sequential measurements in
the corresponding bases (Fig. 3c). In our experiments, we
simultaneously apply a target signal ∝σx as above, and an
additional white dephasing term ∝σz, which contributes to the
sensor’s overall response in a way that obfuscates the measure-
ment of the target. We then isolate the target signal’s contribution
by combining three projective measurements as S ≡ (1 + P(↑x) −
P(↑y) − P(↑z))/2, as derived in the Supplementary Note 3.
Reconstructed values of S (red markers, Fig. 3c) reproduce the
results expected without any σz-terms well (red line), successfully
correcting for a vertical offset that would otherwise bias a spectral
estimate.
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Fig. 2 Spectral reconstruction of control filter transfer functions. a A single-frequency perturbation, βΩ(t) is applied to the control envelope Ω(t), which

drives rotations about x. Measuring operational fidelity (see main text) for each system identification frequency, ωsid, allows frequency-resolved

reconstruction of FΩ(ω). b Experimental reconstruction of DPSS filter functions for k= 1 and varying NW. Solid lines show the analytic F av calculated based

on FΩ(ω). Control envelopes (shown schematically as insets) have a duration of 1.1 ms with area normalized to π prior to sid perturbation, and

measurements are averaged over 10 linearly sampled φ ∈ [0, 2π], with α= 0.5. Each phase realization is repeated 50 times to reduce the influence of

photon shot noise. c–e Measured spectral response of flat-top vs. DPSS-modulated pulses implementing I for different k and NW. Shading indicates the

target band [0, ωB]. We choose NW= k + 1 for each k, to conservatively maintain spectral concentration of the DPSS-modulated pulses while matching the

number of zero crossings in comparable flat-top protocols. Markers represent experimental measurements and solid lines show the analytic F av . Arrows

highlight out-of-band sensitivity due to harmonics of the flat-top control. We employed large modulation depths (α= 0.95 for DPSS-modulated pulses, α=

0.85 for flat-top pulses) to amplify these signals. Measurement sensitivity floor ~0.5%. As the pulse area and duration are fixed, the target bands within

which the DPSS-modulated pulses are contained are broader than the main peaks of the flat-top pulses
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Multitaper spectral reconstruction with DPSS controls. With
demonstrations of the relevant band-limited properties of qubits
subject to DPSS-modulated pulses as well as essential band-
shifting techniques complete, we move on to demonstrate our
spectral reconstruction capabilities. As a sample application, we
reconstruct an engineered amplitude noise spectrum (Fig. 3d).
We employ four different DPSS-modulated pulses with k = 1, 3, 5,
7, and NW = 7, band-shifted by SSB at nine different shift fre-
quencies, ωs, each resulting in an individual estimate or “data
taper”. The spacing of the modulation frequencies was chosen to
be about 1/2 of the bandwidth of the filter functions, which yields

measurements with sensitivity in overlapping bands. The various
estimates are combined to produce a reconstruction of the target
noise spectrum, which we accomplish this using two distinct
techniques. While both are inspired by Thomson’s multitaper
approach20, they also differ in important ways.

In its original form, the multitaper method aims to estimate the
spectrum of a stationary Gaussian process from a finite set of
discrete time samples. In this technique, DPSS waveforms are
used to window the time–domain data in post-processing,
producing a set of estimates of the spectrum in the target band.
While each “single-taper” estimate is, in itself, an estimate of the
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under amplitude noise only (red line), and fidelity reconstructed from the three projective measurements (red markers). System identification
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spectrum χ2-distributed about the true value, the key idea of
multitaper estimation is to combine different estimates into a
weighted-sum estimator with superior statistical properties.
Thanks to the orthogonality of the DPSS, this procedure results
in a χ2-distribution with a greater number of degrees of freedom,
ensuring consistency and increasing variance efficiency20,21. In
order to offset the introduction of out-of-band bias from higher-
order DPSS, the final estimate is determined through an adaptive
weighting procedure, designed to favor the lowest-order estimates
with the best spectral concentration in the band.

The first reconstruction technique we employ is closest in spirit
to the original multitaper, with one crucial distinction; by
applying DPSS amplitude modulation to the quantum sensor
we are, in effect, windowing the noise process before any
measurements are made. This stands in contrast to the manner in
which classical multitaper estimates are determined by post-
processing a set of discrete time samples. Measured fidelities
determine preliminary spectral estimates at the center of each
band, which are then weighted according to Thomson’s adaptive
procedure to obtain a final set of estimates. In our second
approach, we combine the use of multiple DPSS tapers with
Bayesian estimation techniques. Each band, corresponding to a
shift frequency, ωs, is sub-divided into a set of smaller segments.
For each band, solving a linear inversion determines the Bayesian
maximum a posteriori estimate of the spectrum in each segment,
which serves as a preliminary estimate. As each segment is
contained in multiple bands, the preliminary estimates are
weighted by their Fisher information to determine a final
estimate of the spectrum in each segment. Additional details on
both reconstruction methods are given in the Supplementary
Notes 8 and 9.

In our experiments, the Bayesian reconstruction in Fig. 3d uses
the multitaper as a prior, and offers slightly improved resolution

of the high-frequency cutoff. Both procedures produce spectral
estimates which quantitatively match the applied spectrum
(within resolution limits), and accurately identify the presence
of a high-frequency cutoff in the noise. While the Bayesian
approach relies on linear inversion and is thus computationally
less efficient and stable than the adaptive multitaper, the
flexibility in the choice of the model spectrum to be used as a
prior, as well as the in-band segmentation, allow for improved
resolution and the possibility to handle complex (e.g., “mixed”,
consisting of both smooth and line components) spectra, in
principle. Advantages of Bayesian spectral estimation are further
highlighted in36.

Characterization of native system noise. We conclude by using
DPSS-modulated pulses to obtain frequency-resolved information
about native noise and non-linearities in our control system at the
end of the synthesis chain (which includes the vector signal
generator, an amplifier, cabling, and a waveguide-to-coax con-
verter). For this experiment, we use a single ion and perform
DPSS-modulated pulses with k = 0, producing a net rotation
equivalent to ~400π rotations, ideally enacting I. We calibrate
sensitivity to noise by first applying a single-frequency modula-
tion at the shifted band center frequency, ωsid =ωs, and averaging
over phase (“x” markers, Fig. 4a). We compare this value against
interleaved measurements conducted without applied noise to
determine the minimum sensitivity achieving SNR ~1. These
measurements demonstrate our ability to detect band-limited
amplitude noise with modulation depth as low as ~0.001 dB. In
measurements taken at different values of ωs, we observe a
reproducible deviation from the ideal operation over much of the
scan range, with a distinct feature around 20 kHz. We confirm
that the measured signals are a manifestation of a frequency-
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dependent response in the synthesis chain rather than, e.g.,
extrinsic decoherence, by adding an initial small amplitude-offset
pulse to a band-shifted DPSS-modulated pulse and scanning over
the magnitude of that offset. Investigations into the source of this
behavior are ongoing at the time this manuscript is prepared.
Ultimately, this approach provides information that we believe is
otherwise inaccessible via independent characterization of hard-
ware components in our system.

Discussion
The demonstrations presented here indicate that appropriately
crafted quantum control protocols for qubit-based sensors have
the ability to overcome significant technical limitations in con-
temporary quantum sensing experiments. These protocols can be
applied to any qubit-based sensor in which arbitrary phase and
amplitude modulation of the driving field is possible and spectral
concentration is desired. It is noteworthy that by reducing the
need to account for high-frequency harmonics in the Fourier
response of the modulation pattern, the relatively simple and
computationally efficient adaptive multitaper approach to spec-
trum reconstruction performs similarly to the more complex
Bayesian estimation procedure under the conditions we tested.
While a full comparative study of both single- and multitaper
spectral reconstruction techniques using flat-top vs. DPSS-
modulated pulses is beyond our current scope, preliminary
simulations reinforce the utility of Slepian filters in mitigating
leakage-induced artifacts in reconstruction. A detailed analysis
will be the subject of an upcoming manuscript, along with
developing mathematical bounds for spectral leakage and per-
forming a quantitative assessment of the impact of leakage as a
function of the target spectrum. Future experiments will also
involve the extension of DPSS-modulated control to sensing of
additive dephasing noise and multi-qubit settings, in order to
provide an expanded toolkit of band-limited controls for quan-
tum sensors.

Methods
Analog modulation techniques. Carrier waves are commonly modulated in radio-
engineering to multiplex signals within a certain frequency band. We use the same
approach to shift the sensitivity of our control pulses in the frequency domain. We
employ two of these techniques, COS modulation (also commonly known as
amplitude modulation), and single-sideband modulation. By multiplying the
time–domain control pulses with a cosine function, so that
Ω

COS
mod;n � v

ðkÞ
n ðN;WÞcosðnωsΔtÞ, we convolve the original transfer function with

two delta function at ±ωs. In a standard Fourier transform, the positive frequency
component is reflected about the y axis. The negative frequency component
becomes visible when ωs is greater than the bandwidth of the pulse such that one
copy of the positive and negative sidebands appear in the positive frequency
domain. To recover the original appearance of the DPSS filter functions, we
may alternatively use single-sideband modulation. In this case, the filter will
either be at a higher or lower frequency than ωs, depending on the sign in

Ω
SSB
mod;n � v

ðkÞ
n ðN;WÞcosðnωsΔtÞ±H v

ðkÞ
n ðN;WÞ

h i

sinðnωsΔtÞ. We pre-calculate

the waveform numerically using the Hilbert transform, H v
ðkÞ
n ðN;WÞ

h i

, and apply

it directly from our microwave source.

Weak-noise limit. The regime in which the first-order fidelity approximation
we employ is valid is the weak-noise limit. This requires that the smallness para-
meter, as defined in refs. 28,30, ξ ¼

R τ

0dt βðtÞk k
� �1=2

<1. For the case of system
identification, where βΩ(t) = α cos(ωsidt), as well as for pure amplitude noise,
β(t) = βΩ(t)Ω(t), we calculate ξ ¼ αA=2

ffiffiffi

2
p

, where A is the pulse area. For pulses
where A = π, the upper bound for the weak-noise limit is at α ≈ 0.9.

Data availability. Data used in figures and computer scripts used to produce
DPSS-modulated pulses and perform the spectral reconstruction are available at
https://github.com/qcl-sydney/research-supplements.
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