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Application of Optimal Control Theory to Inverse
| Simulation of Car Handling

J.P.M. HENDRIKX, T.J.J. MEIJLINK and R.F.C. KRIENS ~

SUMMARY

The application of Optimal Control Theory to time-optimal inverse simulation of car handling was
investigated. Time-optimal inverse simulation of car handling involves the calculation of driver actions
required to perform specified manoeuvres, in as short a time as possible. Driver actions consist of
time-histories of front wheel steer rate and longitudinal force. Optimal time-histories of these quantities
were calculated using the Gradient method after formulating the problem as one of optimal control.
Simulation results are presented for two different cars performing similar lane-changes. These results
show significant differences in necessary driver actions for different cars and demonstrate the
suitability of the approach taken.

1. INTRODUCTION

Inverse simulation of car handling differs from traditional open-loop simulation
because the driver actions are calculated from prescribed car manoeuvres instead
of vice versa. Because in most real driving situations the car manoeuvre is
prescribed, results from inverse simulation models promise better correlation with
reality than results from open-loop simulation models. In literature, various inverse
models for calculating the driver actions have been proposed [1-5]. The main
differences between these models lie in the way the car is modeled and in the way
_ the manoeuvre is defined. The car is represented as a two-dimensional two-wheel
model [1—4] or as a three-dimensional model with either linear or non-linear tire
characteristics. The manoeuvre is defined either by the time-histories of the car
state variables that have to be achieved almost exactly [2,5], by a path that has to
be followed closely [3,4] or by a road the car has to stay on [1]. In the latter two
cases, additional criteria are defined to eliminate the possiblity of multiple
solutions. In [3,4], a criterion related to driver effort is minimized, while in [1] the
time required to complete the manoeuvre is minimized.

For the research presented here, the car is represented as a two-dimensional
four-wheel model. The tire model is non-linear and is compensated for traction
influences. The manoeuvre is defined by a road the car has to stay on while the
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driver actions are front wheel steer rate and longitudinal force. To eliminate the
uncertainties about driver behaviour and to exclude the possibility of multiple
solutions, the car is required to perform the manoeuvre in as short a time as
possible. Hence, the problem is that of determining the driver actions that will
allow a car to perform the manoeuvre as quick as possible, whilst staying on the
specified road. This problem was solved by applying the Gradient method after
formulating it as one of optimal control. The general formulation of an optimal
control problem is that of determining the time-histories of the control variables
that will cause a dynamic system to be transferred from an initial state to a final
state whilst minimizing a functional and without violating any constraints. Here,
the dynamic system is the car, the control variables are the driver actions, the
functional is the time required to complete the manoeuvre, and the constraints are
the road and the car’s performance limits. These quantities are discussed in detail
and results of two cases are presented. In these cases, a rear wheel drive and a
front wheel drive car were required to perform a lane-change. The results of these
simulations not only show the proper functioning of the model, they also show the
significant effect of drive and brake torques on tire saturation, during minimum-
time cornering.

2. MODELING

The optimal control formulation of the inverse simulation problem requires: a set
of equations representing the dynamic behaviour of the car i.e. the equations of
motion, a criterion representing the car’s performance i.e. the cost functional, a set
of data representing the possible limits on the controls i.e. the control constraints,
and a set of data representing the road the car is to stay on i.e. the state constraints.

2.1. Equations of Motion
The car is modeled as a single mass with yaw, lateral, and longitudinal degrees of
freedom. (see Fig. 1) ' - -

Its equations of motion are

X| =X, (1)

%,=((F,; + )i~ (B3 +E,)l,) /1 (2)
x5 =(F, +E,+F;+E,)/M~-x,x, (3)
)'(4=((Kf+Kr)1000u2—Fa)/M+x2x3 (4)
X5 =x,sin(x,) + x5 cos(x,) (5)

X¢ = X4 c08(x,) — X5 sin(x,) (‘6)

Xy=u, | ‘ (7)
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Fig. 1. Schematic representation of vehicle model with sign conventions.

All quantities used in these equations are listed in Tables 1 and 2 except for the
factor 1000 in Equation (4). This factor compensates for the expression of drive
and brake forces in kilo Newtons which, in the interest of the optimization

algorithm, allows both controls to have the same order of magnitude.

Table 1. Nomenclature.

LR TICE RS

N

p
1,2,3,4

car frontal area

tire lateral force, excluding traction effects
aerodynamic drag

tire lateral force, including traction effects
tire normal force

gravitational acceleration (9.81)

distance from center of front and rear axles to centre of gravity
cost functional

tire-longitudinal force

weighting factor (100)

rollcentre-height at centre of gravity

tire saturation

front wheel steerrate

longitudinal force

car yaw angle

car yawrate

lateral velocity centre of gravity
longitudinal velocity centre of gravity
lateral position centre of gravity
longitudinal position centre of gravity
front wheel steer angle

front and rear slip angles

air density (1.25)

left-front, right-front, left-rear, and right-rear tire

m/s

deg
kg/m3
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Table 2. Car data.

RWD FWD
mass M 650 1200 kg
Yaw moment of inertia I 1000 2500 kgm?
Weight distribution /1 ps/ pr 0.33,/0.67 0.67/0.33 -
Rolistiffness distribution f/r  a/(1-a) 0.50,/0.50 0.55/0.45 -
Brake force distribution f/r K,;/K, 0.50,/0.50 0.67/033 -
Trackwidth front t 1.8 1.58 m
Trackwidth rear t, 1.6 1.58 m
Wheelbase wb 2.5 2.78 m
Rolicentre height front Tef 0 0.09 m
Rollcentre height rear ey 0.07 0.18 m
CofG height h 0.2 0.55 m
Frontal surface A 1.4 1.6 m?
Drag coefficient (oF 0.8 0.3 -
Front downforce coefficient Cr 0.5 0 -
Rear downforce coefficient C, 1.0 0 -

The tire lateral forces F, appearing in the equations of motion are calculated
using part of the Magic Formula representation [6]. The effect of longitudinal force
on tire saturation is taken into account by adding a term representing a friction
ellipse [3], as represented by Equation (11). The resulting expression for the tire
lateral force reads

F,(aF,P) =F(a E)T(E,P) (8)
where

F(a F,) = Dsin[Catan[Ba — E{Ba — atan(Ba) }]] (9)
D =a,F’+a,F, (102)
C=a, ' ' (10b)

_ a3 B = a3 inl 2 Fz V 10
= Taea)) =op i atan a_4 (10c)
E = a6Fz + 37 (IOd)

P2 p?
T(E,P)=1/[1-

+ (11)
(a,F? +a2FZ)2 (a,180/m) |

The two expressions for B apply to the different cai configurations as can be.
seen from the tire coefficients listed in Table 3. The slip angles of the left and
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Table 3. Tire coefficients.

RWD FWD
Front Rear Front/Rear

a, 1.9 1.9 1.65
a, -50 -25 -42
a, 1500 1500 1200
a4 450 450 950
a; - - 8.85
ag 0 0 -0.016
a4 -6 -6 -0.025

right-hand tires on the same axle are assumed to be identical. The front axle slip
angle «; is approximated by

Igx, + x5 180
Q= Xq— X . (13)
4

while the rear axle slip angle «, is approximated by

1.x,—x, 180
Oer ro2 3 R (14)
X4 o

' The normal forces acting upon the tires are modeled in a quasi-static way and
include such quantities as lateral and longitudinal weight transfer, rollstiffness
distribution and aerodynamic forces. They are modeled as

h
F,, , = 0.5Mgp; + 0.25pC;Ax} — 500(K; + Kr)uzg-}-)-

, a - Ty
+(F,; +F, + F3 +Fy)(h— rc)t— + (F, +Fy,_,)-t— (15)
f f
for left and right front tires, respectively, and

h
Fy 4= 0.5Mgp, +0.25pC, Ax + 500(K ¢ + K, Ju, —

(1-

t

a) rCr

T T
for left and right rear tires, respectively. Aerodynamic drag F, is _represerited by

E, = 0.5pC,Ax2 | (17)
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-

2.2. Cost Functional
In order to arrive at a unique solution, the car is supposed to complete the
manoeuvre as quick as possible. This is achieved by minimizing the following

functional
J(u(t).t) = f ot (18)
to

which represents the time the car requires to complete the manoeuvre while it is
subjected to driver actions u(t). Symbols t, and t; denote the time at the start and
the end of the manoeuvre, respectively.

2.3. Control Constraints

Both control functions i.e. the front wheel steer rate u, and the longitudinal force
u, are limited in magnitude [7]; the front wheel steer rate is assumed to be limited
by the driver’s capabilities and the longitudinal force is limited either by the
maximum performance of the driveline or by the maximum adhesion between the
tires and the road. The driver limit is taken into account by limiting the steer rate
to a fixed maximum. The driveline limit is taken into account by limiting the value
of the traction force to the maximum traction force that can be generated by the
driveline. This maximum force is calculated as a function of forward velocity by
reformulating the engine’s torque versus angular velocity curve into a longitudinal
force versus forward velocity relation, using the total gear ratios and the wheel
radius. The maximum adhesion between the tires and the road is taken into
account by limiting the maximum longitudinal force, allocated to each individual
tire, to the product of the tire’s friction coefficient and normal force. The
corresponding total longitudinal force is then divided over front and rear axles
using proportionality factors K; and K,. After this, the front and rear axle forces
are split equally onto left and right wheels.

2.4. State Constraints

The values of the state variables are limited by the fact that the car has to stay
on the road. This is taken into account by forcing the car’s centre of gravity to stay
within the boundaries of the road. This is achieved by expanding the cost
functional J with an extra term whose value depends on the distance between the
centre of gravity and the road centerline. The expanded cost functional then
becomes

I(u(t) ) = ft (g, (xsx6)H(g,) + 1)dt (19)

in which g, (xs, x) represents the square value of the distance between the car’s
centre of gravity and the road centerline. The step function H(g,) indicates
whether or not the car’s centre of gravity exceeds its limits; if a limit is exceeded
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H(g, ) =P, (P,>0), if no limit is exceeded H(g,)=0. Minimization of this
functional will cause the cente of gravity position to exceed its boundaries only
minimally, which implies that the car stays on the road. For the cases considered,
the road is a lane-change with a lateral displacement of 8.5 metres occurring over
a track length of approximately 30 metres. The centerline of this road is repre-
sented by [4]

x, = 4.25erf((x¢ — 40) /11.3) +4.25 (20)

where erf denotes the integral of the Gaussian distribution function from 0 to X,
also known as the error function. The width of the road ranges from 1.8 to 2
metres.

2.5. Change of Independent Variable

To simplify the solution process of this optimal control problem, the independent
variable time t is replaced by a new independent variable s: the distance travelled
along the road centerline. In order to make this change, the relationship between
time and travelled distance along the road centerline has to be used

dt=ds/V ‘ (21)
where V denotes the momentary velocity of the car’s centre of gravity along the
road centerline. In determining the infinitesimal distance ds, it has to be taken into
account that this is not a constant but that its value depends upon the position of

the centre of gravity relative to the track, as shown in Fig. 2.
From Fig. 2, it is easily seen that the following relation exists

ds = ds' + dtan(b) (22)

where b is the angle between consecutive road centerline parts while the sign of

Velocity at centre of gravity

, \
d y left
b

P < S boundary
s
™ <road
N centeriine
' \right
ds boundary
ds

ds': distance between centerline points

ds: distance to be travelled

V: projection of velocity onto road centerline

d: distance between centre of gravity and road centerfine

Fig. 2. Schematic representation of road with velocity of centre of gravity and distance to be travelled.
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the last term in this expression is determined by the position of the centre of
gravity relative to the course of the road. Velocity V' is calculated by taking the
inner product of the centre of gravity’s velocity vector [xs, x¢]" and the unity
vector in the direction of the track centerline [r_, I, ' and reads

V=rX,+1,X5 (23)

To complete the change of independent variable, the equations of motions
expressed by Equations (1) through (7) and the functional from Equation (19) have
to be reformulated, using Equation (21).

The reformulated optimal control problem was solved by applying the Gradient
algorithm [8,9]. This algorithm calculates improved control functions based on the
linearization of the expanded cost functional around the current control and state
functions. It involves the backward integration of a set of first order differential
equations that yield the time-histories of the so-called Lagrange multipliers, which
guarantee the satisfaction of the equations of motion. These Lagrange multipliers
are then used to calculate new control functions that will cause the value of the
functional to decrease. The formulation of the optimal control problem presented
here and the Gradient algorithm were implemented in a computer program which
was executed on a workstation.

3. RESULTS AND DISCUSSIONS

Using the optimal control formulation of the problem under consideration, a
number of cases were simulated. Here, two of these cases are presented. The main
differences between these two cases lie in the different car configurations and
different entry speeds. In the first case, a rear wheel drive (RWD) car, with car
and tire data similar to that of a Formula One race car (see Tables 2 and 3), enters
the lane-change with a forward velocity of 30 metres per second. In the second
case, a front wheel drive (FWD) car, with car and tire data similar to those of a
medium-size passenger car (see Tables 2 and 3), enters the lane-change with a
forward velocity of 55 metres per second. To accommodate this high entry speed,
the entry section of the lane-change was extended by 30 metres.

The most important results of these two simulations are shown in Figs. 3 and 4,
respectively. Both figures contain five graphs. These graphs show as a function of
travelled distance along the lane-change centerline:

(1) the car’s center of gravity position and attitude relative to the road

(2) the front wheel steer angle

(3) the longitudinal force

(4) the slip angles front and rear

(5) the tire saturation, which is the ratio of generated and maximum tire forces
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In each graph, dividing lines are shown to indicate the transition from one stage
of the manoeuvre to another. The times the cars required to complete the
lane-changes were 3.35 and 3.46 seconds for the RWD and FWD cars, respec-

tively.

3.1. Rear Wheel Drive Car
The results obtained with the rear wheel drive car are discussed for the seven

stages (I to VII) indicated in Fig. 3.

Stage 1

Stage 11

Stage III

Stage IV

Stage V

Stage VI

Stage VII

The steer angle is increased to enter the car into the right-hand turn,
while the rear tires produce their maximum traction force (limited by
tire-road adhesion). The rear tires are saturated with longitudinal force
while the front tires are hardly saturated.

The steer angle is decreased in anticipation of the left-hand turn, while
the traction force is decreased to allow the rear tires to produce lateral
forces. The rear tires are saturated with a combination of lateral and
longitudinal forces, while the front tires are less saturated with lateral
force alone.

The steer angle changes sign as the car starts its transition from the
right-hand into the left-hand turn, while the traction force almost
vanishes to allow the rear tires to produce even greater lateral forces to
prevent the car from turning too far to the right. Both front and rear
tire saturation decreases.

The steer angle is increased to enter the car into the left-hand tum. As
soon as the front slip angle changes sign, the traction force suddenly
increases to its maximum value (limited by the driveline). In doing so,
the rear tires are instantly saturated with traction force, which causes
the rear lateral forces to almost vanish. This increases yaw velocity
and turns the car into the left-hand bend even more.

The steer angle is decreased to keep the car on the road, while the
traction force does not hold its maximum value to allow the rear tires
to produce lateral forces. The rear tires are saturated with a combina-
tion of traction and lateral forces, while the front tires are less
saturated with lateral forces alone.

The steer angle changes sign again; the corresponding steering wheel
angle would now be turned to the right in a left-hand corner, indicating
opposite-lock. In doing so, the car is prevented from turning too far to
the left at the end of the lane-change. The rear tires are saturated
considerably with a combination of lateral and longitudinal forces.
The steer angle is maintained, while the maximum traction force
(limited by the driveline) is applied. At the beginning of this period,
the driveline limit is decreased suddenly as a result of a necessary
gearchange. Rear tire saturation is caused by longitudinal force and
decreases because of the driveline limit and the increase of normal
force at increasing velocity. Front tire saturation is negligable.
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3.2. Front Wheel Drive Car .
The results obtained with the front wheel drive car are discussed for the eight
stages (I to VIII) indicated in Fig. 4.

Stage 1

Stage II

Stage III

Stage IV

Stage V

Stage VI

Stage VII

Stage VIII

The steer angle is increased to enter the car into the right-hand turn,
while a brake force (negative longitudinal force) is applied. This brake
force is less than the maximum brake force possible in order to allow
the front tires to produce sufficient lateral forces to enter the car into
the turn. All four tires are marginally saturated.

The steer angle is still increased to enter the car into the right-hand
turn, while the maximum brake force (limited by right rear-tire
adhesion) is applied. The right-rear tire is completely saturated with
the brake force, while the other tires are still marginally saturated.
The steer angle is decreased, while the longitudinal force switches
from maximum brake force to maximum traction force (limited by the
driveline). When the longitudinal force changes sign, the yawrate is
reduced to prevent the car from turning too far to the right. Tire
saturation increases except for the right-rear tire.

The steer angle changes sign as the car starts its transition from the
right-hand into the left-hand turn, while maximum traction force
(limited by the driveline) is applied. At the beginning of this stage, the
right-front tire is saturated almost completely, while the other tires are
saturated considerably. At the end of this stage, tire saturation de-
creases for all tires because of the decrease of lateral forces.

The steer angle reaches its maximum negative value and after that
decreases to prevent the car from turning too far to the left. The
traction force decreases to allow the front tires to produce sufficient
lateral force to enter the car into the left-hand turn and afterwards
returns to its maximum. At the beginning of this stage, tire saturation
clearly shows the transition from right-hand to left-hand turn. At the
end of this stage, all tires are saturated almost completely.

The steer angle is decreased, while the maximum traction force is
applied (limited by the driveline and left-front tire adhesion). Tire
saturation is almost complete for all four tires.

The steer angle is still decreased, while the traction force is slightly
decreased to allow the front tires to produce more lateral force to
prevent the car from running wide. At the beginning of this stage, tire
saturation is almost complete. At the end of this stage, tire saturation
decreases because of the decrease in lateral forces as the car heads out
onto the straight.

The steer angle vanishes, while the maximum traction force (limited
by the driveline) is still applied. Tire saturation decreases because of
the decrease in lateral forces as the car is almost running straight
ahead. -
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4. CONCLUSIONS

This paper presents a method to calculate the driver actions which are required for
a car to perform specified manoeuvres in as short a time as possible. This method
uses non-linear car and tire models, is based on the optimal control theory, and
uses the Gradient method to solve the resulting equations. Results are presented, in
which two different cars perform similar lane-changes which are defined by a road
the car is to stay on. Results clearly show different driving strategies for front and
rear wheel drive cars due to the significant effect of longitudinal force on tire
saturation. These results imply that the optimal control theory can be used to
optimize car handling by means of inverse simulation, when using non-linear car
and tire models.
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