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Abstract: Monitoring wine-growing regions and maximising the value of production based on
their region/local specificities requires accurate spatial and temporal monitoring. The increasing
amount and variability of information from remote sensing data is a potential tool to assess this
challenge for the grape and wine industry. This article provides a first insight into the capacity of
a multiway analysis method applied to Sentinel-2 time series to assess the value of simultaneously
considering spectral and temporal information to highlight site-specific canopy evolution in relation
to environmental factors and management practices, which present a large diversity at this regional
scale. Parallel Factor Analysis (PARAFAC) was used as an unsupervised technique to recover pure
spectra and temporal signatures from multi-way spectral imagery of vineyards in the Languedoc-
Roussillon region in the south of France. The model was developed using a time series of Sentinel-2
satellite imagery collected over 4978 vineyard blocks between May 2019 and August 2020. From
the Sentinel-2 (spectral and temporal) signal, the PARAFAC analysis allowed the identification of
spectral and temporal profiles in the form of pure components, which corresponded to vegetation
and soil. The PARAFAC analysis also identified that two of the pure spectra were strongly related to
characteristics and dynamics of vineyard cultivation at a regional scale. A conceptual framework was
proposed in order to simultaneously consider both vegetation and soil profiles and to summarise the
mass of data accordingly. This methodology allowed the computation of a concentration index that
characterised how close a field was to a vegetation or a soil profile over the season. The concentration
indices were validated for the vegetation and the soil over two growing seasons (2019 and 2020) with
geostatistical analysis. A non-random distribution of the concentration index at the regional scale
was assumed to highlight a strongly spatially organised phenomenon related to spatially organised
environmental factors (soil, climate, training system, etc.). In a second step, spatial patterns of indices
were subjected to the expertise of a panel of advisors of the wine industry in order to validate them in
relation to vine-growing conditions. Results showed that the introduction of the PARAFAC method
opened up the possibility to identify relevant spectro-temporal profiles for vine monitoring purposes.

Keywords: time series; multispectral imagery; remote sensing; folded methods; unsupervised
methods; expertise gathering

1. Introduction

The modern accessibility of remote sensing (RS) time series information for landscape
monitoring allows the study of large-scale evolutionary phenomena to be considered [1]. It
opens up the possibility of improving the understanding of dynamic processes, such as
changes in forests, agricultural crops, and land use. In particular, crop monitoring may
show temporal variability (different phenological growth patterns) due to either natural
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development variation or diverse crop-management decisions made by farmers [2]. Re-
cent relevant RS technologies that have emerged are compatible with the requirements of
agricultural applications (spatial resolution should at least be decametric and the revisit
frequency less than a week) [3]. There are various specific RS platforms (e.g., satellites,
Unmanned Aerial Vehicles (UAVs)) that offer interesting options in terms of image resolu-
tion and flight agility for crop monitoring. In the case of agriculture-focused studies using
RS, satellites have remained dominant in recent years [3]. This can be explained by the
presence of cost-free satellites, such as Sentinel-2, which is able to measure a sample (e.g., a
crop field) under various information sources (i.e., a combination of 13 spectral bands) with
a temporal repetition of the measurement (i.e., every 5 days). This allows information of
interest of the sample to be obtained for the assessment of various sample properties (e.g.,
physiological, structural, and phenological traits) and how these properties vary in space
and time [3].

However, all these technological developments also entail the need to develop method-
ologies to deal with the large volume and the complexity of data [4]. More specifically, the
assumption behind crop monitoring is that remotely sensed data represents the seasonal
vegetation signal in a meaningful way, and that the underlying vegetation variation is
comprehensively explored in the relationship of the spatio-temporal-spectral dimensions.
According to Kroonenberg et al. (2009) [5], the data resulting from this high-dimensional
approach, which simultaneously considers spatial, temporal, and spectral information,
have a three-way structure. In previous work, the common approach was to analyse the
three-way data after aggregating them one after the other or to handle them as only a
two-way data set [6]. For example, a widely used approach to mitigate high dimensionality
is to carry out feature extraction and/or feature selection [2], such as vegetation indices
(VIs) (e.g., the normalised difference vegetation index (NDVI)). In fact, in this example and
in the vast majority of studies that have reduced the high dimensionality of RS data for
agricultural applications, the analysis of dynamic phenomena, such as vegetation devel-
opment, has been limited to the study of the evolution of a VI over time. However, going
beyond this kind of classical approach can be interesting, not only from a temporal point of
view to identify temporal variations that may indicate seasonal changes in reflectance, but
also to explore spectral richness through changes in reflectance as a function of wavelength.
The risk in only using VIs to define the spectral characteristics of crops is that the other
wavelengths provided by the sensor, which could lead directly to the identification of an
object and/or its status in a more complete way, are ignored.

An additional issue, which is not widely considered, is the fact that these types of
feature extraction methods are typically calibrated using limited experimental observations.
Therefore, access to the large amount of information embedded within the RS data set
may be constrained by the representativeness of the calibration data set [7]. Consequently,
having more complete ground truth data sets, which are representative of various and
diverse agronomic variables (e.g., crop vigour/greenness, phenological stage, physical
canopy structure, and yield) that impact the RS signal are needed to validate the relevance
and interest of these higher dimensional spatio-spectro-temporal analyses. However, such
calibration data sets are rarely available due to the complexity of their acquisition. In
their absence, unsupervised, i.e., exploratory, data analysis methods are very useful in
situations characterised by little or no domain-specific knowledge, e.g., when analysing a
scene without any prior knowledge of the ‘ground truth’ [8].

Within the current alternatives proposed in the literature to address this challenge
for high-dimensional data, factorisation techniques are an important class [9]. One of
the several unsupervised decomposition methods that is known to be the simplest and
most restricted model available for higher order arrays, i.e., using the minimum number
of degrees of freedom compared to the other methodologies, is Parallel Factor Analysis
(PARAFAC) [10]. Although PARAFAC is referred to as a generalisation of the classical
Principal Component Analysis (PCA), in the former, there is no rotation problem, i.e., pure
spectra or unique profiles of a chemical component can be recovered from multi-way spec-
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tral data [11]. In practice, such methods take a high-dimensional data set and decompose
it into a (typically reduced) number of underlying trends in the observed data [9]. This
reduced dimension representation allows for the visualisation of temporal and spectral
signatures, which opens up the possibility of discovering the underlying principles that
guided the sample (field) responses over time [5].

It is important to note that this type of unsupervised approach has certain limitations.
Assuming that there is no access to a large number of agronomic variables to explain the
observed phenomena appropriately, it is important to contextualise the application of the
PARAFAC method on a sufficiently large spatial scale, such as a regional scale. The wide
heterogeneity of the environments that constitute a region, e.g., different soils, different
climates, and different cropping practices, can help to provide large variations, either
spatially and temporally, in relation to agronomic traits. In addition, given the scarcity of
ground truth data, it is necessary to proceed by other means to validate the relevance and
potential of the information extracted. To this end, as shown by Pichon et al. (2019) [12],
the evaluation of results through expert observations, as an alternative to what is normally
considered in scientific literature, allows for a more integrative and systemic validation
approach by taking into account local specificities such as crop characteristics and climatic
and meteorological conditions of the year.

Given that it is a new paradigm for agricultural monitoring to have so much RS data
available and available in near real time, it is important to explore, as comprehensively
as possible, all the information that RS can provide in terms of spectral, temporal, and
spatial dimensions. To answer this question, a holistic exploratory analysis was carried out
using the PARAFAC methodology applied to a time series of Sentinel-2 data concerning
viticulture in Southern France. To our knowledge, this is the first time that this type of
method from the field of chemometrics has been applied to a time series of RS multispectral
images. The specific objectives of this study were:

1. to propose a multi-way approach aiming to identify spectro-temporal profiles from a
time series of images, to assess the value of the approach for its potential to generate
knowledge in a viticulture case study, and to determine whether the spatial patterns
highlighted can be considered relevant with regard to the experts’ observations, and;

2. to address the possible limitations of the approach when dealing with large-scale time
series of multispectral images without ground truth data.

2. Materials and Methods
2.1. Notations

For N-way arrays, capitalised bold and underlined characters will be used, e.g., X
(I, J, K) indicates a 3-way array with I objects at J times described by K wavelengths. For
matrices, bold and capitalised characters will be used, e.g., X, and for vectors, a lower-case
bold character will be used, e.g., a. Upper-case and italics characters will be used for scalars,
e.g., the number of wavelengths, K and lower-case characters will be used for running
indices, e.g., ai is the ith element of the vector a.

2.2. PARAFAC Method

PARAFAC is used to decompose N-way arrays into distinct components. It is based on
an alternating least square (ALS) algorithm where the data signal is decomposed into a set
of trilinear terms and a residual array [13]. Following Ouertani (2014) [14], the PARAFAC
decomposition of a three-way array X is the decomposition in the form of the sum of a
minimum number of three-way arrays of rank one (Equation (1)):

X
ijk

= ∑F
f=1 ai f bj f ck f + E

ijk
i = 1, . . . , I; j = 1, . . . , J; k = 1, . . . , K; f = 1, . . . , F (1)

where Xijk is the reflectance value of the ith sample at the jth variable (temporal mode)
and at the kth variable (spectral mode). Each f corresponds to a PARAFAC component
and each such component has I a-values (scores); one for each sample. Each component
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also has J b-values as well as K c-values; one for each loading. The Eijk array is the
residual data, representing the variability not accounted for by the model. In addition,
a valid PARAFAC model provides an estimate of the pure spectra of the constituents of
the sample under study. It will also provide an information of the concentration of the
constituents over time, i.e., the components resulting from a valid PARAFAC model will
allow a direct interpretation of spectral dynamics. For example, the PARAFAC method is
widely used today in the analysis of multivariate data (structured in a three-dimensional
excitation emission matrix (EEM)) to quantitatively compare the content of fluorescent
organic compounds in samples [15]. The EMM-PARAFAC combination allows the division
of fluorescent organic compounds into several independent components according to
their unique properties and structures, which provides a basis for better understanding the
dynamic changes in fluorescent compounds [15]. A schema of the PARAFAC decomposition
of a three-way array is given in Figure 1.
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The PARAFAC model was run and validated following Anderson and Bro (2000) [16]
using the N-way Toolbox in MATLAB version R2015a (The MathWorks Inc., Natick,
MA, USA).

2.3. Case Study

Remote sensing data are characterised by several sets of information that are collected
as a time series. This type of multi-way data provides valuable spectral-temporal-spatial
information to characterise crops. In order to have a large variability of conditions, which
will be favourable for highlighting the traits of a particular crop, this study is focused at a
regional scale. Research at the regional scale allows, among other issues, the monitoring
of how different environmental and management conditions affect vegetation develop-
ment [17]. It also may provide insights on how an extreme climate event may affect
vegetation activity [18]. For this study, the region selected was the Languedoc-Roussillon
region of southern France where the principal cropping system is for winegrape production
(see the following section, study area).

For remote sensing applications in agriculture at the regional scale, recent studies have
demonstrated the potential of cost-free satellite imagery, such as Sentinel-2 satellites [19].
In terms of revisiting time and spatial and temporal resolution, Sentinel-2 satellite imagery
is well suited to the requirements of monitoring agricultural fields, with a high potential
to extract relevant agronomic information. Therefore, in this study, the decomposition
PARAFAC method was applied to vine cultivation at a regional scale using multispectral
times series from the Sentinel- 2 satellites.

2.3.1. Study Area

The study area corresponded to 4978 samples (vineyard blocks) extracted from the
graphical parcel register of France (RPG) from a large wine-growing region located in south-
ern France, the Languedoc-Roussillon (LR). The LR vineyards extend over approximately
27,400 km2, covering four French administrative sectors: Gard (A), Hérault (B), Aude (C),
and Pyrénées-Orientales (D) (Figure 2). The study area encompasses a great variability of
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pedo-climatic conditions and a great diversity of varieties, training systems, etc. [20]. It is
assumed that changes in the reflectance values from Sentinel-2 satellites over the 4978 vine-
yard block samples over time will provide agronomic insights that arise from differences
in the genotype–environment–management interactions between vineyards, locally and
regionally. Assuming that a unique solution can be expected if the Sentinel-2 data are
trilinear, i.e., that there is a relationship between the three-way structure of these data
(samples × times × wavelengths) this would imply that the true pure spectra can be found
if the correct number of components is used and the signal-to-noise ratio is appropriate [11].

Agronomy 2022, 12, x FOR PEER REVIEW 5 of 20 
 

 

2.3.1. Study Area 
The study area corresponded to 4978 samples (vineyard blocks) extracted from the 

graphical parcel register of France (RPG) from a large wine-growing region located in 
southern France, the Languedoc-Roussillon (LR). The LR vineyards extend over approxi-
mately 27,400 km², covering four French administrative sectors: Gard (A), Hérault (B), 
Aude (C), and Pyrénées-Orientales (D) (Figure 2). The study area encompasses a great 
variability of pedo-climatic conditions and a great diversity of varieties, training systems, 
etc. [20]. It is assumed that changes in the reflectance values from Sentinel-2 satellites over 
the 4978 vineyard block samples over time will provide agronomic insights that arise from 
differences in the genotype–environment–management interactions between vineyards, 
locally and regionally. Assuming that a unique solution can be expected if the Sentinel-2 
data are trilinear, i.e., that there is a relationship between the three-way structure of these 
data (samples × times × wavelengths) this would imply that the true pure spectra can be 
found if the correct number of components is used and the signal-to-noise ratio is appro-
priate [11].  

 
Figure 2. Location of the 4978 vineyard blocks within the study area in Southern France for the four 
administrative sectors: Gard (A), Hérault (B), Aude (C), and Pyrénées-Orientales (D). An example 
of vineyard blocks is provided with the addition of a red line on the inside indicating the 10 m inner 
buffer used to remove border effects (see Section 2.3.1). 

2.3.2. Remote Sensing Data 
The Sentinel-2 (A/B) satellites provide 13 spectral bands from the Visible (Vis) and 

Near InfraRed (NIR) to the shortwave infrared (SWIR) regions of the electromagnetic 
spectrum. They provide coverage of land surfaces on a global scale with a revisit fre-
quency of 5 days in cloud-free conditions with a spatial resolution of 10, 20, or 60 m de-
pending on the spectral band [21]. 

Sentinel-2 L2A data containing the study vineyards (Figure 2) were selected and pro-
cessed via the Google Earth Engine (GEE) platform. Prior to the calculation of the average 
pixel values for each vineyard block, each date and each waveband, a 10 m inner buffer 
was imposed over each block boundary (Figure 2) that was extracted from the RPG. This 
10 m inner buffer was used to prevent information from outside the block being integrated 
into the analysis [22]. Images from 1 May to 31 August in 2019 and 2020 were selected. 
This time period (from May to August) for both years of the study was considered as being 
the most relevant for monitoring vine vegetation in the study region [21]. Images contain-

Figure 2. Location of the 4978 vineyard blocks within the study area in Southern France for the four
administrative sectors: Gard (A), Hérault (B), Aude (C), and Pyrénées-Orientales (D). An example of
vineyard blocks is provided with the addition of a red line on the inside indicating the 10 m inner
buffer used to remove border effects (see Section 2.3.1).

2.3.2. Remote Sensing Data

The Sentinel-2 (A/B) satellites provide 13 spectral bands from the Visible (Vis) and
Near InfraRed (NIR) to the shortwave infrared (SWIR) regions of the electromagnetic
spectrum. They provide coverage of land surfaces on a global scale with a revisit frequency
of 5 days in cloud-free conditions with a spatial resolution of 10, 20, or 60 m depending on
the spectral band [21].

Sentinel-2 L2A data containing the study vineyards (Figure 2) were selected and
processed via the Google Earth Engine (GEE) platform. Prior to the calculation of the
average pixel values for each vineyard block, each date and each waveband, a 10 m inner
buffer was imposed over each block boundary (Figure 2) that was extracted from the RPG.
This 10 m inner buffer was used to prevent information from outside the block being
integrated into the analysis [22]. Images from 1 May to 31 August in 2019 and 2020 were
selected. This time period (from May to August) for both years of the study was considered
as being the most relevant for monitoring vine vegetation in the study region [21]. Images
containing clouds or shadows that altered the visibility of the blocks were removed from
the database. For this purpose, the spectral band 10 at 1380 nm was used for the detection
of visible and sub-visible cirrus clouds [23]. Approximately 25 images should have been
available on each vineyard block over the two years; however, because of local atmospheric
effects on the imagery, the final Sentinel-2 database consisted of 4978 vineyard blocks
containing 12 spectral bands and an average of 11 images (dates) per block.
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2.4. Modelling
2.4.1. Data Array Construction

Two PARAFAC models were derived from the data set of 4978 samples (vineyard
blocks), one for each year of the study, 2019 and 2020. To overcome the challenge of
heterogeneity in the number of images per block, an interpolation was performed to
obtain two continuous data cubes; X19 and X20. Interpolation using the Gaussian filter by
Alam et al. (2008) [24] was applied in order to have a consistent time step dimension (J)
between 1 May and 31 August for both years. The parameters involved in the interpolation
setting were fixed to the Gaussian filter width (P) = 30 days and date interval (N) = 5 days
to simulate the revisit time of the Sentinel-2 satellites [22]. At the end of the interpolation
step, the data set was meaningfully arranged in two three-way arrays X (X19 and X20) of
dimensionality 4978 (samples, I) × 25 (times, J) × 12 (wavelengths, K).

2.4.2. PARAFAC Model

A separate decomposition of the two arrays, X19 and X20, into trilinear components
was performed using the PARAFAC method. The trilinear model was found to minimize
the sum of squares of the residuals, Eijk in the model. Each component consisted of one
score vector and two loading vectors, i.e., temporal and spectral loadings. A PARAFAC
model of a three-way array, e.g., X19, was given by one score matrix A and two loading
matrices, B and C, with its respective ai f , bj f , and ck f (Figure 3). The parameter ai f is
the score of the ith sample of the f th component; bj f is the loading specific to reflectance
intensity at the time j of the f th component; and ck f is the loading estimate of the reflectance
spectrum k of the f th component. Essentially, the PARAFAC model provides an estimation
of the relative concentration, i.e., the relative amount of the f th component in each sample
(matrix A) and temporal and spectral properties of the components loadings matrices (B
and C respectively), which can be used to interpret the spectral dynamics of the constituents
of the samples. For 2020 (X20), the same PARAFAC decomposition scheme was used as
for 2019.
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where K represents relevant wavelengths, J represents time, and I represents the objects of interest,
vineyard blocks in this case. E corresponds to the residuals.

2.4.3. Component Selection

Several PARAFAC models, with the number of components in the models ranging
from one to five, were fitted to the data in order to determine the model with the optimal
number of components. A F-component model was validated following the Core Consis-
tency Diagnostic (CORCONDIA) of Bro (1997) [11]. The PARAFAC model is considered to
be valid if the value of the CORCONDIA is close to 100%. If the CORCONDIA value is
around 50%, the model is considered unstable, and if the value is close to 0 (even negative),
then it is considered that the data cannot be described by the tri-linear model [14]. The
CORCONDIA value will mostly decrease with the number of components. It decreases
very sharply after the optimal number of components is exceeded. Therefore, the appro-
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priate number of components is the model with the highest number of components and a
valid CORCONDIA value.

2.5. Validation of the Model

The PARAFAC models for both 2019 and 2020 were validated in two steps:

1. A geostatistical analysis (see next section) to test whether the score values were spatially
autocorrelated. The underlying hypothesis is that the environmental variables (soil,
climate, and associated training practices, etc.) that are likely to explain the differences
between blocks at the regional scale are spatially organised (not random). Consequently,
if score values resulting from the PARAFAC models are not randomly distributed at the
regional level, they are assumed to be related to environmental variables.

2. An assessment of the coherence of the spatial distribution of the score values against
expert knowledge of the diversity and spatial distribution of soil, climate, and vine-
yard cultural practices in the region. The objective of this second step was to identify
the relevance of the relationship between the scores and agri-environmental informa-
tion. In order to do so, an original approach based on placing the human, i.e., local
viticultural experts, at the centre of the study was conducted. Following the method-
ological framework of Pichon et al. (2019) [12], a global approach, a so-called ‘scenario
simulation’ [25], was used. In this method, external reliability can be considered valid
if the conclusions reached by different experts (at least two experts) coincide [26,27].
In order to facilitate the expert’s interpretation, maps of score values were produced
at the regional level. These maps were created by interpolating (see next section) the
scores observed on the 4978 vineyard blocks for each year (2019 and 2020) and for
each component (F) when spatial autocorrelation was observed.

2.6. Spatial Analysis and Mapping

The spatial analysis was based on the modelling of semivariograms, which allows for
a statistical assessment of how spatially autocorrelated the data (scores) are over space. It is
expected that the (semi)variance of points closer together will be lower if the data exhibits
spatial patterning. From the semivariogram modelling, the following parameters were
derived: C0 (nugget effect or semivariance at a distance approaching 0 m), C1 (sill or the
maximum semivariance observed), and A1 (the range (distance) at which C1 is reached).
The C0 and C1 parameters were first used to calculate the Cambardella Index [28] to deter-
mine the spatial dependence and then all three parameters were used in a kriging process
to obtain the score maps. The characterisation of the spatial structure via semivariograms,
as well as the realisation of the score maps, was performed using the GeoFis 1.0 software
(Open Source Software GeoFIS, http://www.geofis.org, accessed on 24 August 2022) [29].

Spatial auto-correlation of the score values of each component was assessed with the
Cambardella Index (Ic) [28] (Equation (2)):

Ic =
C0

C0 + C1
(2)

where C0 is the nugget effect and C1 is the sill of the semivariogram model. According to
Cambardella et al. (1994) [28], the following thresholds were used:

1. if Ic is less than or equal to 25%, the distribution is considered strongly spatially
organised (high auto correlation);

2. if Ic is between 25 and 75%, the distribution is considered moderately spatially organ-
ised; and,

3. if Ic is higher than 75%, the distribution is considered weakly spatially organised.

Score maps were obtained using point kriging interpolation [30]. The latter was
performed on a grid of points regularly spaced 1000 m apart within the geographical
boundary of the LR region [31].

http://www.geofis.org
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2.7. Experts Evaluation

Following Pichon et al. (2019) [12], 6 experts were selected. These 6 experts were
chosen in order to benefit from an integrated assessment of the results obtained over the
whole region, taking into account simultaneously their knowledge of plant development,
the cultural practices of the winegrowers in each part of the region, the soil and its variability,
etc. (see Supplementary Materials section).

In order to validate the experts’ consistency, they conducted a self-assessment of the
criteria considered important by the authors for the study (Table 1). In this self-assessment,
the experts ranked their perceived expertise on aspects of vineyard production, regional
viticulture practices, regional pedo-climatic knowledge, and RS expertise on a scale from
0 (none) to 5 (excellent). This information validated the choice of experts and was also used
to consider the importance of (i.e., weight) the different opinions expressed by different
experts during the working session. For example, less importance was assigned to the
opinion of expert A3 when assessing the scores in the Aude department due to A3 self-
identifying as having a poor knowledge of viticultural practices in this department.

Table 1. Description of the interviewed domain experts. Ratings range from 0 to 5, with 0 being the
minimum and 5 the maximum knowledge/expertise. The term Vegetation Indices is abbreviated
as VIs.

Experience Grapevine Cultivation Knowledge of Viticulture of the LR Region
Knowledge of
Pedo-Climatic

Characteristics of
the LR Region

Expertise with Remote Sensing
Images

Expert Vine
Physiology Irrigation Technical

Itineraries
Climate
Impact

Aude
(A)

Gard
(B)

Hérault
(C)

Pyrénées-
Orientales

(D)
Soil
Type

Micro-
Climate

Data Pro-
cessing VIs Resolution

Scale

A1 5 5 4 4 4 2 4 3 2 2 3 4 3
A2 4 3 3 3 3 3 4 4 3 3 4 4 4
A3 4 4 4 4 1 3 2 1 3 3 1 2 1
A4 4 5 4 4 4 4 4 4 4 4 4 4 1
A5 2 1 3 2 3 1 5 1 5 5 1 1 3
A6 4 5 5 4 4 4 4 3 4 3 3 5 4

A ‘scenario simulation’ session was conducted with experts on 31 May 2022. The
general workflow of the session is presented in Table 2. During the session, the score maps
were hand-delivered to each expert and projected on a screen managed by an animator
(zoom in and out) according to requests from the experts. These score maps were previ-
ously elaborated by adding characteristic elements (cities, watercourses, roads, etc.) that
would allow the experts to orientate themselves on the maps. It should be noted that an
explanation session of the meaning of the score values was necessary so that the experts
could understand the maps and interpret them in the best possible way using a colour
coding defined by the authors. Maps were displayed in QGIS 3.2.3 (Open Source Geospatial
Foundation, http://qgis.osgeo.org, accessed on 24 August 2022). Experts were asked to
first write down their opinions before oral group discussions. In the oral group discussion,
the animator wrote down the experts’ comments and reactions.

Table 2. Description of the general workflow of the ‘scenario simulation’ session.

Step 1 Step 2 Step 3 Step 4 Step 5

Duration 40 min 20 min 40 min 20 min 40 min

Type of session Individual
(written)

Individual
(written) Collective (oral) Collective (oral) Collective (oral)

Presentation
of maps

Once at time for
the year 2020

All together for the
2020 year

Once at time for
the year 2020

All together for the
2020 year

All together for the
years 2019
and 2020

It was agreed that the experts would react mainly to score maps derived from the 2020
data, because it was considered to be most representative of common crop–soil–climate

http://qgis.osgeo.org
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interactions in the region. In contrast, 2019 was assumed to present a specific atypical
behaviour (although interesting) as a heatwave strongly affected vine growth in the region
at the end of June. Score maps from 2019 were then presented in a second step as a
particular case study.

3. Results
3.1. Component Selection

Table 3 presents the results of fitting the PARAFAC model with different numbers of
components (1–5) to X19 and X20. With two components, the observed CORCONDIA and
explained variance values were 100–99.62% and 100–99.57% for 2019 and 2020, respectively.
For a higher number of components, the CORCONDIA values dropped significantly,
showing that the two-component model was the best for both years, as the appropriate
number of components corresponded to the model with the highest number of components
and a valid CORCONDIA value. Since a two-component model was validated according to
CORCONDIA, the results in Table 3 also justified the suitability of applying the PARAFAC
methodology assuming a trilinear structure in the presented data set.

Table 3. Results of the CORe CONsistency DIAgnostic (CORCONDIA) after fitting a series of models
using two to five components for the X19 and X20 databases.

Year Number of Components (F) CORCONDIA (%) Variance Explained (%)

2019 1 100 99.25
2019 2 100 99.62
2019 3 15.65 99.74
2019 4 −6.34 99.82
2029 5 −0.72 99.88
2020 1 100 99.20
2020 2 100 99.57
2020 3 11.15 99.68
2020 4 −0.23 99.79
2020 5 −0.44 99.85

3.2. Data Signal Decomposition

A two-component PARAFAC corresponds to two pure spectra of constituents. For
both PARAFAC models (2019 and 2020), the score in the matrix A (4978 × 2) contains
estimated relative concentrations in relation with both loadings (temporal × spectral) of the
two components in the 4978 samples. The matrix B (25 × 2) contains estimated temporal
loadings and the matrix C (12 × 2) estimated spectral loadings.

The spectral loadings (C) and the temporal loadings (B) for the two components
selected (Co1 and Co2) from the PARAFAC model of the years 2019 and 2020 are presented
in Figures 4 and 5, respectively.

Regarding component 1 (Co1) for both years, it was observed that the loading intensity
was characterised by an increase from the Visible (Vis) to the Near InfraRed region (NIR). It
should be noted, though, that in 2019 there was a slight drop in intensity between the wave-
lengths ranging from 700 to 1000 nm. Concerning Co2 for both years, the spectral loading
was characterised by: (i) a low intensity in red wavelengths (650–680 nm), (ii) the highest
intensity in the NIR range (785–875 nm), and (iii) a decrease in intensity in the short-wave
infrared region (1360–2200 nm). Taking into account that matrix C represents the pure
spectra and considering the type of case study proposed, the components were identified
as soil (Co1) and vegetation (Co2). Soil spectral reflectance is typically characterised by a
steady increase with wavelengths from the Vis to the NIR, except at 950, 1200, and 1350 nm,
where reflectance decreases [32]. As for the typical vegetation spectral reflectance, it exhibits
the following characteristics: (i) a low reflection in the blue (458–523 nm) and red wave-
lengths (650–680 nm), (ii) relatively more reflection in green wavelengths (543–578 nm),
(iii) reflectance in the NIR range (785–875 nm) is the highest, and iv) the short-wave infrared
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region (1360–2200 nm) is mainly characterised by less reflectance [33]. Given that grapevine
cultivation is seasonal and is a row crop, the PARAFAC model clearly identifies the mixture
of these two components. In fact, for both years, the Co2 spectral loadings represented a
‘reference’ vegetation profile (which refers to the notion of the pure spectra in chemometrics)
that probably included both vines and interrow grass/crops reflecting the typical signature
of healthy vegetation, while the Co1 spectral loadings represented a ‘reference’ soil profile
at the region level. It actually summarised different soil types across the region, probably
with different spectral characteristics. This may explain why the spectral loading identified
as soil followed a slightly different general trend than that described as a typical soil profile
by Khadse (2012) [32].
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Figure 5 presents the temporal loadings (B) for both 2019 and 2020 and both compo-
nents (Co1 and Co2). It was observed that the two components showed large differences
between them in their temporal loadings in the two consecutive years. Regarding Co1, in
2019 the intensity in its time profile decreased over time, while in 2020 it remained more
stable. Regarding Co2, its spectral profile in 2019 peaked between 17 and 27 of July, with a
slow decrease afterward, while for 2020 the Co2 showed a maximum around 11 and 26 of
June followed by a very steep decline later in the season. Indeed, the temporal loadings of
both years seemed to show that the Co2 intensity (vegetation) increased with the vegetative
development of the vine (June-July) and, conversely, Co1 intensity (soil) decreased with the
growth of the vine. In fact, the decreasing temporal profile of Co1 observed throughout
2019 reaffirms the hypothesis that it may be a compensatory profile of the vegetation at
certain times during the time period considered. For the record, 2019 was marked by a
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heatwave in late June that affected a significant part of the region, which may explain a
compensatory effect later in the season. With regard to Co2, the maximum peak of intensity
shifted between 2019 and 2020, moving forward by almost one month in 2020. This could
be explained if the time of vegetative development (phenological stages) of the vineyards
was different between the two years studied.

Given that the samples studied were vineyard blocks, the spectral and temporal
profiles indicate a ‘reference’ behaviour for each component (soil and vegetation) at the
regional scale, but each block may differ more or less from this ‘reference’ behaviour.
Thus, once the models were validated, the data could be examined with respect to the
variability of each component found, i.e., with respect to the values of the score matrix (A)
for both years.

3.3. Spatial Analysis and Characterisation

The score value maps (Figure 6) represent the spectro-temporal scores of each block in
relation to each component and its corresponding year, e.g., for Figure 6a, the estimated
concentration value of the Co1 (soil) component of each block is plotted in relation to its
spectro-temporal profile in 2019 at the regional level. Therefore, the score map for Co1 was
supposed to highlight blocks that were directly related (or counter-related) to the identified
spectro-temporal signature for the soil in 2019.

Table 4. Semivariogram parameters and spatial variability index for score values. A1 (Range), C0

(Nugget), C1 (Sill), and Ic (Cambardella Index).

Year Components Semivariogram Model A1 (Km) C0 C1 Ic (%)

2019
Co1 Exponential 6 0.067 0.079 45
Co2 Exponential 6 0.026 0.022 53

2020
Co1 Exponential 5 0.205 0.113 64
Co2 Exponential 5 0.145 0.086 62

The spatial organisation of the score maps for both years and for all the selected
components was confirmed by the semivariogram modelling (Table 4), which showed that
at least 40–50% of the variability was explained by a spatial phenomenon. The year and
component with the strongest spatial structure was the soil component (Co1) for 2019 with
an Ic of 45%. These results support the assumption that scores values were not randomly
organised, but spatially structured and likely to vary according to environmental variables.

The score maps obtained after kriging (Figure 6) show the spatial organisation of the
blocks that have: (i) a similar spectro-temporal profile (high scores) and (ii) a different
spectro-temporal profile (low scores) to the ‘reference’ spectral profile for each component
and year. Therefore, the greater the difference in the time spectral profiles, the lower the
scores, which were negative if they were opposite to the ‘reference’ spectro-temporal profile.
The spatial patterns for soil (Co1) between the two years were very similar, showing that
the same vineyard blocks had both high (light colour) and low (dark colour) score values in
the same areas for both years. Regarding the spatial patterns of vegetation (Co2) for both
years, a general trend of higher score values (light colour) in the northern part of the region
was highlighted. For other sectors, the spatial patterns were less similar between both
years. It should be noted that, for Co2, the spectral loadings (Figure 4) followed the same
profile in both years but, in contrast, the temporal loadings (Figure 5) showed a significant
temporal shift. This implies that the temporal dimension may have a major role in the
difference in score values for each vineyard block for both years, i.e., in the differences in
spatial patterns for each year represented.
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3.4. Comparaison of Cross-Observation by Experts

Regarding the spatial patterns for Co1 between 2019 and 2020, these were almost
identical (Figure 6a,b), and it was considered that the score map of Co1 for 2019 would not
provide any relevant information to the study for the experts. Therefore, the workflow of
cross-validation by experts focused first on the two 2020 components (Co1 and Co2), and
then the vegetation component (Co2) from 2019 was presented only for comparison with
2020. Table 5 presents the extent to which each type of observation was made by the expert
group for the 2020 year.

Table 5. Number of experts who made similar observation in each sector of the LR region for the Co1
and Co2 score maps for the year 2020.

Component Figure
Number Observations on Sector A Sector B Sector C Sector D

Co1 (Soil) Figure 7a Variation of pedological units 5 5 2 1
Figure 7b Variation of geological units 5 4 4 0

Co2
(Vegetation)

Figure 8a Differences in grape varieties
(phenology) 4 2 3 1

Figure 8b Variation of vine vigour 2 1 3 1
Figure 8c Presence/absence of

irrigation 4 4 1 1
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It clearly appears that a significant number of experts made similar observations on
Sectors A and B of the LR region. Moreover, more expert observations were related to Co1
than to Co2. This result can be explained by the scale of the study, where vegetation hetero-
geneity may be more difficult to analyse properly by the experts given the large diversity
of situations. Experts were obviously more comfortable with identifying and explaining
differences in spatial patterns within sectors that they were familiar with. Figure 7 shows a
summary map of each type of observation for 2020 made by the group of experts related to
Co1 for each sector.
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The observations made by individual experts coincided in the vast majority of cases
with at least one other expert. Therefore, if at least two experts were in agreement, the
relevance of the identified area was considered valid, according to Wacheux (1996) [25].
Concerning the soil units (Figure 7a), experts identified that the spatial patterns were
related to the depth of the soil. In terms of colour range, it was perceived that the darker
areas could represent valley and coastal soils, e.g., fluviosols, as well as calcareous soils.
The former are soils containing mostly coarse elements (gravel, pebbles, stones, etc.) with
a thickness >0.50 m and the latter are defined as medium to thick soils (>0.35 m thick),
developed from calcareous materials. By comparison, the lighter zones (less distinct from
a visual point of view) could represent mineral soils, e.g., rankosols or lithosols, which
are characterised by a thickness of <0.30 m. It should be noted that this spatialisation of
the different geological units was directly related to the information on the soil available
water capacity provided by four experts. Regarding Figure 7b, some major geological
formations within the LR region were largely commented on by five of the experts. Three
clear boundaries between the two colours were observed and are outlined in sectors A-B-C
of the map.

Regarding Figure 8 (Co2), it should be noted that the colour coding does not always
represent the same phenomenon, but rather differences when compared to the ‘reference’
spectro-temporal profile for 2020. That is, the yellow vineyard blocks represent a spectro-
temporal profile very similar to the ‘reference’ vegetation profile extracted by the PARAFAC
method. In contrast, the blue vineyard blocks represent plots that differ from the ‘reference’
spectro-temporal profile of the vegetation. Therefore, as these colour variations may be due
to differences in the spectral and/or temporal profiles in relation to the ‘reference’ profile,
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there were some inconsistencies in the experts’ interpretation of the meaning of the colour
codes. A clear example was the comments on the phenological state of the vineyards by
sectors in Figure 8a. Each of the areas highlighted in Figure 8a was selected by the experts
as characteristic of late growth vineyard development, but the colours were different in
each area. These inconsistencies could be explained, not by the late phenological stage,
but by the different grape varieties selected and adapted to this late growth in each sector,
e.g., a predominance of Chardonnay in sector A and a predominance of Mourvèdre in
sector C. Since the grape varieties were different, different management practices, different
training systems, etc., could be involved, and thus explain why on some maps the observed
trends and the resulting agronomic interpretations were difficult to interpret.
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the stability of this component from one year to another, and the temporal stable factors 
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Figure 8. The interpolated 2020 Co2 map overlayed with summary information (Table 5) that was
identified by multiple experts and associated with effects attributed to: (a) the different grape variety
(phenology effects), (b) variations in vine vigour, and (c) the presence/absence of irrigation. Light
colours represent high score values and dark colours represent low score values for Co2. Areas of the
experts’ observations are highlighted in red squares.

Concerning Figure 8b, certain spatial structures, which were characterised by high/low
vine vigour, were commented on by a minority of the experts. A possible explanation given
by one of the experts focusing on sector A was the presence of the distinct denomination
areas that characterise the different vineyards. In particular, the yellow area corresponded
to the Protected Geographical Indication (PGI) label and the blue area to the Protected
Designation of Origin (PDO) label. Two different identifications imply different yield
objectives, soil cultivations, grape varieties, and management practices. The latest observa-
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tions made by the experts are shown in Figure 8c and concern zones where irrigation is
available through regional facilities. The experts largely addressed these observations for
sectors A and B.

For the final step of the workflow (Table 2) it was decided to present only the score
map from 2019 for the vegetation component (Co2) as the score map of the Co1 confirmed
the stability of this component from one year to another, and the temporal stable factors
(mainly related to soil) that it is related to. Therefore, when comparing the two years for
the Co2 component, the experts observed the same spatial patterns but noted that these
were less pronounced in 2019 (Figure 9a). This attenuation of the yellow colour, associated
with higher score values, could be justified by the heatwave episode from 23 June to
8 July in 2019 that was experienced in the LR wine-growing region. The heatwave would
have homogenised the differences between vineyards and, therefore, the corresponding
spectro-temporal profiles.
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4. Discussion

A remote sensing time series study for the regional characterisation of vineyard blocks
was provided by the application of the PARAFAC algorithm. Results showed both the
potential and the limitations provided by the application of an unsupervised complex data
analysis method focusing on grapevine production at the regional scale. The validated
application with a practical framework of expert winegrowers’ opinions demonstrated both
the complexity and the added value of considering the feature approach in the temporal
and spectral dimensions for interpretation purposes to identify relevant region/local
characteristics in a grapevine context.

In order to analyse a time series of multispectral images to assess the value of simulta-
neously considering spectral and temporal information over the LR wine-growing region,
the PARAFAC method was used to address the issue of analysing the three-way Sentinel-2
data sets in two distinct years, 2019 and 2020. It should be noted that a trilinear structure
was assumed a priori in the analysis of the data sets. This assumption could be partly
accepted because the fit of the data obtained was satisfactory according to the CORCON-
DIA criterion (100% for both years) and because the shape of the spectro-temporal profiles
obtained was coherent from an agronomic point of view. Several authors, including De
Juan and Tauler (2001) [34], have established that methods based on the trilinear structure
assumption will fit the data less efficiently than others that do not, such as Tucker3 [35]
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or Multivariate Curve-Resolution Alternating Least Squares (MCR-ALS) [36]. Indeed, the
more ambiguous solutions given by Tucker3 and MCR-ALS through bilinear decomposi-
tion are balanced by the greater flexibility in modelling the shape of the profiles, which also
leads to a feasible physical and chemical interpretation of the results [37]. However, the ap-
plicability of these kind of methodologies, which assume linear relationships in the data, is
basically unknown in remote sensing scenarios. This is because the definition of the compo-
nent, i.e., soil, vegetation, etc., and the image acquisition conditions will sometimes justify
the assumption of a certain variability in the spectral signatures of the components [38].
Therefore, the non-linear unmixing, which is essentially the usual approach used in remote
sensing, is often solved using deep learning methods [38]. Regardless of this claim, the
PARAFAC decomposition accurately modelled soil dynamics and vegetation dynamics
for both 2019 and 2020. The interpretability of the spectro-temporal profiles was useful
to understand the variation of the spectral response of crops (soil-vegetation dynamics)
over time.

Since the PARAFAC decomposition allowed for unique solutions to be obtained,
i.e., pure spectra, the modelling was considered relevant for the study of the temporal
dynamics of vineyard blocks at the scale of the region. However, it is essential to place the
results presented in this paper within the reality of large-scale unsupervised case study
data. It was apparent that the study of such variable samples that are representative of
a large geographical area has limitations related to the reliability of the validation. To
overcome this challenge, Wacheux’s (1996) [25] ‘scenario simulation’ was used, where
if at least two experts confirmed that there is some logic in the observations, then these
observations are considered valid. The proportion of different experts who made the same
observation for each score map for the year 2020 can be considered a reliable indicator of
the representativeness of the findings and may validate the relevance of the approach in
highlighting relevant agronomic information. The observations were not made in the same
proportion or in the same detail for the different sectors of the LR region. Table 5 clearly
shows that almost all the observations in sector D were made by only one expert. This
does not question the approach, but given the observations of the selected experts, it is
to be expected that the conclusions from sectors A, B, and C were more consistent than
those from sector D, where only one expert had in-depth knowledge. However, it should
be highlighted that the ‘external reliability’ of this study refers to the LR region and that
the same validation framework would have been approached differently, i.e., with experts
from other regions or different countries, if a different scale of study had been defined.

Chemometric data analysis methods use very little a priori knowledge. Instead, they
provide parameters that give insight into the system, such as its intrinsic dimension or
the loadings that describe it. However, their relevance must be verified by numerical
criteria and the user’s expertise. Thus, for the PARAFAC method, the number of factors
is a result of the decomposition. It must be chosen by successive trials of increasing size,
examining criteria, such as CORCONDIA, and also examining the relevance of the loadings
produced. For other factorial methods, such as PCA [39], PLS [40], or MCR-ALS [36],
the explained variance, prediction error, or lack of fit will be examined respectively. In
analytical chemistry, the systems are often simple. In these cases, some priors can be useful
for the calculation of the model. In agriculture, situations are often very complex, and
it is difficult to constrain the model. Therefore, the result of the model must be verified
a posteriori.

The main limitation of the PARAFAC methodology in relation to its application with
Sentinel-2 satellite data at a regional scale is that it required a temporal interpolation
step prior to the analysis in order to create a continuous data cube. However, this step
necessarily involved a smoothing of the spectral data, which could lead to the removal
of relevant information for crop monitoring. In addition to the methodological limitation
mentioned above, there was also an important limitation within the expert’s validation
framework used. Indeed, the spatial representation of a single score value summarising
the whole growing season (the same colour code represents in reality a large variety of
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phenomena), probably added complexity to the interpretation by experts of areas related
to ‘real’ soil or vegetation dynamics. However, according to the experts, the PARAFAC
analysis highlighted different, relevant zones according to their knowledge. From the
differences in the score value maps, different spatial patterns were visually highlighted
that could potentially reveal some interpretative clues depending on the situation of the
vineyards (geographical area, soil characteristics, and soil water capacity), the different
phenological stages of the vineyards (different denominations area, grape variety, and
management practices), and the impact of the use of irrigation in certain areas.

The validation of the results was only performed at the regional scale with a group of
experts able to integrate a wide range of knowledge (soils, crops, climates) to analyse the
relevance of the information obtained. It is likely that similar analyses conducted at finer
scales will identify new information and perhaps even interesting links to new agronomic
information. However, the availability of such experts, at both regional and local scales, to
perform this validation is a potential limitation of the approach. In their absence it will be
difficult to correctly extract and identify the various agronomic and pedo-climatic effects
from the model outputs.

Concerning the year 2019, the validation by the expert group focused only on the vege-
tation component, highlighting its similarity, i.e., same spatial patterns with the subsequent
year. The main observation was the attenuation of the high-value zones in 2019, which
raised the hypothesis that the crop-heatwave interaction caused the homogenisation of the
reflectance signal, creating a less differentiated spatial distribution of vine vigour at the
regional scale in 2019, i.e., fewer strong concentration values (yellow colour). However, no
sudden variations in the profiles were observed, as would be expected as a consequence of
the impact of an extreme weather event. This could also be attributed to the fact that the
temporal interpolation performed may have masked this punctual variability.

The unsupervised approach (PARAFAC) presented here represents a specific applica-
tion case for the LR wine-growing region in 2019 and 2020. In view of the results, it is a type
of approach that can be effective for spatialising and characterising phenomena with a tem-
poral evolution, e.g., the spectral response of the vine canopy, providing spectro-temporal
‘fingerprints’ that are capable of highlighting differences in behaviour. However, in this
particular case study, probably as a consequence of the resolution scale, its application is
dependent on a posteriori expert knowledge of the observed phenomenon, thus limiting
its applicability.

5. Conclusions

The work conducted in this study showed the potential of an appropriate three-way
data resolution methodology, such as PARAFAC, in the analysis of remote sensing images
time series. The results obtained from data collected over two cropping years (2019–2020),
on 4978 vineyard blocks showed that the PARAFAC method provided relevant information
on temporal spectral profiles, which, in turn, allowed the spatial characterisation of the
LR wine region. The validation of the results was based on expert observations. Although
this can be seen as a limitation, the practical approach of experts demonstrated that the
application of specific methodologies for the resolution of complex three-way data can be
optimised at various levels and be potentially useful for understanding and characterising
viticulture at the regional scale. Elements extracted from the PARAFAC method, such as the
relationship with the landscape, the irrigation areas in relation to the soil characteristics, and
the spatial footprint of the soil water capacity seen as an indicator of biomass production
over the season, have given the authors new insights into elements to be investigated in
more detail. However, the requirement to have a continuous cube can be a limiting factor
in characterising isolated episodes that affect the crop growth during the year.

The proposed methodology is potentially transferable to other resolution scales. In
fact, for the effective characterisation of the specificity of the spectral temporal response
of agricultural-related factors at other scales, the spatial segmentation elements (different
spectral time zones) highlighted by the PARAFAC methodology and identified by expert
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observations would be appropriate as a starting point. It is assumed that the methodology
is equally transferable to other regions and other cropping systems, although the resulting
inferences will be very different.
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