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ABSTRACT 

Both safety and the capacity of the roadway system are highly dependent on the 

car-following characteristics of drivers. Car-following theory describes the driver 

behavior of vehicles following other vehicles in a traffic stream.  In the last few decades, 

many car-following models have been developed; however, studies are still needed to 

improve their accuracy and reliability.  

Car-following models are a vital component of traffic simulation tools that 

attempt to mimic driver behavior in the real world.  Microscopic traffic simulators, 

particularly car-following models, have been extensively used in current traffic 

engineering studies and safety research. These models are a vital component of traffic 

simulation tools that attempt to mimic real-world driver behaviors. The accuracy and 

reliability of microscopic traffic simulation models are greatly dependent on the 

calibration of car-following models, which requires a large amount of real world vehicle 

trajectory data.  

In this study, the author developed a process to apply a stochastic calibration 

method with appropriate regularization to estimate the distribution of parameters for car-

following models. The calibration method is based on the Markov Chain Monte Carlo 

(MCMC) simulation using the Bayesian estimation theory that has been recently 

investigated for use in inverse problems. This dissertation research includes a case study, 

which is based on the Linear (Helly) model with a different number of vehicle trajectories 

in a highway network.   
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The stochastic approach facilitated the calibration of car-following models more 

realistically than the deterministic method, as the deterministic algorithm can easily get 

stuck at a local minimum. This study also demonstrates that the calibrated model yields 

smaller errors with large sample sizes. Furthermore, the results from the Linear model 

validation effort suggest that the performance of the calibration method is dependent 

upon size of the vehicle trajectory. 
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NOTATIONS 

C  Velocity transformer to an observable quantity 

 qv  Observed field data 

q  The vector of model parameters of length k 

k  Number of element of vector parameter 

 qP  The prior distribution of q 

 d  Actual distribution of m 

q  P( d | )  Conditional probability of the observation given the cause q 

q  P( | d )  Conditional probability of possible cause given that some effect 

 has been observed 

n  Follow vehicle 

1n -  Lead vehicle 

 na ( t )  Acceleration of vehicle n at time t 

1n-a ( t -T )  Acceleration of vehicle n-1 at time t-T 

   nD t  Desired distance factor 

 nv t  Speed of vehicle n at time t 

 1  n-v t  Speed of vehicle n-1 at time t 

 1  n-v t -T  Speed of vehicle n-1 at time t-T 

 v t -T  Speed difference respectively of vehicle n and n-1  

 x t -T  Position difference respectively of vehicle n and n-1 
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CHAPTER ONE 

INTRODUCTION 

 

1.1 Overview of Calibration of Car-Following Models 

As one of the fundamental concepts in transportation, the car-following theory 

includes the essential element of a traffic stream, the behavior of one vehicle following a 

preceding vehicle. Such behavior is a cumulative outcome of a series of factors, such as 

the psychological and physical state of the driver, the conditions of the traffic stream, and 

the performance of the vehicle. Therefore, the car-following theory has received attention 

in areas such as human factors, traffic flow theory and vehicle dynamics. With the higher 

computing capacity available today, a number of widely used traffic simulation tools 

utilize various car-following theories to mimic microscopic interactions between vehicles 

(Brackstone and McDonald, 1999). The automotive industry, which first initiated the  

development of car-following models for vehicle design purposes (Chandler et al., 1958),  

also studied and utilized car-following theory for a variety of other reasons,  such as for 

understanding the human factor in Adaptive Cruise Control (Vahidi and Eskandarian, 

2003). Work on car-following theory can be traced back to 1950s (Brackstone and 

McDonald, 1999). 

Recently, more attention has been given to the calibration of car-following 

models, especially with real-world data. By utilizing modern sensing, tracking and data 

collection technologies, vehicle trajectory data, which is important for the calibration of 

car-following models, can be obtained with high accuracy. For instance, under the Next 

Generation Simulation (NGSIM) project, high-resolution vehicle trajectory data was 
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collected with a digital video camera and analyzed using vehicle detection/tracking 

software for several freeways, highways and urban arterials (Interstate 80 Freeway 

Dataset, 2006). 

Several studies attempted to calibrate car-following models with different data 

sets. Schultz and Rilett (Schultz and Rilett, 2004) examined a methodology to obtain the 

calibration factors of  car-following models from the distribution of a parameter  obtained 

through microscopic traffic simulation. The application of such methodology on IH-10 

eastbound in Houston, Texas indicated the efficacy of the methodology on the 

macroscopic level; however the performance in the microscopic level is unclear. Kesting 

and Treiber (2008) calibrated two car-following models with empirical vehicle 

trajectories by minimizing the error between trajectory data and the values predicted by 

the models. This study yielded errors that ranged from 11% to 29% and also indicated 

that intra-driver variability accounts for a larger part of the error than inter-driver 

variability does. Hoogendoorn and Hoogendoorn (2010) proposed a genetic calibration 

framework that can estimate the parameters statistically by utilizing multiple trajectories 

simultaneously.  

1.2 Parameter Estimation of Car-Following Models 

Recently, few researchers studied parameter estimation of car-following models, 

in which parameter estimation of various car-following models was conducted with a 

deterministic framework. The model parameters were estimated by minimizing a cost 

function, i.e., the output least square with a data fitting term and a Tikhonov 

regularization term. This method guarantees a solution near the nominal value of the 

parameters. Minimization techniques, particularly the Levenberg-Marquardt method, 
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were used to solve for the minimum norm solution near a nominal value. A deterministic 

approach can estimate an average parameter value; however, often the optimization 

routine might get stuck at a local minimum. Global deterministic minimization methods 

for parameter estimation of car-following models are very challenging due to the ill-

posed nature of the inverse problem. In deterministic methods, the minimization 

approach involved estimating the parameters primarily to find the average value of the 

parameters. 

1.3 Motivation for New Calibration Method 

The calibration process using the deterministic minimizing approach involved 

estimating the parameters to find the average value of the parameters. On the other hand, 

if one can estimate the distribution of each of the car-following model parameters, then 

the aggregate behavior of a large number of cars can be better simulated. The statistical 

parameter estimation approach can also quantify uncertainty in the parameters, which can 

be particularly useful for calibration purposes.  

Therefore, in this thesis, a Bayesian framework is developed with appropriate 

regularization for estimation of the statistical distribution of the parameters of car-

following models. Then in order to prove the efficacy of the proposed approach, a 

Bayesian framework was applied to a specific car-following model to provide a 

comparison with the deterministic approach. Current work presented in this thesis is 

based on the Markov chain Monte Carlo (MCMC) method that uses Bayesian estimation 

theory. Bayesian estimation theory has been recently investigated for inverse problems 

(Kaipio and Somersalo, 2005). 
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1.4 Objectives of the Research 

The objective of this research is to develop a process for applying a stochastic 

calibration method to estimate parameters of linear car-following models and to apply the 

process to a car-following model as a case study. In order to prove the efficacy of the 

proposed approach, a synthetic dataset was used to estimate the parameters of a linear 

model with both normal and uniform prior distribution of the parameters. The calibration 

method was then applied to a relatively simple car-following model: the linear (Helly) 

model. In addition, this thesis includes a validation of the calibrated car-following model 

with real world vehicle trajectory data.   

1.5 Organization of Thesis 

Chapter 2 presents a review of different car-following and lane-changing models 

and summarizes the major parameters considered in each of these models, while Chapter 

3 outlines the method for the development of the process of the stochastic calibration and 

validation. In Chapter 4, the results of detailed statistical analysis are presented. Finally, 

Chapter 5 presents conclusions and recommendations. 
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CHAPTER TWO 

REVIEW OF CAR-FOLLOWING AND LANE-CHANGING MODELS 

   

2.1 Introduction 

Commonly known car-following models can be classified into five common 

groups: the Gazis-Herman-Rothery (GHR) model, the Collision Avoidance (CA) model, 

the Linear Model, the Fuzzy-logic-based model, and the Optimal Velocity (OV) model 

and its variations (Panwai and Dia, 2005 and Brackstone and McDonald, 1999). Car-

following models along with their advantages and disadvantages are discussed in this 

chapter.  

Although lane-changing models are out of the analysis scope of this thesis, car-

following and lane-changing models collaboratively describe traffic flow at both 

microscope and macroscopic levels. As lane-changing models are an integral part of 

traffic flow along with car-following models, this chapter also discusses existing lane-

changing models. 

2.2 Car-Following Models 

Car-following models mathematically describe the behavior by which drivers 

follow the preceding vehicle in a traffic stream (Brackstone and McDonald, 1999). These 

mathematical expressions are validated and refined with collected traffic measurements. 

Within the traffic stream, a driver’s reaction time is defined as the elapsed time 

between any changes made in the predecessor vehicle and the driver’s subsequent 
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response in reacting to changing headway.  In other words, this reaction time is caused by 

the fact that a certain amount of time elapses before the driver notices the difference. By 

integrating the car-following behavior with respect to time, the behavior of the traffic 

stream can be presented by individual driver responses. This integration also serves as the 

foundation of traffic flow diagrams, the flow rate q and the speed u as a function of the 

density k (Reijmers, 2006). Therefore, the formulas used to describe the behavior of 

individual drivers can be used to derive a criterion for the stability of the traffic stream. 

The basic formula to describe the reaction time of the individual car-following behavior 

is as follows (Reijmers, 2006):  

Reaction (t +T) = Sensitivity × Stimulus (t) 

Based on the sensitivity of each individual driver, a reaction to a stimulus at time t 

occurs after a reaction time T, resulting in acceleration or deceleration of the vehicle. The 

driving task is relatively easy when there is no preceding vehicle; the driver just needs to 

maintain his or her desired speed. When a preceding vehicle exists, however, the driver 

needs to keep a desired distance (headway) between vehicles, which is related to the 

speed of the vehicle and the speed difference between vehicles. The driver controls the 

vehicle via accelerating or braking, changing speed with respect to time (
     )in other 

words, with his/her perception. Therefore, the car-following model can be expressed as 

      (       )  
There are six commonly used car-following models, including: Gazis-Herman-

Rothery (GHR) model, Collision Avoidance (CA) model, Linear Model, Fuzzy-logic-



 
 

7 
 

based model, Optimal Velocity (OV) model and Meta models. The following section 

summarizes the major parameters considered in each of these models. 

 

2.2.1 Gazis-Herman-Rothery (GHR) model 

The GHR model is one of the oldest and most well-studied models, the basic 

formula of which is shown in below. 

  ( )      ( )   (   )   (   ) 
In the formula, an (t) and v n (t)  are the acceleration and velocity for vehicle n at time t 

respectively; Δv and Δx are the speed and position difference respectively of vehicle n 

and (n-1); T is the reaction time of driver; c, m and l are the parameters to be calibrated. 

Many works have been undertaken on calibrations  (Brackstone and McDonald, 

1999) since 1958. After 1972, most of these calibrations were performed for specific 

traffic or driving conditions because these parameters were known to likely vary between 

different conditions. This variance is also one of the reasons for the lack of further 

investigation on the GHR model, especially after 2000. 

2.2.2 Collision Avoidance (CA) model 

The mathematical formulation of Collision Avoidance (CA) model proposed by 

Kometani and Sasaki (Kometani and Sasaki, 1959) is shown in below. 

   (   )         (   )       ( )     ( )     

Where v n and v n-1 are the speed of vehicle n and (n-1); Δx is the relative distance between 

vehicle n and (n-1); T is the reaction time; α, β1, β and b are the constants to be calibrated.  
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Of the several variations reported  (Panwai and Dia, 2005), the Gipps model (Gipps, 

1981) is perhaps the most important and widely used simulation model ( Panwai and Dia, 

2005 and Brackstone and McDonald, 1999).  

2.2.3 Linear (Helly) Model 

The Linear, or Helly model, which was developed from the GHR model, is the 

third model shown in below. 

  ( )      (   )    {  (   )    ( )} 
  ( )      (   )     (   ) 

Here, an (t) is the acceleration of vehicle n; Δv and Δx are the speed and position 

difference respectively of vehicle n and (n-1); T is the reaction time; Dn (t) is the desired 

following distance. In addition, C1, C2, α, β and γ are the constants, whose calibration is 

the main difficulty of this model ((Panwai and Dia, 2005). 

2.2.4 Fuzzy-Logic-Based Model 

The application of the fuzzy logic model to the car-following theory occurred in 

the 1990s.  The first attempt was to apply fuzzy rules on the GHR model Kikuchi and 

Chakroborty, 1992). This kind of model is unique because the human driver is a fuzzy 

system rather than a precise machine, and thus, more likely to represent real human 

driving behavior. However, it is difficult to calibrate the membership function, which is 

the most important part of the model (Brackstone and McDonald, 1999). Research has 

been conducted in this area. Brackstone et al.  (Brackstone and McDonald, 2002) 

investigated this subject using the road subjectivity test and Chakroborty and Kikuchi 
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(Chakroborty and Kikuchi, 1999) calibrated the membership function in the fuzzy 

inference system by transforming it into an artificial neural network.  

2.2.5 Optimal Velocity (OV) Model and Its Variations 

Although the OV model, created by Bando et al.  (Bando et al., 1995) in 1995, has 

been in existence for almost two decades, the real promise of this model has only recently 

been realized. In the original OV model, the acceleration of a vehicle is the function of 

the difference from the optimal speed and driver sensitivity. 

   ( )    [ (   ( ))    ( )] 
In the formula, v n is the speed of vehicle n; k is the sensitivity of the driver; and V is the 

OV function suggested by Helbing and Tilch  (Helbing and Tilch, 1998) . This is 

expressed as  

 (  )           [   (     )   ]  
where Δx is the relative distance between vehicle n+1 and n; lc =5m is the length of the 

vehicle; V1 = 6.75 m/s, V2 = 7.91 m/s, C1 =0.13 m−1 and C2 = 1.57.  The OV model is 

unique in that it represents real traffic flow characteristics including stop-and-go traffic 

and the evolution of traffic congestion (Gong et al., 2008). However, unrealistic 

acceleration and deceleration also occurs when compared with field data  (Peng and Sun, 

2010).  Basically, this model uses mathematical trigger functions because V is a phase 

transition model.  
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2.2.5.1 Generalized Force (GF) Model 

The GF model was developed by Helbing and Tilch  (Helbing and Tilch, 1998) as 

the successor to the OV model. In this model, they use the negative speed difference, as 

shown below.    ( )    [ (   ( ))    ( )]     (    ( ))   ( ) 
 Here, H is the Heaviside function; λ is a sensitivity coefficient; Δv is the speed 

difference of vehicle n and (n+1). The change in the GF model improves data agreement. 

2.2.5.2 Full Velocity Difference (FVD) Model 

The FVD model considers the full range of velocity difference rather than only 

the negative part. The model is shown below. 

   ( )    [ (   ( ))    ( )]        

This FVD model is an improvement over the GF model in that it contains a better 

description of the startup process (Jiang et al., 2001) 

2.2.6 Meta-models 

Wiedemann (Wiedemann, 1974) created four categories or situations of driving 

(Treiber and Kesting, 2006) : Free Driving, Regulating, Stable Following and Braking.  It 

is also called the Action Point (AP) model, assumes that a certain reaction will occur if a 

threshold is reached. 

      (       ) 
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In 2006, Treiber et al. (Treiber and Kesting, 2006) proposed a generalized model 

for all continuous models in which acceleration is a function of its own speed, relative 

distance and relative speed. This model consists of four elements: (1) finite reaction 

times, reaction time is not a multiple of the update time interval but a linear interpolation 

they proposed; (2) estimation errors, relative distance and relative speed are modeled as 

stochastic due to the differences in observation ability; (3) temporal anticipation, by 

being aware of their finite reaction time, drivers anticipate traffic conditions including 

future distance and future speed; (4) spatial anticipation, where the interactions between 

several vehicles downstream are considered.  

2.3 Lane-Changing Models 

Driving tasks are conducted depending upon two fundamental considerations: 

maintaining a desired speed, and remaining in a lane for either downstream turning or 

passing maneuvers; the latter is usually described by lane-changing models 

mathematically. Lane-changing maneuvers consist of three critical driving behaviors: 1) 

lower-level control such as steering, acceleration, 2) monitoring which indicates 

awareness to maintain a situation, and 3) the decision to change lanes. The following 

sections summarize a detailed review of existing lane-changing models. 

2.3.1 Classification of Lane-Changing Models 

With the technological advancements for reliable traffic data collection, the lane-

changing modeling has received increasing attention since the early 1980s ( Brackstone et 

al., 1998). The applications of lane-changing models can be broadly classified into two 

groups: adaptive cruise control and computer simulation. Lane-changing models for 
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adaptive cruise control are mainly focused on developing driving assistance models, 

which can be further classified into collision avoidance models and automation models. 

Collision avoidance models are for controlling drivers’ lane-changing maneuvers and 

assisting them with completing lane changes safely. Automation models are for adjusting 

the steering wheel angle of vehicles automatically to perform safe lane-changing 

maneuvers (Lygeros et al. 1998; Nagel et al. 1998; Maerivoet and Moor 2005; Eidehall et 

al. 2007; Salvucci and Mandalia 2007; Doshi and Trivedi 2008; Kiefer and Hankey 2008; 

Li-sheng et al. 2009). Since the 1980s, many lane-changing models have been developed 

for micro-simulators to replicate driver decisions at the microscopic level. These lane-

changing models are categorized into four groups: rule-based model, discrete choice-

based model, artificial intelligence model, and incentive-based model (Figure 1). In the 

next four sections, the four types of microscopic lane-changing models are discussed in 

detail. Theoretical comparisons of these lane-changing models are presented in the 

following sections. 
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Figure 2.1: Classifications of Lane-Changing Models 
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2.3.2 Rule-based Models 

2.3.2.1 Gipps Model  

Gipps model describes the lane-changing decisions and the execution of lane 

changes on freeways and urban streets as the result of three factors: lane-changing 

possibility, necessity for changing lanes and lane-changing desirability (Gipps, 1986). It 

incorporates the difference between the wish to change lanes and the execution of lane 

changes that was first introduced by Sparmann (Sparmann, 1978). Gipps model includes 

several factors, such as the existence of safety gap, locations of permanent obstructions, 

intent of turning movement, presence of heavy vehicles, and speed advantage. It also 

considers several lane-changing reasons: avoiding permanent obstructions, avoiding 

special-purpose lanes such as transit lanes, turning at downstream intersection, avoiding a 

heavy vehicle’s influence, and gaining speed advantage. In this model, a driver’s 

behavior falls into three zones, separated by the distance of the driver to the intended 

turn.  When the intended turn is away from her/his position, it has no impact on the 

driver’s latent lane-changing plan. When the intended turn is in a zone which is the 

middle of the way, the driver ignores the speed advantage opportunity. When the 

intended turn is close enough, the driver chooses either the appropriate or adjacent lane as 

maintaining or gaining speed is not important. The boundaries of the three zones, which 

do not depend on the driver’s behavior patterns over time, are deterministic in nature. The 

structure of the Gipps’ lane-changing model is based on his car-following model which 

applies some restrictions on the braking rate by drivers (Gipps, 1981). His car-following 

model ensures that the follower driver selects his/her speed to bring the vehicle to a safe 
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stop in case of a sudden stop. In Gipps lane-changing model, the deceleration of the 

subject vehicle is used to evaluate the feasibility to change lanes. A special braking rate is 

assigned to the subject vehicle so that the maximum deceleration can be achieved to 

complete a successful lane-changing maneuver. If the required deceleration for a lane-

changing maneuver is not within the acceptance range, then this lane-changing maneuver 

is determined as infeasible. According to Gipps’ lane-changing model, the subject vehicle 

driver can alter the braking rate parameter depending on the urgency of the lane-changing 

maneuver.  

Gipps’ model summarizes lane-changing process as a decision tree with a series 

of fixed conditions typically encountered on urban arterial and the final output of this 

rule-based triggered event is a binary choice (i.e., change/not change). Any new or 

special lane-changing reasons can be added or replaced because of its flexible structure. 

However, the variability in individual driver behavior is not incorporated in this model, 

especially the different interaction strategies among the surrounding vehicles and the 

subject vehicle under various traffic conditions. For example, under congested traffic 

conditions, either the lag vehicle gives permission to the subject vehicle to change lane, 

or the subject vehicle forces its way into the target lane. Although the Gipps model is 

used in several microscopic traffic simulation tools, it is based upon some tactically 

simplified assumptions and does not include any framework for model validation based 

on microscopic driver behavior and traffic data. 
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2.3.2.2 CORSIM Model 

Halati et al. developed a lane-changing model that was implemented in CORridor 

SIMulation (CORSIM), in which lane changes are classified as Mandatory Lane-

Changing (MLC), Discretionary Lane-Changing (DLC) and Random Lane-Changing 

(RLC) (Halati et al., 1997). MLC occurs when drivers merge onto a freeway or move to 

the target lane to make an intended turn or avoid obstructions (e.g., lane blockage, lane 

drop) in a lane. DLC is applied when lane changes are required for speed advantage. For 

instance, a driver may want to pass a slow-moving vehicle by changing to the left lane. 

RLC is applied when there is no apparent reason. RLC may or may not result in an 

advantage for the subject vehicle over its current position. In CORSIM, a certain 

percentage (the default value is 1%) of drivers are randomly selected to perform RLC. In 

this model, motivation, advantage, and urgency are considered as the three major factors 

behind a lane-changing decision. The motivation to change lanes depends upon either the 

lead vehicle speed or the lead headway threshold. The advantage factor captures the 

benefits of driving in the target lane. The urgency of lane-changing depends upon the 

number of lanes to change and the distance required to execute a complete lane-changing 

maneuver. In CORSIM, lane-changing maneuvers (i.e., MLC, DLC or RLC) depend on 

the availability of acceptable lead and lag gaps in the target lane. Acceptable lead gap is 

modeled utilizing the deceleration required by the subject vehicle for avoiding collision 

with its lead vehicle in the target lane. According to this model, the required deceleration 

for the subject vehicle is computed assuming the deceleration of the lead vehicle in the 

target lane is maximized. This computed deceleration of the subject vehicle is compared 
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to an acceptable deceleration which is also called the acceptable lane-changing risk. If the 

required deceleration is less than the acceptable risk, the lead gap is accepted and the 

subject vehicle initiates a lane change into the target lane.  

Lane-changing algorithms used in the (FREeway SIMulation) FRESIM and 

(NETwork SIMulation)  NETSIM are similar. The only difference lies in measuring gaps 

between the subject vehicle and the lead/lag vehicles in the target lane. NETSIM 

measures the gaps in terms of time differences, and the gaps in FRESIM are a function of 

time headways and speed differences. Only the FRESIM discretionary lane-changing 

procedure is described here. It is based on the PITT’s car-following model developed by 

the University of Pittsburgh (Holm and Tomich, 2007).  The FRESIM model assumes 

that the follow vehicle tries to keep a suitable gap between itself and the lead vehicle. A 

lane change occurs, when the follow vehicle cannot maintain the required space headway. 

Also in FRESIM model, an “intolerable” speed is calculated using the desired free-flow 

speed. The subject vehicle is eligible for a lane change, if its current speed is less than the 

free-flow speed. The subject vehicle driver performs a lane-changing maneuver, if her/his 

current speed is less than the intolerable speed.  

In FRESIM discretionary lane-changing procedure, lane-changing benefits are 

referred to as “Advantage”. Advantage is modeled through either the “lead factor” or 

“putative factor”.  The disadvantage of staying in the current lane is represented by the 

lead factor. On the other hand, the putative factor represents the benefits of executing 

lane changes. Theoretically, a subject vehicle driver could select any one of the adjacent 

lanes (left/right) as the target lane for performing lane changes. Thus, the advantage is 
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calculated for both adjacent lanes through putative factor. Based on the larger putative 

factor, the target lane is chosen from the adjacent lanes (left/right). Putative factor can 

also be determined as lead factor using putative lead headway in the adjacent lane. The 

overall advantage for discretionary lane change is represented by the difference between 

the putative factor and lead factor. It is then compared with a threshold value of 0.4 

(Holm and Tomich, 2007).  If the overall advantage is greater than the threshold value, a 

lane change occurs. So far, only the FRESIM discretionary lane-changing model has been 

discussed. The RLC and MLC are also incorporated in FRESIM. More detailed 

information on these lane-changing models could be found in (Holm and Tomich, 2007).   

Additionally, after the subject vehicle moves into the target lane, a “shadow 

vehicle” in CORSIM is generated in the current lane in place of the subject vehicle for a 

while to avoid rapid speed changes of its follower. Another nice feature of CORSIM is 

the flexibility of taking user-provided parameters. As all drivers in CORSIM are assumed 

to have similar gap acceptance behavior, it does not consider the variability in gap 

acceptance behavior. 

2.3.2.3 ARTEMiS Model 

ARTEMiS, which is an abbreviation for Analysis of Road Traffic and Evaluation 

by Micro-Simulation, is a microscopic traffic simulation model developed by Hidas 

(Hidas, 2005).  Previously named SITRAS (Simulation of Intelligent TRAansport 

Systems), this model describes lane-changing maneuvers based upon the courtesy of the 

lag vehicle in the destination lane (Hidas and Behabahanizadeh, 1995). In this model, a 

lane change is triggered by required downstream turning movements, lane drops, lane 
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blockages, lane use restrictions, speed advantages, or queue advantages. MLC occurs in 

the case of downstream turning movements, lane drops, and lane blockages and DLC 

happens in the early and middle distance zones. The boundaries of different zones are 

defined in the same way as Gipps model (Gipps, 1986). Hidas modeled each vehicle as a 

driver-vehicle object (DVO) using an autonomous agent technique to describe drivers’ 

interactions involved in a complex decision-making process (Hidas, 2002). DVOs can act 

as giving way, slowing down or not giving way based on road congestion conditions, 

individual driver characteristics, and the perception of a DVO in terms of whether 

another DVO is trying to move into its lane or not. According to this model, lane-

changing reasons are evaluated and the results are classified as “essential”, “desirable” or 

“unnecessary”, based on which a target lane is chosen.  

In ARTEMiS, gap acceptance model selection depends on lane-changing modes. 

Two lane-changing modes are proposed according to traffic conditions and the necessity 

of changing lanes: normal lane-changing and courtesy/forced lane-changing. A normal 

lane change occurs when a sufficient gap is available in the target lane. This lane-

changing mode is based on the Hidas car-following model and can be expressed as: a) 

acceptable deceleration (or acceleration) is required for the subject vehicle to follow the 

lead vehicle in target lane (Hidas and Behabahanizadeh, 1998), and b) acceptable 

deceleration is required for the lag vehicle in target lane so that the subject vehicle can 

safely serve as its lead vehicle. 

For the courtesy/forced lane-changing mode, the subject vehicle sends a 

“courtesy” signal to vehicles in the target lane. Starting from the first lag vehicle, the 
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required deceleration is calculated using the above Hidas car-following model to allow 

the subject vehicle to safely merge. Based on the calculated decelerations, a follow 

vehicle in the target lane can be found, the new lead vehicle (to the subject vehicle) is the 

one right in front of the follower. A sufficient gap is created for the subject vehicle by 

applying the Hidas car-following algorithm to the new lead vehicle, the subject vehicle 

and new lag vehicle so that the subject vehicle can change lane to the target lane.  

Later, Hidas categorized lane-changing maneuvers into three classes: free, forced 

and cooperative lane changes (Hidas, 2005). Lane-changing feasibility is checked using 

acceptable gaps (lead/lag). The lead and lag gaps are calculated, based on the statuses of 

the vehicles involved, before lane change happens. A free lane-changing maneuver is 

feasible, if both lead and lag gaps are greater than the desired critical gaps. If the previous 

condition is not satisfied, a lane change is considered “essential” and the feasibility of 

cooperative (courtesy) or forced lane change needs to be checked. The cooperative lane 

change depends on the willingness of the lag driver and the feasibility of the lane-

changing maneuver.  If a lag vehicle selects a certain maximum speed decrease, it 

indicates the willingness, which is a function of a vehicle’s aggressiveness parameter and 

the urgency of lane change. The lag gap at the end of deceleration can be calculated by 

setting the deceleration period. This represents the smallest gap between the subject 

vehicle and the lag vehicle after changing lanes. A cooperative lane change is feasible, if 

the lag gap at the end of deceleration is larger than the minimum acceptable lag gap. The 

forced lane change is similar to the cooperative one. The difference lies only in that the 
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maximum speed decrease and deceleration are assumed by the subject vehicle as average 

values.  

Hidas validated the lane-changing model using vehicle trajectory data collected 

from Sydney central business district, Australia (Hidas, 2005). A total of four hours of 

video recording was collected from a road section where lane-changing or merging 

maneuvers occurred. Hidas found ambiguity between forced and cooperative lane 

changes by only using the trajectories from the video data. He concluded that empirical 

method could be designed to collect lane-changing data. One disadvantage of this model 

is that the given lane-changing reason set is incomplete. Lane-changing reasons, such as 

giving way to a merging vehicle and avoiding heavy vehicle influence, were not 

considered. Another downside of this model is that there is no framework for calibrating 

model parameters. Also, ARTEMiS is unable to resolve the conflict when a driver desires 

to move in one direction (left/right) for an intended turning movement and at the same 

time another direction to get speed advantage. Moreover, cooperative lane change and 

forced lane change were considered separately in this model (Hidas, 2005). However, 

only the lag vehicle has the ability to initiate a cooperative lane change. 

2.3.2.4 Cellular Automata Model 

In the generic multi-lane Cellular Automata (CA) model, it is assumed that a 

vehicle changes to another lane if the following set of conditions is satisfied (Rickert et 

al., 1996): 
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Condition 1:    gap t  < min V  t  +1,  V        

Condition 2:    gap t  > min V  t  + 1,  V    

Condition 3:    gap t  > V

n n

n o n

n ob  

Where,  

 gap tn
 Number of empty cells ahead in the same lane   

 ,gap tn o
 Number of empty cells ahead in the other lane  

 ,gap tn ob
 Number of empty cells backward in the other lane  

 V  tn
 Speed of vehicle n at time t  

maxV  Maximum speed of vehicles allowed  

The first two inequalities or conditions above check the current and target lanes 

for favorable speed conditions. Then, the availability of sufficient space to perform the 

lane change is checked by the third condition. The lane change potential is expressed 

with certain probability depending on the three condition checking results. Lane-

changing conditions in this model are classified as either symmetric or asymmetric. 

Based on this model, Nagel later proposed various additional lane-changing rules and 

described their characteristics in details (Nagel et al., 1998b). 

2.3.2.5 Game Theory Model 

The game theory model is based on the giveway behavior in a merging situation 

when a traffic conflict arises between through and merging vehicles, in which they try to 

influence each other. Kita modeled this situation based upon the game theory and 
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specified the game type, the number of players, and the repetition of games (Kita, 1999). 

He also considered the cooperative nature of the game.    

First, two players are defined in the game theory lane-changing model: the 

merging vehicle and the through vehicle. Kita only considered two players because of the 

close interaction between them and neglected their interaction with the surrounding 

vehicles. Another key characteristic of the game theory model is the number of games to 

be repeated which can be one of the following three cases: each through vehicle in a 

conflict area plays several games; each through vehicle plays one game in a conflict area; 

and each merging vehicle and all through vehicles having a possible conflict with it play 

one game together, known as a one shot game. 

It is assumed that the games are independent; and strategies of each player (i.e., 

the pay-off matrices) are known by the other player and non-cooperative because both 

players have information of each other. These two players play two different strategies: 

“merge” and “pass” strategies for the merging vehicle and “giveway” and “do not 

giveway” strategies for the through vehicle. If the merging and the through vehicles are 

denoted by player 1 (X1) and player 2 (X2), respectively, the pure strategy of X1, m, is, 

m = {1: merge, 2: pass} 

And the strategy of X2, n, is,  

n = {I: giveway, II: do not giveway} 

A pay-off matrix is developed for each player as shown in Figure 2, in which each 

element (i.e., pij, qij) expresses the combination of situations of each vehicle.  
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Figure 2.2: Pay-off Matrices for each Player 

Whether a merging car merges or a through car gives way depends on the given 

situation with a certain probability. Both players use mixed strategies for this type of 

situation. For a mixed strategy game, a bi-matrix provides at least one equilibrium 

solution (Aumann, 1989). Kita (Kita, 1993) modeled on-ramp merging behavior using a 

discrete choice model and the probability of giving way is estimated based on this game 

theory model. In Kita’s model, drivers compare the utilities of the current lane and the 

target lanes (left/right) and choose the target lane with a higher utility. In this case, the 

utilities perceived by the drivers captured the pay-off of the players.  

The maximum likelihood method is used to estimate the merging probability of 

the merging vehicle and the giveway probability of the through vehicle. The estimated 

parameters of this model are reasonable as suggested by the likelihood ratio (0.347) and 

the value of the corresponding correlation coefficient (0.7) (Domencich and McFadden, 

1987), showing that the game theory model is capable of explaining the real-world 

merging and giveway behaviors. For congested traffic conditions, Pei and Xu developed 

another lane-changing model based on game theory for two types of lane-changing 

maneuvers (Pei and Xu, 2006). Traffic information and experience was the basis of their 

model to describe lane-changing maneuvers. In their model, cooperative and forced lane 

changes were also defined.  The value of time and safety were the main factors affecting 



 
 

25 
 

driver behavior. When drivers are in safe situations, they will execute a lane-changing 

maneuver. The game theory model is largely limited to describing the merging-giveway 

behavior in freeway merging areas, and cannot be easily extended to other lane-changing 

maneuvers. 

2.3.3 Discrete Choice-based Models 

2.3.3.1 Ahmed’s Model 

Ahmed (Ahmed et al., 1996 and Ahmed, 1999) proposed a dynamic discrete 

choice model to capture the heterogeneity in driving characteristics across the driving 

population and considered explanatory variables that affect driver behaviors. He modeled 

lane-changing decisions as a three-stage process: whether or not to make a lane change, 

target lane choice and acceptance of a gap that is sufficient to execute the lane-changing. 

In addition, he proposed three categories of lane-changing maneuvers: MLC, DLC and 

Forced Merging (FM). MLC situations apply when a driver is forced to change the 

current lane. DLC occurs when the driver is unsatisfied with the driving situation in the 

current lane and wishes to gain some speed advantage (Yang and Koutsopoulos, 1996). 

FM occurs when a gap is not sufficient but is created by the driver to execute a lane-

changing maneuver in heavily congested traffic conditions. According to Ahmed’s lane-

changing model classification, lane-changing behavior is either MLC or DLC which 

prohibits considering any trade-offs between them. The mathematical formulation of the 

discrete choice framework is shown in the following functions, which describe the 

probability that driver n performs MLC, DLC or FM at time t: 
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P LC |  v
1  exp –X t  –  v   t n LC LC LC

n n 



 

LC  MLC,  DLC,  FM  

Where,   

 P LC |  vt n
 The probability of executing MLC, DLC or FM for driver n at time t  

XLC
n  The vector of explanatory variables affecting decision to lane changes  

LC  The corresponding vector of parameters  

vn  The driver specific random term  

LC  The parameter of  vn  

In Ahmed’s gap acceptance model, he defined the critical lead and lag gaps as the 

minimum acceptable gaps. In this model, a lane change is performed when the available 

lead and lag gaps in the target lane are greater than their critical gaps. The following 

equation represents the critical lead and lag gaps for lane-changing maneuvers of driver n 

at time t. 

       j, gap j , gap j   G t   exp X t    v   t
gapcr cr gap j gap j

n n n n    

 

 

 gap j  lead,  lag    

Where,   

 , gap jG tcr
n

 

The critical lead and lag gaps for driver n at time t  
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 , gap jX tcr
n

 

The vector of explanatory variables affecting the critical gap j

 

 gap j  The corresponding vector of parameters  

vn  The driver specific random term  

 gap j  The parameter of  vn  

  j

 t
gap

n  2(0,  ) is a random termjN   

The probability of accepting a gap during a MLC, DLC or FM for driver n at time t is 

given as follows: 

     
       , lead lag , lag

P  gap acceptance | v   P lead gap acceptable | v   P lag gap acceptable | v  

                                      P (G  t  G t | v )  P (G  t  G  t | v )

n n n n n n

lead cr cr
n n n n n n n n

 

   
 

Where,   

 G  tlead
n

 The probable lead gaps in the target lane  

 lagG  tn
 The probable lag gaps in the target lane  

Ahmed subsequently implemented his model in MITSIM (MIcroscopic Traffic 

SIMulator). MITSIM was developed primarily to assess Advanced Traffic Management 

Systems (ATMS) and Advanced Traveler Information Systems (ATIS) at the operational 

level. Although his lane-changing model was unable to capture the trade-offs between 

MLC and DLC decision processes, it accurately described the differences between 
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drivers’ MLC, DLC and FM decisions.  For instance, in MITSIM drivers are unable to 

overtake when mandatory considerations are active. Similar to the Gipps model, the 

existence of an MLC is determined based upon the distance of the subject vehicle to the 

downstream exit ramp. In addition, a dummy variable is introduced to capture the 

differences in acceptable gap values between a passenger car and a heavy vehicle when 

the heavy vehicle is the subject. Though this very coarse and simplistic method accounts 

for the differences in operational characteristics of these two vehicle types, the above 

models incorporate a rigid separation between MLC and DLC, which is unrealistic in 

real-life driving.  

2.3.3.2 Toledo et al.’s Model 

Toledo et al. developed a probabilistic lane-changing decision model to describe 

the trade-offs between MLC and DLC (Toledo, 2002). The trade-offs between MLC and 

DLC are captured by considering both types of lane changes in a single utility function.  

A discrete choice framework is employed to model drivers’ tactical and operational lane-

changing decisions. The model is calibrated using the maximum likelihood estimation 

technique (Toledo et at., 2003). The lane-changing decision model consists of 1) choice 

of the destination lane, and 2) decision for accepting gap. Four groups of explanatory 

variables are considered in the model underlying lane-changing decisions: neighborhood 

variables (e.g., gaps, speeds), path plan variables (e.g., distance from the intended exit 

off-ramp), network knowledge and experience (e.g., avoiding the nearest lane next to the 

shoulder), and driving style and driving capabilities. In the target lane model, the set of 

target lane choices includes: 1) remaining in the current lane, 2) shifting to the right, and 
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3) shifting to the left adjacent lane. The target lane choice model, probability of selecting 

a specific lane, and critical gap model are similar to those in Ahmed’s model. In this 

model, the decision of selecting the target gap is based on the target lane choice. The 

model assumes that the driver will change lane to the target lane based on the acceptance 

of the lead and lag gaps in the target lane and does not consider any other gaps. Toledo et 

al. defined the critical lead and lag gaps as the minimum acceptable gaps. When the 

available target lead and lag gaps are greater than their corresponding critical values, they 

will be accepted. A lognormal distribution is assumed for the critical gaps to ensure they 

are always positive.  

According to this model, after selecting a target lane and finding gaps of sufficient 

sizes, the subject vehicle driver performs a sequence of accelerations and decelerations in 

order to move into the target lane (Toledo et al., 2007). Toledo et al. used a conditional 

probability to determine whether a lead/lag gap is acceptable or not. 

In Toledo’s model, the subject vehicle employs a three-stage acceleration 

behavior model to select the target gap. First, if the subject vehicle driver wishes to 

remain in the current lane, a stay-in-the-lane selection model applies. Second, if the 

driver accepts the available target gap and changes into an adjacent lane, an acceleration 

model applies for changing lane. Third, if the subject vehicle driver initially accelerates 

or decelerates for changing lane but later rejects the target gap, a target gap acceleration 

model applies.  

This lane-changing model was implemented in MITSIM and tested using detailed 

vehicle trajectory data collected in Arlington, VA. The purpose of the implementation 



 
 

30 
 

was to estimate travel time, speed, and the distribution of traffic volumes across lanes. 

During the implementation, the MLC and DLC models were first separated and later 

integrated. The estimated values by MITSIM were then compared against the observed 

values.  In the case of travel time and speed, both the separated and integrated scenarios 

resulted in differences between the observed and estimated values. The travel time 

differences of the separated and integrated scenarios were 3.20% and 9.50%, 

respectively. For speed, the corresponding values were -5.60% and -2.90% respectively. 

But, the estimated and observed distributions of traffic volumes across lanes were similar 

for both the separated and integrated scenarios.  The main weakness of this lane-changing 

model is the difficulty of determining the utility functions for various decision choices. 

Built upon this work, Choudhury et al. proposed a cooperative and forced gap acceptance 

model for congested traffic conditions (Choudhury et al., 2007). 

2.3.4 Artificial Intelligence Models 

2.3.4.1 Fuzzy Logic-Based Models 

Fuzzy logic-based models consider the uncertainty of lane-changing maneuvers 

and take into account the natural or subjective perception of real variables (Ma, 2004). 

The unique nature of fuzzy logic models is that they can translate nonlinear systems into 

IF-THEN rules (Mendel, 1995). Fuzzy-LOgic-based motorWay SIMulation (FLOWSIM) 

is a simulation model built upon fuzzy sets and systems (McDonald et al., 1997). In this 

model, lane-changing maneuvers are based on two premises, changing to a slower lane 

and changing to a faster lane. Das et al. proposed a new microscopic simulation 

methodology based on fuzzy rules for implementation in the Autonomous Agent 
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SIMulation Package (AASIM) software (Das and Bowles, 1999). In this fuzzy-logic 

based model, lane-changing maneuvers are classified as MLC and DLC. MLC fuzzy 

rules consider the distance to the next exit or merge point and the required number of 

lanes to change. DLC is a binary decision that is based on the driver’s speed satisfaction 

(Das et al., 1999), but it does not consider vehicle types in lane-changing decisions. 

Moridpour et al. also developed a lane-changing model using fuzzy logic, which is used 

to predict the lane-changing maneuver of heavy vehicles on freeways (Moridpour et al., 

2012).  This model considers three types of lane-changing behavior: motivation of lane-

changing, selection of the target lane and execution of the lane-changing maneuver. 

Because of abstract fuzzy rules and membership functions, the recalibration and 

validation process for fuzzy logic-based lane-changing models is fairly complex.  

2.3.4.2 Artificial Neural Network Model 

Artificial neural network (ANN) models process information using functional 

architecture and mathematical models that are similar to the neuron structure of the 

human brain. These models learn human behaviors from training and are capable of 

demonstrating those human behaviors in a new situation. In recent years, neural networks 

have also been used for modeling driver behavior in the transportation field (Hunt and 

Lyons, 1994). For instance, Hunt and Lyons predicted drivers’ lane-changing decisions 

using neural networks on dual carriageways (Hunt and Lyons, 1994). Neural network 

models are completely data-driven and require supervised training by field-collected 

traffic data before they can be used to predict driving behavior. Their dependence on the 

availability of field-collected traffic data is the main disadvantage of neural network 
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models, although previous results show that they can accurately predict lane-changing 

behavior (Dumbuya et al., 2009). 

Dumbuya et al. developed Neural Driver Agents (NDA) for modeling lane-

changing maneuvers (Dumbuya et al., 2009). A multilayer NDA model was designed and 

implemented. A back-propagation training algorithm was used to train the NDA model, 

which takes inputs such as current direction of the vehicle, current speed, the distance 

from vehicle, preferred speed and current lane. The output of the model includes new 

direction and new speed. This NDA model learned lane-changing behavior from known 

situations using data collected from the TRL (Transport Research Laboratory) driving 

simulator. The authors then used the fitted NDA model to predict driver behavior for 

unseen situations. They demonstrated that NDA has the ability to properly model lane-

changing maneuvers.  Later, the NDA model was incorporated into the commercial 

NeuroSolutions software package developed by NeuroDimension. 

During the study using the driving simulator, Dumbuya et al. recruited eight 

participants to “drive” on a simulated two-lane highway. At first the participants were in 

lane 1. They changed to lane 2 to overtake a slow-moving vehicle and returned back to 

lane 1 as if they were on a real UK highway. For each completed simulation, a set of data 

was recorded. Using those data sets, they trained the NDA model. When the training 

process was completed, the trained model was used to simulate the vehicle trajectory. It 

was found that the simulated vehicle followed a realistic path around the lead slow-

moving vehicle. This result shows the changes in direction generated by NDA model 

match those of real drivers when executing an overtaking maneuver at a speed of 70 mph.  
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The reasonably close lane-changing behaviors of humans and NDA suggest that 

the NDA is a promising tool to replicate a wide range of lane-changing behaviors (e.g., 

aggressive, tired, alcohol-impaired, learner drivers). However, the results also show that 

the NDA is unable to accurately model lane-changing trajectories when the travel speed 

is either low or high (Tomar et al., 2010). 

2.3.5 Incentive-Based Models 

2.3.5.1 MOBIL 

The MOBIL lane-changing model is based on two criteria: incentive and safety. 

The incentive criterion measures the attractiveness of a given lane based on its utility, and 

the safety criterion measures the risk associated with lane-changing (i.e., acceleration) 

(Treiber  et al., 2000, and Treiber and Helbing, 2002). According to this model, the target 

lane is more attractive to the driver of the subject vehicle if the incentive criterion is met. 

A lane change takes place if the safety criterion is satisfied as well. The MOBIL rules are 

applied for simulation of multilane traffic in the Intelligent Driver Model (IDM) (Treiber 

and Kesting, 2007). In IDM, two types of passing rules are considered for lane changes: 

symmetric and asymmetric. The symmetric passing rules are based on safety and 

incentive criteria.  They are applied when changing to the right lane is not strictly 

forbidden. When the deceleration ( a ) of the follow vehicle ( F  ) in the target lane is 

equal to the IDM braking deceleration ( IDMa ), the safety criterion is satisfied. For a lane 

change to happen, the deceleration of the follow vehicle should also not exceed a certain 

limit bsafe as shown below. 
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 '  '    safea F b   

The incentive criterion is determined by weighing the lane-changing advantage against 

imposed disadvantage to other vehicles. The increased acceleration (or reduced braking 

deceleration) is the measure of advantage to the subject vehicle before and after the 

potential lane change. The total decreased acceleration or increased braking deceleration 

is the measure of disadvantage to vehicles in the target lane. In this model, the lane-

changing decision is also influenced by a politeness factor p. This politeness factor p will 

be further described later and its value is typically less than 1.  

The disadvantages of target-lane vehicles, advantage of the subject vehicle, 

politeness factor p all affect the lane-changing decision. Thus, typical strategic features of 

classical game theory have been incorporated in MOBIL (Treiber  et al., 2000). It can 

describe different driving behaviors by varying the politeness factor (p), while other lane-

changing models typically assume the politeness factor to be zero (0). In MOBIL, p>1  is 

for an altruistic driving behavior; 0<p<0.5 is for a realistic driving behavior; p=0  is for a 

purely selfish driving behavior; and p<0  is for a malicious driving behavior.  

A special case of this model is given by p=1 and lane-changing acceleration 

threshold, athr=0. For this special case, a lane-changing maneuver will take place 

whenever the sum of the advantage and disadvantage of all affected drivers is positive 

after the change.  This explains the acronym for this model, which is: MOBIL= 

Minimizing Overall Braking Decelerations Induced by Lane changes. 
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The asymmetric rules are applied in many European countries where changing to 

the right lane is prohibited, unless traffic is congested or the subject vehicle is forced to 

change to the right lane (i.e., on-ramp, off-ramp, lane drop). A lane-usage bias rule is 

introduced to capture this asymmetric situation. This rule only represents operational 

lane-changing decisions. However, a lane-changing model should be able to describe 

both strategical and tactical aspects of lane-changing behaviors for mandatory lane 

changes and for congested traffic conditions. 

2.3.5.2 LMRS 

Schakel et al. proposed a LMRS (Lane-changing Model with Relaxation and 

Synchronization) lane-changing model, based on drivers’ desire to change lanes (Schakel 

et al., 2012). The desire is a combination of the route, speed and keep-right incentives. A 

trade-off is considered within the combination of incentives with the route incentive 

being dominant. The following equation is a sample combination of incentives 

representing the desire to change from lane i to lane j:  

 *ij ij ij ij ij
r v s bd d d d                       

Where,  

ijd  Combined desire to change lane from i to j 

ij
rd  Desire to follow a route  

ij
sd  Desire to gain speed  
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ij
bd  Desire to keep right  

ij
r  Voluntry (discreationary) incentives  

The total desire determines drivers’ lane-changing behaviors. The range of 

meaningful desire is from -1 to 1. Negative values represent that a lane change is not 

desired, and positive values mean the driver wants to change lane. Depending upon the 

desire value, Schakel et al. further classified lane changes as Free Lane-Changing (FLC), 

Synchronized Lane-Changing (SLC) and Cooperative Lane-Changing (CLC).  

0 1free sync coopd d d     

Schakel et al. also considered a relaxation phenomenon in their model. As in the real 

world, drivers may accept small gaps for a large desire. For very small desire values, no 

lane changes will occur. For a relatively large desire, FLC will happen and no preparation 

is required. In case of SLC and CLC, the subject vehicle speed needs to be synchronized 

with the speeds of vehicles in the target lane for creating a gap. This behavior is also 

called synchronization.  

The gap acceptance module in this model is similar to MOBIL. In addition, this 

model considers an applicable headway for gap acceptance. A gap is accepted if the 

accelerations of the subject vehicle and new follower is larger than a safe deceleration 

threshold. According to this model, large decelerations and short headways can be 

accepted for a large desire and the relaxation of headway values is exponential with 

relaxation time. The subject vehicle driver will synchronize her/his speed, if the lane-

changing desire is above the synchronization threshold (dsync).  She/he will synchronize 
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the speed with the target lane speed by applying a maximum deceleration which is both 

comfortable and safe. A Gap can be created, if adjacent leader lane-changing desire is 

above cooperation threshold.  

Schakel et al. used a modified version of Intelligent Driver Model (IDM) 

developed by Treiber et al. [Treiber et al., 2000] to evaluate the proposed lane-changing 

model.  They referred to this new simulation model as IDM+, based on which they 

calibrated and validated the LMRS model in both free-flow and congested traffic 

conditions. The main goal of their study was to accurately represent real-world 

observations at the lane level such as the lane volume distribution, lane-specific speed, 

and progression of congestion. Their lane-changing model has a set of seven (7) 

parameters with physical and intuitive meanings. The full model, combining the LMRS 

and IDM+, has twenty (20) parameters. Schakel et al. tried to alleviate the calibration 

difficulties by considering the two flow scenarios (i.e., free flow and congested) 

separately. They calibrated and validated the model using data from a segment of A20 

freeway near Rotterdam in Netherlands.  This segment included a few on- and off- ramps 

and a lane drop. The data was collected utilizing loop detectors which were closely 

spaced (300-500m). Although realistic lane volume distributions and lane-specific speeds 

were generated for the free-flow condition, the model fitting result for the congestion 

condition was unclear. Furthermore, the generalization ability of their lane-changing 

model is unknown for scenarios with different levels of congestion and numbers of lanes.  
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2.3.6 Theoretical Comparison of Lane-Changing Models 

Based on the review of existing lane-changing models, rule-based and discrete 

choice-based models appear to be the most popular ones. These models have been widely 

implemented in microscopic traffic simulators. Among them, rule-based lane-changing 

models are based on the perspective of drivers. For rule-based models, typically the 

subject vehicle’s lane-changing reasons are evaluated first. If these reasons warrant a lane 

change, a target lane from the adjacent lane(s) is selected. A gap acceptance model fitted 

based on field data/simulation data is then used to determine whether the available gaps 

should be accepted.  

Most discrete choice-based lane-changing models are based on logit or probit 

models. For discrete choice-based models, the lane-changing maneuver is usually 

modeled as either MLC or DLC following three steps: 1) checking lane change necessity, 

2) choice of target lane, and 3) gap acceptance. Each of these steps can be formulated as a 

probit or logit model. Depending on which step and the number of lanes, the subject 

driver may face a binary or multi-choice decision. Similar to rule-based models, discrete 

choice model parameters and utility functions need to be calibrated using field collected 

data. In existing discrete choice-based lane-changing models, the heterogeneities in 

drivers and vehicles (i.e., driver aggressiveness, driving skill level, vehicle acceleration 

performance) have not been given adequate consideration. . A major reason is that 

existing traffic data and data collection technologies cannot provide information that is 

detailed enough for developing and testing such models. Nevertheless, these 

characteristics are important for accurately describing real-world lane-changing behaviors 
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and relevant explanatory variables should be incorporated into the utility functions of 

future discrete choice-based lane-changing models. 

Artificial Neural Network (ANN) lane-changing models are completely data-

driven and fundamentally different from the rule-based and discrete choice-based models. 

Although researchers can specify some network parameters such as numbers of input 

units, hidden neurons, and layers, they have very little control over the model structure 

(such as the utility functions in discrete choice-based models). ANN models have to be 

trained and validated using field-collected microscopic traffic data before they can be 

used to predict any lane-changing behavior. The fitted ANN model parameters do not 

have practical meaning either and cannot be interpreted as those in discrete choice-based 

models. Fuzzy logic-based models describe lane-changing behaviors using fuzzy rules 

and membership functions. Compared to other models, a major advantage of them is that 

they can better incorporate human experience and reasoning into the development of 

lane-changing models. However, it is not an easy task to determine the fuzzy membership 

functions and rules. The calibration process of Fuzzy logic-based models is very difficult.  

The idea behind the incentive-based models is intuitive and straightforward: 

drivers choose to change or not change lanes in order to maximize their benefits. It is 

similar to the utility function concept in discrete choice-based models. However, there are 

multiple utility functions in a discrete choice-based model and the value of each utility 

function represents the utility (or “advantage”) of a choice alternative. In incentive-based 

models such as MOBIL, there is only one “advantage” value, which is compared against 

a threshold value for final decision making. An advantage of the incentive-based model 
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LMRS is that it takes into account driver’s desire to follow a route into consideration. 

This may potentially generate more realistic lane-changing behaviors. For instance, 

through traffic drivers on a multilane highway typically tend to stay away from the 

rightmost lane to avoid the interference of exiting and entering traffic. This model also 

has a flexible structure and additional incentives may be easily integrated into it. The 

above discussions provide a brief summary and theoretical comparison of the reviewed 

lane-changing models. A more detailed and systematic comparison of the four groups of 

models is presented in Table 2.1.  
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Table 2.1: Theoretical Comparison of Lane-Changing Model Categories 

Microscopic Lane-Changing model 

Rule-based Model Discrete Choice-based Model Artificial Intelligence Model Incentive-based model 

Lane-Changing Decision 
Decide on decision tree with series 
of fixed condition 

Utilize logit or probit model  Based on driver-vehicle status Decide  on lane-change desire 
(LMRS) 

Reason for Lane-Changing 
Decide whether lane-changing 
applies or not through explanatory 
Variables (EV) 
EV: Maximum subject vehicle’s 
safe speed and brake, front gap, 
subject vehicle driver’s estimation 
of front vehicle driver’s brake 

Explanatory Variable for gained 
utilities are: MLC-Exit/merge 
distance, number of lane changes, 
DLC-Presence of heavy vehicle, 
front relative speed and deceleration  

 Completely data driven and require 
supervised training  
 Fuzzy sets and systems 
EV: MLC-Exit/merge distance, 
number of lane changes, DLC-Left 
and right lane density, drivers’ 
satisfaction 

Measure level of lane-changing 
desire based on speed incentive, 
Route incentive, Keep right 
incentive  
 

Target lane selection 
Decide on fixed lane-changing 
purpose or advantage for lane-
changing 
EV: Acceptable lead and lag gaps, 
Critical gaps 

At each stage, utilities for all 
alternatives are calculated in the lane-
changing process 
EV: Target lead and lag gaps and 
relative speeds , subject vehicle 
speed, presence of heavy vehicle, 
tailgating, avoiding the rightmost-
lane, distance to the exit off-ramp  

Fuzzy rules, Drivers’ recent speed 
history, and the level of congestion  
 Change lanes to left or right  
EV: Left-Motivation, opportunity, 
Right-Pressure, Gap satisfaction 

Depend on level of lane-
changing desire  
EV: Anticipation Speed, 
Maximum vehicle speed, 
Desired speed, Anticipation 
distance, Speed limit, Speed gain 

Gap acceptance 
Gap acceptance parameters for are 
picked up from field/simulation 
data, and calculated using gap 
acceptance formulae 

 Permission of lane change decides 
on the lead and lag gap acceptance  
 Gap acceptance  
EV: Target lead and lag relative 
speeds, distance between target lead 
and lag  

Consider the safe headway to the 
front vehicle in the current lane 
 Find a gap in target lane 
EV: Front, lead and lag gaps and 
relative speeds. 
 Accept sufficient size gap 
EV: Target lead and lag speeds and 
gaps, exit/merge distance 

Based on deceleration rate 
utilizing the car-following model 
 Find a gap in target lane 
EV: Front, lead and lag gaps and 
relative speeds 
 Accept sufficient size gap 
EV: Target lead and lag 
acceleration and time headway, 
deceleration threshold 
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Table 2.1: Theoretical Comparison of Lane-Changing Model Categories (Continued) 

Microscopic Lane-Changing model 

Rule-based Model Discrete Choice-based Model Artificial Intelligence Model Incentive-based model 

Divers variability 
Does not consider driver’s 
variability on gap acceptance  

Does not consider invariant 
characteristics of drivers and their 
vehicles  for a given driver over time 
and choice dimensions such as 
choice of target lane, gap acceptance 

Attempt to capture drivers' 
variability with  training data sets 
of driver behaviors 

Capture driver’s variability using 
politeness factor (MOBIL) and 
accepted headway, deceleration, and 
level of desire (LMRS) 

Advantages 

 Simplicity in modeling  
 Decision process in one simple 
stage, Small number of variables 

 Decide on the basis of maximum 
gained utility 
 Probabilistic results instead of 
binary answers (yes/no) 

Consider human’s imprecise 
perception, require numerical data, 
calibrating using optimization 
algorithm 

 Small number parameters 
 Take into account drivers 
variability  

Disadvantages 

 Difficulties in calibrating the 
model parameters. 
 Use only primary variables 
 Binary answers (yes/no)  

 Require to calculate probability 
functions to determine the utility of 
each choice 

 Difficulties and complexity in 
fuzzy rules,  membership functions 
 Require large amount of data 

 Fit in congestion is unclear 
 MOBIL only considers 
operational process  

Applications 
These models are utilized in microscopic traffic simulators and are applicable to capacity analysis. 
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2.4 Summary of Literature Review 

Various car-following models and lane-changing models were discussed in this 

chapter. Lane-changing models are out of the scope, in terms of analysis, for this thesis. 

However, these models and car-following models collaboratively represent any traffic 

stream. The Gazis-Herman-Rothery (GHR) model is one of the oldest and well developed 

car-following models. However, the model suffers from the issue that its parameters vary 

in different driving conditions. The Linear model has been studied extensively, similar to 

GHR model; although it has relatively a simple and linear form, the difficulty in the 

parameter calibration makes it less popular. Due to the nature of car-following behaviors, 

applying fuzzy logic in the car-following theory seems to be a reasonable attempt. 

However, the difficulty in calibrating the membership function, the key concept in fuzzy 

logic, limits the application of such attempts. On the other hand, Gipps’ variation of the 

Collision Avoidance (CA) model is probably the most widely used car-following model 

for simulation purposes. The Optimal Velocity (OV) model is a relative new car-

following model, which was first proposed in 1990. The model is unique in presenting 

stop and-go and congested traffic conditions. Two variances of OV model were proposed 

later to improve the issue of OV model including the data agreement and the startup 

process. Several studies attempted to calibrate car-following models with different data 

sets which is described in chapter one. Most of the application of such methodology 

indicated the efficacy of the methodology on the macroscopic level; however the 

performance in the microscopic level is unclear.  
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CHAPTER THREE 

CALIBRATION METHOD 

 

3.1 Introduction 

In this chapter, the method employed for calibrating car-following models is 

discussed. This calibration approach is based on Bayesian estimation theory and it 

utilizes Markov Chain Monte Carlo (MCMC) simulation. Figure 3.1 shows the general 

steps for analysis of a car-following model. 

 

Figure 3.1: Calibration and Validation Steps of a Car-Following Model 

3.2 General Calibration Method 

 A  method is developed for parameter estimation and calibration of car-following 

models which is based on Markov Chain Monte Carlo (MCMC) method using Bayesian 
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estimation theory that have been recently investigated for inverse problem. The Bayesian 

framework used prior distributions and vehicle trajectory data to estimate the statistical 

distribution of the parameters of car-following models. The general Bayesian Framework 

for Calibration of a Car-Following Model is illustrated in Figure 3.2. In this framework, 

the prior probabilities are transformed into posterior probabilities for each parameter of 

the car-following model, for which Bayes’ rule is used. After that, the Metropolis Hasting 

algorithm is used to calculate the Bayes estimate of car-following model parameters. 

Finally, another real world dataset is utilized to validate the car-following model.  

 

Figure 3.2: Bayesian Framework for Calibration of a Car-Following Model 
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3.2.1 Statistical Inverse Problem 

Bayesian statistics provide a theory of inference which enables the creation of a 

relationship between the results of observation with theoretical predictions. Consider a 

parameter vector, v (q) and the result of the observations represented by an observation 

vector, m (q). Figure 3.3 shows the definition of an inverse problem. Let d be the actual 

observation of m mainly m  (noise). ( | )P d q is the conditional probability of the 

observation given the cause. On the other hand, ( | )P q d which is the conditional 

probability of the possible causes, given that some effect has been observed. This inverse 

probability represents our state of knowledge of v after measuring m. In the context of 

inverse problem theory, ( )v q is the image and ( )m q  is the data. 

 

 

Figure 3.3: Definition of Inverse Problem 

3.2.2 Bayesian Inference:  From Prior to Posterior 

In a Bayesian framework, the prior distribution of the parameter sets of the car-

following model is used to find the posterior distribution of the parameter while utilizing 

Bayesian inference. Let q be the vector of model parameters,  q
T

1 2 3 kq ,q ,q ....,q with k 

elements of a given car-following model. Consider a generic model  qv  and then a 

model of the observation using    q : qm C v    , where C transforms velocity to an 
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observable quantity such as acceleration, head way, etc. Let d be the actual observation of 

m that is,  

 d m noise   

Now consider the Bayes formula: 

     
 

 
 
 
 
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       = T
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

 

From the above Bayesian inference, the posterior probability distribution of q can be 

easily obtained by the following equation: 

     
 

   
   

   
:

q q q q q q
q  

q q q q
k

P d P P d P P d P
P d

P cP d P d
  


 

where,  qP represents the prior distribution of q, which is an initial guess on how q 

should be distributed. It is worthy to note that this is similar to a regularization term using 

a deterministic method. For example,  qP may be guessed from prior studies about the 

distribution of a particular parameter in question. The next step is to estimate the 

distribution of  qP d , which is called the Bayes estimate of the parameter. 
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3.2.3 Bayesian Estimate  

In the following, the prior distribution of the parameter of the car-following 

model is assumed to be a multivariate normal, which means that the mean square error is 

to be minimized, that is:  

       11

2
 q q

q

T
d m d m

P d e


    

where   is the corresponding covariance matrix. Thus, the Bayes estimate is obtained, 

which is the expected value from q given by the following definition: 

   :q  q q q
k

E d P d   

This integral is difficult to solve.  The Markov chain Monte Carlo (MCMC) method can 

be used to solve this integral. 

3.2.4 Markov Chain Monte Carlo (MCMC) Method 

The MCMC method is used to solve the integral. A large number of random 

samples are needed from the posterior distribution of q for the Bayes estimate. The Gibbs 

sampler and the metropolis Hasting algorithm are the typical algorithms, which are used 

to generate such large number of random samples. In this case study, a special type of the 

Metropolis Hasting algorithm (Figure 3.4) is used. For a more general form, see reference 

(Gelman et al., 2004).   
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Consider that a large number of random samples
  

1
q

r
t

i
 are generated, with r 

random samples after the burn-in time, from the posterior distribution of q and then 

approximate the Bayesian estimate by its sample mean,  

 
( )

1
q

q

r i

iE d
r
  

Select a large enough r, which is the desired quantity of random samples from the 

posterior distributions, and a large enough burn-in time (b). Now given a current sample

( )
q

t  we generate a new random sample ( 1)
q

t  using the following algorithm:  

Step 1: Generate  ( ) ,tq N q  , where   is a covariance matrix.  

Step 2:  Calculate the acceptance ratio:  

 
 

   

   
   

   ( ) ( ) ( ) ( ) ( )
:

q q

q q q

q q q q q
t t t t t

P d P
P d P d Pca

P d P d P P d P

c

    

Step 3: If, 1a  , set ( 1)
q q

t  .Else set ( 1)
q q

t  with probability a, and ( 1) ( )
q q

t t   with 

probability1 a .  

Step 4: Stop if r b  samples are produced, otherwise set t = t + 1 and go to step 1.  

In general, any parameter set can be used as the starting element (0)
q . However, 

(0)
q may be selected from calibration results from previous studies so that the burn-in time 
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could be minimized.  The burn-in time can be defined as the length of time that one 

spends to let the Metropolis Hasting algorithm run before starting to collect actual 

samples of the parameter. This is important as running this algorithm can be very time-

consuming. 

 

Figure 3.4: Bayesian estimation process using Markov Chain Monte Carlo (MCMC) 

method (Metropolis-Hasting algorithm) 
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3.3 General Framework for Validation of the Calibration Method 

The following steps can be taken to validate a calibration method of car following 

models. Synthetic data can be generated using known distributions of a parameter set of a 

car-following model. Then, the known distributions of the parameter set can be compared 

with the distributions of the estimated corresponding parameter set generated by 

calibrating  the car following model through the calibration method that is being 

validated and the generated synthetic data. Figure 3.5 shows the general step-by-step 

process for the validation of stochastic calibration method. In order to generate the 

distribution of the parameter set, we need to calculate the mean and standard deviation 

which we get from the previous study. Using the mean and standard deviation, the normal 

distribution of parameter set can be generated for a specific number of vehicles. After 

that each parameter set could be assigned to each vehicle and parameter set must be 

constant for all observations for a specific vehicle. Then the observable quantity of any 

car-following model can be calculated using the parameter set and vehicle trajectory data 

set. Finally the distribution of calibrated parameters using the Bayesian framework is 

compared with the generated distribution of parameters from the given mean and 

standard deviation. If both of that distribution matches each other, the validation of the 

calibration method is competed. 
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Figure 3.5: Validation of the Bayesian Framework Calibration Method  
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CHAPTER FOUR 

MODEL CALIBRATION AND VALIDATION RESULTS 

 

4.1 Introduction 

This chapter describes vehicle trajectory dataset utilized in this study. The results 

from parameter estimations and validation of linear car-following model are also 

presented in this chapter.   

4.2 Dataset description 

The data set representing 45 minutes of data collected during the afternoon peak 

period on a segment of Interstate 80 in Emeryville (San Francisco), California. The data 

set consists of detailed vehicle trajectory data, wide-area detector data and supporting 

data needed for behavioral research. 

4.2.1 Data Collection Procedure 

Data used in this thesis represent travel on the northbound direction of Interstate 

80 in Emeryville, California. This data was collected using video cameras mounted on a 

30-story building, Pacific Park Plaza, which is located in 6363 Christie Avenue and is 

adjacent to the interstate freeway I-80. The University of California at Berkeley 

maintains traffic surveillance capabilities at the building and the segment is known as the 

Berkeley Highway Laboratory (BHL) site. Video data were collected using seven video 

cameras.  
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4.2.2 Study Area Description 

Figure 4.1 provides a schematic illustration of the location for the vehicle 

trajectory dataset. The site was approximately 1650 feet in length, with an on-ramp at 

Powell Street. The off-ramp at Ashby Avenue is just downstream of the study area. Lane 

numbering is incremented from the left-most (the high-occupancy vehicle (HOV) lane). 

Figure 4.1: Study Area Schematic (NGSIM I-80 Data Analysis Summary report, 2006) 

4.2.3 Dataset Overview 

The dataset contains detailed trajectory information, observed within the study 

region over a 45-minute period stretching from 4:00 p.m. to 4:15 p.m. and 5:00 p.m. to 

5:30 p.m. The processed dataset presents this information in three parts; the first part 

encompassing vehicles observed in the first 15-minutes from 4:00 p.m. to 4:15 p.m., the 

second part for vehicles observed between 5:00 p.m. to 5:15 p.m. and the third part for 

vehicles observed between 5:15 p.m. to 5:30 p.m. The author used first part of vehicle 

trajectory for parameter estimation which contains detailed trajectory information of 
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vehicles observed the study region over 15 minute periods from 4:00 p.m. to 4:15 pm. 

Complete vehicle trajectories were transcribed at a resolution of 10 frames per 

second(NGSIM I-80 Data Analysis Summary report, 2006). 

  A significant proportion of these vehicles (94.6%) were automobiles, as can be 

seen from the vehicle distribution tables presented NGSIM I-80 Data Analysis Summary 

report developed by Cambridge Systematics, Inc (NGSIM I-80 Data Analysis Summary 

report, 2006). 

4.3 Model Parameter Estimation  

Let’s consider the Linear (Helly) Model, which is defined by (Bando, M. et al., 

1995): 

         1 2n na t C v t T C x t T v t T a t T              

where, 1 2,  ,  ,   and C C    are the linear model constants to be calibrated. According to 

this model, the acceleration is a linear function of the speed difference and the difference 

between headway and desired headway with 1C  and 2C  parameters for the two 

variables. The desired headway is the function of the velocity and the acceleration of the 

follow vehicle where ,   and     are parameters for those variables. Therefore, the 

vector of parameters is,  1 2, , , ,q     C C    . The authors used synthetic data for the 

validation of the proposed calibration method utilizing a 500 vehicle trajectory dataset. 

Then, the Next Generation SIMulation (NGSIM) (4:00PM-4:15PM) database containing 

observations from 1000 different vehicles with 200 observations for each vehicle on 

Interstate 80 (I-80) is used for calibration. The NGSIM database represents 45 minutes 
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(4:00 PM to 4:15 PM, 5:00 PM to 5:30 PM) of data collected during the afternoon peak 

period on a segment of Interstate 80 in Emeryville (San Francisco), California. 

   In the following, the authors selected different reaction times, T(s) for the sth 

vehicles with  1,2,...,1000s , generated randomly from a normal distribution with a 

mean of 2.2 seconds and a standard deviation of 0.44 seconds, which are given 

experimentally as good choices (McGehee et al., 2000). The vector can be defined as 

below, 

     
 

( ) ( ) ( ) ( )
1 2

1, 1,.....,
( ) : ( )

N
s s s s

n
n s M

m q C v t T C x t T v t T a t T  
 

              

where, N is the number of observations per vehicle for relative velocity, space headway, 

velocity and acceleration of the follower vehicle and M  is the number of vehicles that are 

included in the model. 

4.3.1 Parameter Estimation Using Synthetic Data 

The authors generated synthetic data using a known parameter distribution of a 

linear model to validate the proposed stochastic calibration method of car-following 

models. In general, synthetic data can be generated from a known distribution of 

parameter set and then, the distribution of the parameters should be compared with the 

distribution of estimated parameter set utilizing synthetic data and proposed calibration 

method to complete the validation process. In order to generate the distribution of the 

parameter set, a normal distribution of the parameters was assumed with a given mean 

(see Figure 4.2) and standard distribution for 500 vehicles.  After that, each parameter 
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was assigned to each of the 500 vehicles where each parameter was constant for all 

observations for a specific vehicle. Then the observable quantity (e.g. acceleration of the 

follow vehicle) was calculated using the parameters and synthetic vehicle trajectory data 

set. Finally, the distribution of calibrated parameters with synthetic data using the 

proposed Bayesian calibration framework was compared with the normal and uniform 

prior distribution of parameters. If both of those distribution functions match each other, 

validation of the calibration method is complete.     

Linear model parameters (q) were initially estimated for given observations from 

500 different vehicles with given reaction times and normal prior distribution. The 

authors produced 200,000 random samples of q. In Figure 4.3, the convergence of the 

parameters is shown. The values of the parameters of the linear model over the 200,000 

random samples from the Metropolis Hasting algorithm are plotted in Figure 4.3, 

illustrating the convergence of the proposed Metropolis Hasting algorithm. Generally, the 

algorithm is considered convergent if the samples look like noisy data around a straight 

line. A convergence of parameters is also evident in the other cases outlined in this study. 
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Figure 4.2: Histogram of Parameter for Five Hundred Vehicles using Assumed Distribution of Parameter 
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Figure 4.3: Convergence of Parameter with Synthetic Data of Five Hundred Vehicle Trajectories using Normal Prior 
Distribution 
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Figure 4.4: Histogram of Parameter with Synthetic Data of Five Hundred Vehicle Trajectories using Normal Prior Distribution 
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Figure 4.5: Histogram of Parameter with Synthetic Data of Five Hundred Vehicle Trajectories using Uniform Prior 
Distribution
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In Figure 4.4, the distribution function from each of the parameters in q after a certain 

burn- in is plotted. The authors plotted the histograms from random samples after a burn-

in time of 180,000. This is especially interesting because it visualizes the distribution 

function from the parameters of the linear (Helly) model given the observations from 500 

vehicles. The estimated parameters of the model with normal prior distribution are shown 

in Table 4-1.  

The authors then re-estimated the parameter distributions with prior uniform 

distribution of the parameter for 500 vehicles to compare with normal prior distribution 

to observe the effect of both prior distributions on the distribution function of estimated 

parameters, utilizing the proposed calibration method with the same number of vehicles. 

For this case, the convergence of parameters was similar as before which is not shown 

here. Here, 100,000 random samples were created with a burn-in of 90,000 samples. The 

authors obtained the following distributions (see Figure 4.5) for model parameters. Note 

that, the distributions of the parameters of the linear model in Figure 4.4 and Figure 4.5 

are similar. The mean and standard deviation of the parameters are shown in the Table 4-

1. 

The distributions appeared more as known distribution functions. Also, the 

similarity of the distribution function between Figure 4.4 and 4.5 indicates the ability of 

the proposed calibration method to estimate the parameters from any prior distribution of 

the parameters of a linear model.  

 



 
 

63 
 

Table 4.1: Validation of Calibration Method 

Model Parameters Mean Standard Deviation 

Generation of synthetic data for 500 vehicles 

1C  -0.0880 0.2045 

 2C  0.0052 0.0762 

α  1.1544 4.4685 

β  -0.0283 0.2631 

γ  -1.0060 0.4975 

Using normal prior distribution for 500 vehicles 

1C  -0.0589 0.4746 

 2C  -0.0285 0.0819 

α  -0.2438 2.1028 

β  -0.0258 0.2447 

γ  -0.8607 0.5630 

Using uniform prior distribution for 500 vehicles 

1C  -0.1086 0.4583 

 2C  -0.0314 0.0820 

α  -1.5250 2.4184 

β  0.0165 0.2584 

γ  -0.9456 0.4519 

 

4.3.2 Parameter Estimation Using NGSIM Data 

Model parameters (q) were estimated from ten different vehicles with given 

reaction times using real-world vehicle trajectory data. The author produced 15,000,000 

random samples of q. In Figure 4.6, the convergence of the parameters is shown. The 

values of the parameters of the linear model over the 15,000,000 random samples from 

the proposed Metropolis Hasting algorithm are plotted in Figure 4.6.  
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In Figure 4.7, the distribution function from each of the parameters in q after a 

certain burn- in is plotted.  In Figure 4.7, the authors plotted the histograms from random 

samples after a burn-in time of 1350,000. This is especially interesting because it 

visualizes the distribution function from the parameters of the linear (Helly) model given 

the observations from 10 vehicles. In this case, the authors obtained the approximation of 

the Bayes estimate:  

   10 0.1029,0.0019, 0.9118,0.0802, 0.9077
 

q vehiclesE d     

The authors then re-estimated the parameter distributions with observations from 

500 vehicles, to compare with the Bayes estimate from 500 vehicles to observe the effect 

of estimating the parameter distribution with more observations. For this case, 

convergence of parameters was similar as before. Here, 1,500,000 random samples were 

generated with a burn-in of 1,350,000 samples. The authors obtained the following 

distributions (see Figure 4.8) for model parameters. Compared to Figure 4.7, the 

distributions of the parameters of the linear model are changing if the observations of 500 

instead of only 10 vehicles are considered. The following approximation from the Bayes 

estimate expresses that thought: 

   0.0880,0.0052,1.1544, 0.0283, 1.0060
500 

q vehiclesE d     

In Figure 4.5, the distributions of the linear model (Helly’s model) parameters 

considering all observations from 1,000 vehicles are plotted. It is worth noting that the 

distribution of 1 2,  ,   and C C    are similar as shown in Figures 4.7, 4.8, and 4.9and 
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seem to have normal distributions. The authors tested the normality of these four 

parameters and they passed the normality test with a small number of outliers. The 

distribution of parameter    didn’t follow the normal distribution as the other four 

parameters.  The difference between distributions of parameter    in Figures 4.8 and 4.9 

is much smaller than the difference between Figures 4.7 and 4.8. This difference 

concludes that the more observations from vehicles included, the closer the 

approximation comes to the real distribution of this linear model parameter. The authors 

obtained the following Bayes estimate given the observations from all 1000 vehicles:   

   0.0933, 0.0051, 2.0020,0.0651, 1.0279
1000 

q   vehiclesE d      

 



 
 

66 
 

 

Figure 4.6: Convergence of Parameter with Ten (10) Vehicle Trajectories 
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Figure 4.7: Histogram of Parameter with Ten (10) Vehicle Trajectories 
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Figure 4.8: Histogram of Parameter with Five Hundred (500) Vehicle Trajectories 
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Figure 4.9: Histogram of Parameter with One Thousand (1000) Vehicle Trajectories
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The Bayesian framework was deemed computationally efficient for 10 vehicles 

after having been simulated 15,000,000 times. The simulation time was 2.56 hours to 

generate each 500,000 random sample. The simulation running time largely depends on 

the efficiency of the MATLAB coding for the Metropolis-Hasting algorithm for a given 

dataset, number of observations taken for each vehicle, configuration of the computer, 

and most importantly, the prior distribution of the parameters. In cases of 500 and 1000 

vehicles, the simulation time for generating 100,000 samples was 7.54 hours and 15.40 

hours, respectively. The authors have generated 15,000,000 samples for 10, 500 and 1000 

vehicles to observe convergence of the parameters. Future research should include 

possible modifications in the Bayesian framework presented in this study to decrease the 

number of iterations required in order to improve the calibration efficiency. 

4.4 Calibration Results  

A summary of means and standard deviations of the parameters for each vehicle 

set of the linear model is shown in Table 4-2. Note that the trend of the model parameter 

values is not similar for each vehicle set.  Although, the distribution of parameters, 

1 2,  ,   and C C    follows the normal distribution, parameter α does not look like a 

normal distribution. Since, parameter, α is not directly related to any car-following model 

variables, it doesn’t follow the normal distribution. The mean and standard deviation of 

all the parameters are calculated for the validation purpose.  Prior distribution (initial 

guess of mean and standard deviation of model parameters) plays an important role to 

obtain better convergences and normal distributions of the parameters after a certain 

burn-in time. 
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Table 4.2: Model Parameters Summary 

Model Parameters Mean Standard Deviation 

For 10 vehicles 

1C  -0.1029 0.2530 

 2C  0.0019 0.1772 

α  -0.9118 8.1835 

β  0.0802 0.8459 

γ  -0.9077 1.6423 

For 500 vehicles 

1C  -0.0880 0.2045 

 2C  0.0052 0.0762 

α  1.1544 4.4685 

β  -0.0283 0.2631 

γ  -1.0060 0.4975 

For 1000 vehicles 

1C  -0.0933 0.1975 

 2C  -0.0051 0.0689 

α  -2.0020 3.9201 

β  0.0651 0.2349 

γ  -1.0279 0.4574 

 

4.5 Evaluation 

In order to consider whether this is a good (or meaningful) method, the author 

calculated the average mean square error for one vehicle (taking 200 observations per 

vehicle), with each of the three Bayes estimates and the author also compared it to the 

"optimal" parameters found through the deterministic method, which suggests that the 

Bayesian calibration method provides smaller error than the deterministic calibration 
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method. The average mean square error per vehicle is shown in Table 4.3 for the three 

Bayes estimates for each vehicle set, and with the parameters of the deterministic 

method. In Table 4.3 it is clear that the calibration of the given observations from all 

1000 vehicles gives, at an average, the smallest mean square error per vehicle. The 

average Mean Square Error (MSE) per vehicle decreased with increasing number of 

vehicles used to estimate the model parameters with the Bayes calibration method.  Thus, 

the performance of the calibration method is dependent upon the sample size. 

Table 4.3: Average Mean Square Error (MSE) per Vehicle for Calibration 

Estimation Approach Average MSE per vehicle 

 q̂E  (Deterministic approach) 5186.09 

 10 
q vehiclesE d  286.38 

 500 
q vehiclesE d  105.27 

 1000 
q vehiclesE d

 
92.01 

 

The Bayesian approach provides better results than deterministic optimization 

algorithms ( q̂ ). It seems logical that the more observations from vehicles that are given, 

the better our calibration. Furthermore, this method is superior in that it is possible to 

estimate the distribution of the parameters rather than just the mean as in the 

deterministic approaches. Figure 4.10 represents acceleration/deceleration profiles of 

estimated data and observed data for a randomly selected vehicle. With an increasing 

number of vehicles, the average mean square error per vehicle is decreases, and the 

acceleration/deceleration profile is closer to the observed profile of the given field data.  
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Figure 4.10 Comparison of Acceleration/Deceleration Profile Among Estimated Data and Observed Data for Calibration 
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4.6 Validation Results 

Using a comparative model validation, the average mean square error per vehicle 

for three different Bayes estimates was selected to measure the performance of the 

Bayesian calibration method. In Table 4.4, average mean square error per vehicle was 

calculated with data from Interstate 80 (I-80) that were collected by the Next Generation 

SIMulation (NGSIM) (time period 5:00PM-5:15PM). One thousand vehicles are 

randomly selected from this database to calculate the average mean square error.  The 

average mean square error per vehicle decreased with increasing a number of vehicles 

used to estimate the model parameters using the Bayes calibration method.  Thus, the 

performance of the calibration method is dependent upon the sample size.  

Table 4.4: Average Mean Square Error (MSE) per Vehicle for Validation 

Estimation Approach Average MSE per vehicle 

 10 vehiclesE q d  502.59 

 500 vehiclesE q d  86.66 

 1000 vehiclesE q d
 

75.81 

 

To further investigate the performance, predicted acceleration/deceleration profile 

with three different Bayes estimates, and observed data for a randomly selected vehicle 

for 200 observations is compared (See Figure 4.11). With an increasing the number of 

vehicles, the average mean square error per vehicle is decreases and the 

acceleration/deceleration profile is closer to the observed profile of the given field data. 

From Figure 4.11, one can recognize relatively feasible behavior that the model predicts 
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regarding drivers’ acceleration and deceleration behavior and consequently map to the 

field data. 
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Figure 4.11: Comparison of Acceleration/Deceleration among Predicted Data and Observed Data for Validation 
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4.7 Contribution of the Research 

This research focused on the development of a method to apply a stochastic 

calibration approach to car-following models. In this study, a stochastic calibration 

method was developed utilizing a Bayesian framework, which is based on Markov Chain 

Monte Carlo (MCMC) simulation to estimate the parameters of a car-following model. 

This stochastic method will facilitate the calibration of car-following model more 

realistically than the deterministic methods. This calibration method was  applied to 

estimate the parameters in a linear car-following model utilizing real world data from the 

NGSIM database.  This study demonstrated that with increasing sample size, calibrated 

model would produce smaller errors.   The calibration method presented in this thesis 

provided better results than the deterministic optimization algorithm considered in this 

study. This thesis will support the real world applications of car-following models in 

representing driver behaviors; thus supporting more realistic simulations and evaluations 

of roadway traffic.   
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CHAPTER FIVE 

CONCLUSIONS AND RECOMMENDATIONS 

 

5.1 Conclusions 

The primary goal of this research was to develop a process for applying a 

stochastic calibration method with appropriate regularization to estimate the distribution 

of parameters for car-following models. The calibration method was based on the 

Markov Chain Monte Carlo (MCMC) simulation utilizing Bayesian estimation theory 

that has been recently investigated for inverse problems. This research proved the 

efficacy of the proposed approach using a synthetic dataset to estimate the parameters of 

a linear model with both normal and uniform prior distribution of the parameters.  

The calibration method was then applied to a relatively simple car-following 

model (Linear or Helly model) to provide a comparison with a deterministic approach. 

The analysis revealed that the calibration of the parameters of the linear model, given the 

distribution from all 1000 vehicles, on average yielded the smallest mean square error per 

vehicle. On the other hand, the deterministic calibration approach provided a higher mean 

square error per vehicle than the Bayesian framework. Thus, the Bayesian approach 

provided better results in terms of the cost function than the deterministic optimization 

algorithm.  It was also determined that the stochastic approach facilitated the calibration 

of car-following models more realistically than the deterministic methods, as the 

deterministic algorithm can easily get stuck at a local minimum.  
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The Bayesian framework was deemed computationally efficient for 10 vehicles 

after having been simulated 15,000,000 times. The simulation time was 2.56 hours to 

generate each 500,000 random sample. The simulation running time largely depends on 

the efficiency of the MATLAB coding for the Metropolis-Hasting algorithm for a given 

dataset, number of observations taken for each vehicle, configuration of the computer, 

and most importantly, the prior distribution of the parameters. In cases of 500 and 1000 

vehicles, the simulation time for generating 100,000 samples was 7.54 hours and 15.40 

hours, respectively. The authors have generated 15,000,000 samples for 10, 500 and 1000 

vehicles to observe convergence of the parameters. Future research should include 

possible modifications in the Bayesian framework presented in this study to decrease the 

number of iterations required in order to improve the calibration efficiency. 

Of particular interest were the trends of the three Bayes estimates of the linear 

model parameters that were very close from each other. Additional running time may be 

necessary to get a better approximation of the parameters.  Since the calibration process 

of the Bayesian framework depends on the vehicle trajectory dataset and simulation to 

generate random samples to converge, the limitations of this research include the long 

computational time of the calibration process in the simulation and a large vehicle 

trajectory dataset requirement to provide the most reliable results. In summary, the 

stochastic calibration approach has been rigorously validated in this research with 

synthetic data. As heavy computational burden is one of the major limitations, a linear 

model was used to overcome this issue. 
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5.2 Recommendations 

This section is divided into two sections. The first section presents 

recommendations regarding the application of the framework to other models and the 

second section presents recommendations regarding follow-up research.     

5.2.1 Applications of the Framework 

 Any application of the framework should strive to include a large number of 

vehicle trajectories as the analysis conducted for this thesis suggests that a larger 

number of vehicle trajectories resulted in smaller errors in the calibrated model.   

 The calibration framework presented in this thesis will be more precise as more 

accurate vehicle trajectories are generated through the real-time tracking of 

vehicles.     

5.2.2 Future Research 

 Future research should include possible modifications in the Bayesian framework 

presented in this thesis, to decrease the number of iterations required, in order to 

improve the calibration efficiency.     

 Future research should investigate the calibration efficacy under different driving 

conditions, such as traffic incidents on the rodway.  
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Appendix A 

Sample Vehicle Trajectory Dataset 

1 483 884 1113433183200.00 17.2910000000000 573.242000000000 6042777.92800000 2133638.74300000 14.3000000000000 6.40000000000000

 2 21.6700000000000 -8.83000000000000 2 3355 11 28.9000000000000 1.33000000000000 

1 484 884 1113433183300.00 17.2970000000000 575.356000000000 6042777.66800000 2133640.84900000 14.3000000000000 6.40000000000000

 2 20.8800000000000 -7.31000000000000 2 3355 11 29.6400000000000 1.42000000000000 

1 485 884 1113433183400.00 17.3010000000000 577.387000000000 6042777.41900000 2133642.86200000 14.3000000000000 6.40000000000000

 2 20.3200000000000 -4.15000000000000 2 3355 11 30.4400000000000 1.50000000000000 

1 486 884 1113433183500.00 17.3050000000000 579.379000000000 6042777.17700000 2133644.81800000 14.3000000000000 6.40000000000000

 2 20.0400000000000 -1.28000000000000 2 3355 11 31.3400000000000 1.56000000000000 

1 487 884 1113433183600.00 17.3100000000000 581.364000000000 6042776.93200000 2133646.80200000 14.3000000000000 6.40000000000000

 2 19.9700000000000 0.300000000000000 2 3355 11 32.0100000000000 1.60000000000000 

1 488 884 1113433183700.00 17.3150000000000 583.361000000000 6042776.68700000 2133648.78700000 14.3000000000000 6.40000000000000

 2 20 0.370000000000000 2 3355 11 33.3100000000000 1.67000000000000 

1 489 884 1113433183800.00 17.3200000000000 585.365000000000 6042776.44200000 2133650.77200000 14.3000000000000 6.40000000000000

 2 20.0200000000000 0.0600000000000000 2 3355 11 34.2200000000000 1.71000000000000 

1 490 884 1113433183900.00 17.3240000000000 587.368000000000 6042776.19700000 2133652.75700000 14.3000000000000 6.40000000000000

 2 20.0200000000000 0 2 3355 11 34.9400000000000 1.75000000000000 
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1 491 884 1113433184000.00 17.3280000000000 589.371000000000 6042775.95200000 2133654.74200000 14.3000000000000 6.40000000000000

 2 20.0200000000000 -0.0700000000000000 2 3355 11 35.5100000000000 1.77000000000000 

1 492 884 1113433184100.00 17.3580000000000 591.373000000000 6042775.73200000 2133656.73100000 14.3000000000000 6.40000000000000

 2 20.0100000000000 -0.110000000000000 2 3355 11 36 1.80000000000000 

1 493 884 1113433184200.00 17.2900000000000 593.373000000000 6042775.41500000 2133658.71200000 14.3000000000000 6.40000000000000

 2 20 -0.150000000000000 2 3355 11 36.5000000000000 1.83000000000000 

1 494 884 1113433184300.00 17.1890000000000 595.373000000000 6042775.06600000 2133660.67900000 14.3000000000000 6.40000000000000

 2 19.9800000000000 -0.160000000000000 2 3355 11 37.0100000000000 1.85000000000000 

……………………………………………………………………………………………………………………………………………………………………………continue 

878 2660 448 1113433400900.00 55.3030000000000 311.254000000000 6042848.02000000 2133383.43400000 11.9000000000000 5.30000000000000

 2 37.9900000000000 1.76000000000000 5 860 926 142.400000000000 3.75000000000000 

878 2661 448 1113433401000.00 55.2890000000000 315.070000000000 6042847.53400000 2133387.23300000 11.9000000000000 5.30000000000000

 2 38.0900000000000 0.160000000000000 5 860 926 142.960000000000 3.75000000000000 

878 2662 448 1113433401100.00 55.2910000000000 318.892000000000 6042847.06700000 2133391.00400000 11.9000000000000 5.30000000000000

 2 38.0700000000000 -1.13000000000000 5 860 926 143.460000000000 3.77000000000000 

878 2663 448 1113433401200.00 55.2960000000000 322.688000000000 6042846.60400000 2133394.77000000 11.9000000000000 5.30000000000000

 2 38 -0.210000000000000 5 860 926 143.900000000000 3.79000000000000 

878 2664 448 1113433401300.00 55.2980000000000 326.484000000000 6042846.13700000 2133398.54100000 11.9000000000000 5.30000000000000

 2 37.9900000000000 0.110000000000000 5 860 926 144.270000000000 3.80000000000000 



 
 

91 
 

878 2665 448 1113433401400.00 55.3000000000000 330.290000000000 6042845.67000000 2133402.31200000 11.9000000000000 5.30000000000000

 2 37.9400000000000 -0.890000000000000 5 860 926 144.580000000000 3.81000000000000 

878 2666 448 1113433401500.00 55.3020000000000 334.085000000000 6042845.20300000 2133406.08300000 11.9000000000000 5.30000000000000

 2 37.8100000000000 -1.79000000000000 5 860 926 144.890000000000 3.83000000000000 

878 2667 448 1113433401600.00 55.3040000000000 337.846000000000 6042844.73600000 2133409.85500000 11.9000000000000 5.30000000000000

 2 37.7600000000000 -0.0900000000000000 5 860 926 145.250000000000 3.85000000000000 

878 2668 448 1113433401700.00 55.3040000000000 341.595000000000 6042844.26500000 2133413.60800000 11.9000000000000 5.30000000000000

 2 37.9800000000000 4.13000000000000 5 860 926 145.640000000000 3.83000000000000 

878 2669 448 1113433401800.00 55.3120000000000 345.383000000000 6042843.79800000 2133417.37800000 11.9000000000000 5.30000000000000

 2 38.5800000000000 8.50000000000000 5 860 926 146.020000000000 3.78000000000000 

878 2670 448 1113433401900.00 55.3510000000000 349.275000000000 6042843.35000000 2133421.24300000 11.9000000000000 5.30000000000000

 2 39.4500000000000 9.53000000000000 5 860 926 146.300000000000 3.71000000000000 
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Sample Customized Vehicle Trajectory Dataset for Linear Model 

VID      Relative Velocity      Space Headway        Follower Velocity      Follower Acceleration 

1 -2.46678811035157 41.6021709960938 23.3500000000000 0 

1 -2.61262453613281 41.3263791748047 23.3500000000000 0 

1 -2.62158364257813 41.0605873535156 23.3500000000000 0 

1 -2.68153903808594 40.8090037109375 23.4257472167969 1.21195546875000 

1 -2.95674350585938 40.5521709960938 23.7067435058594 3.94046103515625 

1 -3.32203718261719 40.2385055664063 24.0720371826172 4.22170996093750 

1 -3.49000000000000 39.8658810302734 24.2400000000000 0.420163427734375 

1 -3.36796281738281 39.4885055664063 24.1179628173828 -3.77091457519531 

1 -3.11162824707031 39.1705873535156 23.7900892089844 -4.08021552734375 

1 -3.08257993164063 38.9063791748047 23.4858364257813 -1.59352412109375 
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1 -3.17212639160157 38.5858810302734 23.1932564941406 -3.08866186523438 

1 -2.71180666503907 38.2127137451172 22.5249739501953 -8.41413395996094 

1 -1.38411147460938 37.9510854980469 21.2961486572266 -11.2000000000000 

1 0.507427563476561 37.8994572509766 19.7661486572266 -11.2000000000000 

1 2.03873608398438 38.0788698974609 18.5391375244141 -7.80399978027344 

1 2.35800742187500 38.4172862548828 18.0742081787109 0.143963037109375 

1 1.58343491210938 38.6873308593750 18.1725799316406 3.73682521972656 

1 0.424475805664063 38.7631672851563 18.2158364257813 -1.15586640625000 

1 -0.507739794921875 38.7021263916016 17.8222602050781 -7.66231979980469 

1 -1.04149443359375 38.6121263916016 17.1875092773438 -7.19667641601563 

1 -1.43095168457031 38.5095018554688 16.8105427490234 -0.671694970703125 
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Sample Generated Reaction time  

 (Mean 2.2sec and Standard Deviation 0.44)    

   2.829090889093081 

   2.157447851638458 

   1.831983728599337 

   2.323168017333215 

   2.328090509450891 

   3.135942172913503 

   1.497778576626783 

   2.018882768722791 

   2.623841085134539 

   2.445674401239947 

   2.282295037010619 

   2.901763314488963 

   1.920502595122136 

   2.406035523044896 

   2.138595161260279 
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Appendix B 

MATLAB Code Generation 

MATLAB Code for generating random samples using Metropolis-Hasting Algorithm 

%% Stat meth 

clear all; 

tic; 

str = 'Car_1000_200,000_200_1.txt';    

  

%Input parameter 

c1=-0.1052; 

c2=-0.0015; 

alpha=-0.9424;                          

beta=1.3930; 

gama=-1.2969; 

  

parMean=[-0.1052 -0.0015 -0.9424 1.3930 -1.2969]; 

ParaVar=[1 1 10 10 10]; 

  

Theta=20;  

  

ParamVecAct= [c1 c2 alpha beta gama]; 

UpdateParamVec=zeros (1, 5); 

NewParam=zeros(1,5); 

FinalParamVecAct=zeros (100,5); 

var=1000000; 

burnin=20000; 

numiterations=100000;              

jumpCovariance = 0.4; 

  

%load DataSet 

  

load Data350.mat; 

  

mem=1;   

LM_RMSE_1000(ParamVecAct,Data350); 
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actvalue=LM_RMSE_1000(ParamVecAct,Data350);  

  

penatOld=0; 

for j=1:5 

        penatOld=penatOld+(ParamVecAct(j)-    

        parMean(j))^2/(2*ParaVar(j)^2); 

end 

  

for i=1:numiterations 

     

    for j=1:5 

        NewParam(j)=normrnd(ParamVecAct(j),jumpCovariance); 

    end 

     

    newvalue=LM_RMSE_1000(NewParam,Data350); 

    penatNew=0; 

     

    for j=1:5 

        penatNew=penatNew+(NewParam(j)-  

                 parMean(j))^2/(2*ParaVar(j)^2); 

    end 

     

    Error=(actvalue-newvalue)/2/var;               

    Probability=theta*(penatOld-penatNew);   

     

accept = exp(theta*(penatOld-penatNew)+(actvalue-   

                    newvalue)/2/var);  

     

  

            if accept>=1 

                 ParamVecAct=NewParam; 

                 actvalue=newvalue; 

                 mem=mem+1; 

                 penatOld=penatNew; 

           else 

                 r=rand(1,1); 

                if r<accept 

                 ParamVecAct=NewParam;      

                 actvalue=newvalue;    

                 mem=mem+1; 

                 penatOld=penatNew; 
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                end 

  

           end 

             

            if mod(i,100)==0 

                i 

                mem/100 

                jumpCovariance; 

 

                if mem>26.4 && i<200000                     

                    jumpCovariance=jumpCovariance*1.01; 

                end 

                if mem<20.4 && i<200000                                                             

                    jumpCovariance=jumpCovariance*.99; 

                end 

                mem=0; 

            end 

             

            FinalParamVecAct(i,:) = ParamVecAct ;    

end 

  

 X= FinalParamVecAct; 

 dlmwrite(str,X); 

 toc; 

 

MATLAB Code for calculating sum of square error for 200 observations for 1000 cars 

function [FinalSumError]=LM_RMSE_1000(ParamVecAct,Data350)  

  

C1=repmat(ParamVecAct(:,1),200,1); 

C2=repmat(ParamVecAct(:,2),200,1); 

Alpha=repmat(ParamVecAct(:,3),200,1); 

Beta=repmat(ParamVecAct(:,4),200,1); 

Gama=repmat(ParamVecAct(:,5),200,1); 

  

FinalSumError=0; 

  

for j=1:1000 % Loop for diffrent car 
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    CarList=(Data350(:,1)==j);   

    CarSet = Data350(CarList,:);             

    NewCarSet= CarSet(:,:);  % Observation for one car  

                                                                                    

             % Unknown Values 

             rel_v= NewCarSet(:,2); 

             rel_x= NewCarSet(:,3); 

             vn= NewCarSet(:,4); 

             accn= NewCarSet(:,5);     

   

    %Sum for each vehicle                                                          

    accn_hat = dot(C1,rel_v,200)+dot(C2,(rel_x - Alpha -      

               dot(Beta,vn,200)- dot(Gama,accn,200)),200);  

 

    % Error for all Car                      

    est_error= dot((accn-accn_hat),(accn- accn_hat),1);   

      

     

    FinalSumError=FinalSumError+est_error;                           

       

     

end % for loop j 

  

end % End of Function    

 
MATLAB Code for calculating Average mean square error per car   

%% stat meth 

clear all; 

tic; 

load Data350.mat; 

 

c1=-0.0969; 

c2=0.0172; 

alpha=-0.4504;                          

beta=1.5960; 

gama=-1.2387; 

  

 

ParamVecAct=[c1 c2 alpha beta gama]; 
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C1=repmat(ParamVecAct(:,1),200,1); 

C2=repmat(ParamVecAct(:,2),200,1); 

Alpha=repmat(ParamVecAct(:,3),200,1); 

Beta=repmat(ParamVecAct(:,4),200,1); 

Gama=repmat(ParamVecAct(:,5),200,1); 

e=zeros(0,0); 

x=zeros(0,0); 

FinalSumError=0; 

sumx=0; 

  

for j=1:1000 % Loop for diffrent car 

     

    CarList=(Data350(:,1)==j);   

    CarSet = Data350(CarList,:);             

    NewCarSet= CarSet(:,:);  % Observation for one car  

                                                                                    

             % Unknown Values 

             rel_v= NewCarSet(:,2); 

             rel_x= NewCarSet(:,3); 

             vn= NewCarSet(:,4); 

             accn= NewCarSet(:,5);       

  

             accn_hat = dot(C1,rel_v,200)+dot(C2,(rel_x - Alpha - dot(Beta,vn,200)- 

dot(Gama,accn,200)),200);        

             PredictedAcc=[NewCarSet(:,5) accn_hat(:,1)]; 

              

             error=mean(accn_hat(:,1)); 

             e=[e;error]; 

              

             Acc=mean(NewCarSet(:,5)); 

 

             est_error= dot((NewCarSet(:,5)-error),(NewCarSet(:,5)-error),1);  %Sum for 

each vehicle                                                          

             x=[x;est_error];   

              

             FinalSumError=FinalSumError+est_error; % Error for all Car 

                           

       

     

end % for loop j 

x; 
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sumx=sum(x(:,1)); 

errorpercar=sumx/1000 

toc; 

 

MATLAB Code to calculate model variable the dataset   

%% meth stat 

clear all; 

tic; 

  

load DataSet.mat; 

load FinalNewDataSet.mat; 

load T.mat 

  

NumberCar=0; 

  

FollowerVelocity200=zeros(0,0); 

SpaceHead200=zeros(0,0); 

FollowerAcc200=zeros(0,0); 

RelativeVelocity200=zeros(0,0); 

  

str = 'FollowerVelocity200.txt'; 

str = 'SpaceHead200.txt'; 

str = 'FollowerAcc200.txt'; 

str = 'RelativeVelocity200.txt'; 

  

   

for j=4:1734 % Loop for diffrent car 

  

        

    CarList=(FinalNewDataSet(:,1)==j);   

    CarSet = FinalNewDataSet(CarList,:); 

    ZeroLengthCarSet=length(CarSet(:,1)); 

    

        if  ZeroLengthCarSet==0 

               

            continue 

        else    

  

            NumberCar=NumberCar+1 
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for i=1:250    % loop for 400 observation for each vehicle   

  

% Info of Leader Vehicle    

ObservationCar=CarSet(i,:);  

                                list=(DataSet(:,1)==ObservationCar(1));  

                                Final_Follower=DataSet(list,:); 

ObservationCar(4); 

t= ObservationCar(4)-T(j);  

  

  

% Info of Leader Vehicle 

                                LeaderList=(DataSet(:,1)==ObservationCar(15));  

                                Final_leader=DataSet(LeaderList,:); 

                                 

Vel_L= interp1(Final_leader(:,4),Final_leader(:,12),t); 

  

% Follower Info 

                                Vel_F=interp1(Final_Follower(:,4),Final_Follower(:,12),t); 

                               

Del_x= interp1(Final_Follower(:,4),Final_Follower(:,17),t); 

                                Acc_F=interp1(Final_Follower(:,4),Final_Follower(:,13),t); 

  

% Relative Velocity info 

  

Vel_Rel= Vel_L-Vel_F; 

  

% Unknown variables 

  

                                            FollowerVelocity200=[FollowerVelocity200;Vel_F]; 

                                            SpaceHead200=[SpaceHead200;Del_x]; 

                                            FollowerAcc200=[FollowerAcc200;Acc_F];       

                                            RelativeVelocity200=[RelativeVelocity200;Vel_Rel]; 

  

  

                        end  % for forloop 

                               

           end   % for if else             

             

end % for loop j 
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 dlmwrite(str,FollowerVelocity200); 

 dlmwrite(str,SpaceHead200);  

 dlmwrite(str,FollowerAcc200); 

 dlmwrite(str,RelativeVelocity200); 

  

toc; 
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Appendix C 

Matlab Output  
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