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ABSTRACT The selection of variational mode decomposition (VMD) parameters usually adopts the empir-

ical method, trial-and-error method, or single-objective optimization method. The above-mentioned method

cannot achieve the global optimal effect. Therefore, a multi-objective particle swarm optimization (MOPSO)

algorithm is proposed to optimize the parameters of VMD, and it is applied to the composite fault diagnosis of

the gearbox. The specific steps are: first, symbol dynamic entropy (SDE) can effectively remove background

noise, and use state mode probability and state transition to preserve fault information. Power spectral

entropy (PSE) reflects the complexity of signal frequency composition. Therefore, the SDE and PSE are

selected as fitness functions and then the Pareto frontier optimal solution set is obtained by the MOPSO

algorithm. Finally, the optimal combination of VMD parameters (k, α) is obtained by normalization. The

improved VMD is used to analyze the simulation signal and gearbox fault signal. The effectiveness of the

proposed method is verified by comparing with the ensemble empirical mode decomposition (EEMD).

INDEX TERMS Variational mode decomposition, multi-objective particle swarm, symbol dynamic entropy,

power spectral entropy, fault diagnosis of the gearbox.

I. INTRODUCTION

Over the years, through the continuous exploration ofmany

domestic and foreign scientific research workers, the reli-

ability and accuracy [1]–[4] of fault diagnosis have been

improved.

In 2014, Dragomiretskiy and Zosso [5] proposed a new

adaptive fault diagnosis method, variational mode decom-

position (VMD).The VMD method has the advantages of

solid theoretical basis, fast convergence speed and obvious

decomposition results. As a decomposition algorithm, VMD

is similar to empirical mode decomposition [6] (EMD) and

EEMD [7]. The fault signal can be decomposed into several

intrinsic mode functions [8] (IMF) according to high and low

frequencies. However, before the decomposition of the fault
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signal, VMD needs to determine the decomposition number

of the intrinsic mode function k and the penalty factor α

in advance [9]. The decomposition number k has a great

influence on the decomposition results, that is, when the

kvalue is set too high, it will lead to over-decomposition and

decompose the abnormal white noise components. However,

when the k value is too low, under-decomposition will occur.

The penalty factor α directly affects decomposition accuracy.

The larger the value of α, the wider the bandwidth of the k

modal functions obtained. On the contrary, the smaller the

value of α, the smaller the bandwidth of the kmodal functions

obtained, thus affecting the decomposition accuracy. And if

the value of k and α are improper, modal aliasing will occur.

If the appropriate value is taken, the phenomenon of modal

aliasing can be effectively suppressed, and the fault char-

acteristics can be effectively extracted [10]–[13]. Therefore,

the selection of the appropriate combination of parameters
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(k, α) is the key to the signal decomposition of VMD.

Due to the rapid development of intelligent algorithms

in recent years, such as: genetic algorithms, neural net-

work algorithms [14]. For adaptively determining the num-

ber of modal decompositions k and thepenalty factor α in

the VMD, Zhang et al. [15] used the grasshopper opti-

mization algorithm (GOA) to optimize the VMD param-

eters. In this method, first, a measurement index called

a weighted kurtosis index is constructed using a kurtosis

index and a correlation coefficient. Then, using the maxi-

mum weighted kurtosis as the fitness function, the VMD

parameters are optimized by the GOA algorithm; Wang

et al. [16] used the permutation entropy optimization method

to adaptively determine the number of modal decomposi-

tions k; Miao et al. [17] established the kurtosis of indicator

set as the objective function, and optimized the objective

function by using the GOA,adaptive determination values

of k and α by using the GOA; Other scholars use the Ant

Colony Algorithm (ACA) [18], Artificial Fish Swarm Algo-

rithm (AFSA) [19] and other optimization algorithms to opti-

mize parameters. Compared with the individual experience

to determine the value of k and the value of α,these opti-

mization algorithms can automatically determine the k value

and the α value according to the original signal, and have

well adaptability.At the same time, exclude the influence of

human factors on the decomposition result. However, these

methods are all constructing single objective functions for

optimization, and the single objective optimization problem

only considers the optimal problem in a certain sense con-

text. Multi-objective optimization considers the optimality of

multiple objective in a certain sense and it can achieve global

optimal characteristics.Therefore, this paper the construction

ofmulti-objective functions for VMDparameter optimization

has certain feasibility [20].

Multi-objective Particle Swarm Optimization(MOPSO)

[21]–[23] algorithm can optimize the problem by using mul-

tiple objective function indexes.Due to its simple principle

andmechanism, rapid convergence speed and well global

search performance, it has been successfully applied to

many problems in many fields. Particle swarm optimization

algorithm is an evolutionary algorithm with the advantages

of simple form, rapid convergence and flexible parameter

adjustment mechanism, and has been successfully applied

to the single-objective optimization problem, which is con-

sidered as one of the most promising methods for solving

multi-objective optimization problems [24]. And domestic

and foreign scholars have done a lot of research on the

improvement of this method. Shu-Kai et al. [25] proposed

a multi-objective solution method based on particle swarm

optimization, which combines multiple search strategies and

empirical mobility strategies based on the Pareto advantage

concept. The results show that there are great advantages

for solving multi-objective problems. Zhang et al. [26] pro-

posed a MOPSO algorithm based on competition mecha-

nism. The method is based on pairwise competition to update

the particle swarm. The experimental results show that the

algorithm has well performance optimization quality and

convergence speed. MOPSO has significant advantages com-

pared to single-objective particle swarm optimization. This

paper proposes to optimize the VMD parameters by using

MOPSO, and apply the improvedVMDalgorithm to the gear-

box composite fault diagnosis.The main part of the parameter

optimization using this method is the selection of multi-

objective functions.Because, SDE [27], [28] is from sym-

bol dynamic filtering,combining the advantages of symbol

dynamics and information theory, based on these advantages,

it can effectively remove background noise, utilize state mode

probability and state transition to retain fault information,

SDE has better performance in vibration signal analysis of

amplitude and frequency information. The SDE is similar

to the definition of PE, but SDE is better than PE, which

is mainly reflected in the better performance of SDE in the

evaluation of time series amplitude difference, and SDE has

the advantage of anti-noise. At the same time, considering

the PSE [29] reflects the signal power varies with frequency,

the PSE can effectively reflect the complexity of the signal

frequency composition. When the sparseness of the signal

is weak, the PSE value is large; when the signal exhibits

strong sparsity, the PSE value is small. So, this paper chooses

the SDE and PSE as the objective function of MOPSO.

Then, the Pareto frontier optimal solution set is obtained by

the MOPSO algorithm. Finally, the VMD parameter optimal

combination (k, α) is obtained through normalization. The

simulated signal and gearbox fault signal is analyzed using

the improve VMD [30].

II. THEORETICAL FOUNDATION

A. VARIATIONAL MODAL DECOMPOSITION (VMD)

ALGORITHM

VMD is a new approach to adaptive non-recursive signal

decomposition. It uses iterative solution to the optimal solu-

tion of the variational model, and can adaptively separate the

components to obtain the frequency center and bandwidth of

each IMF. The overall framework is variational model prob-

lem. The decomposition process of complex signals using

VMD is actually the solution process of the constructed

variational function problem.

The VMD decomposes the original signal x(t) into k

limit-bandwidth IMFs, which can be expressed as:

uk (t) = AK (t) cos (ϕk (t)) (1)

where, Ak (t) is the instantaneous amplitude of uk (t), and

wk (t) is the instantaneous frequency of uk (t).

Using H1 Gauss smoothness of the demodulated signal,

the bandwidth of uk (t) is estimated, Finally, the constrained

variational models of VMD algorithm are as follows: (2), (3).

min
(uk )(ωk )

{

∑

k

∥

∥

∥

∥

∂t

[

σ (t) +
j

t
ut (t)

]

e−jwk t
∥

∥

∥

∥

2

2

}

(2)

s.t
∑

k

uk = x(t) (3)
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where: ∂t represents the partial derivative of t, and{uk} =

{u1, . . . , uk} represents the k IMFs obtained by decomposing

the signal x(t). {wk} = {w1, . . . ,wk} represents the center

frequency of each IMF component.

In order to solve the optimal solution of the above vari-

ational model, the following form of Lagrange function is

introduced here:

L ({uk} , {ωk} , λ)

= α
∑

k

∥

∥

∥

∥

[

(σ (t) +
j

t
) × uk (t)

]

e−jwk t
∥

∥

∥

∥

2

2

+

∥

∥

∥

∥

∥

x (t) −
∑

k

uk (t)

∥

∥

∥

∥

∥

2

2

+

〈

λ (t) , x (t) −
∑

k

uk (t)

〉

(4)

where: λ is the Lagrange multiplier operator and α is the

penalty factor.

Secondly, the time-frequency domain transform of equa-

tion (4) is performed, and the corresponding extremum solu-

tion is solved to obtain the frequency domain expression of

the modal component uk and the center frequency wk :

un+1
k (w) =

f (w) −
∑k

i=1,i 6=k ui (w) +
λ(w)
2

1 + 2
α(w− wk )

2 (5)

wn+1
k

∫ ∞

0 w |uk (w)|
2 dw

∞
∫

0

|uk (w)|
2 dw

(6)

Finally, the Alternate Direction Method of Multipli-

ers (ADMM) is used to solve the optimal solution of the

constrained variational model. Thereby, the original signal

x(t) is decomposed into k IMFs. The specific steps of the

algorithm are as follows:

(1)The initialization of the parameters, set {uk}, {wk},
{

λ1
}

and n to 0.

(2)Update un+1
k , wn+1

k according to equation (5)and(6).

(3)Update the value of λn+1 according to equation λn+1 (w) =

λn (w) + τ (f (w) −
∑n+1

k uk (w)).

(4)Until the equation
∑

k

∥

∥

∥
un+1
k − unk

∥

∥

∥

2

2

/

∥

∥unk

∥

∥

2

2
< ε is

satisfied, the iteration is stopped and the loop is exited. Oth-

erwise, the return step 2. Finally, k intrinsic mode functions

can be obtained. Complete decomposition [31].

B. OPTIMIZATION OF VMD PARAMETERS BASED

ON MULTI-OBJECTIVE PARTICLE SWARM

OPTIMIZATION (MOPSO)

In the traditional VMD algorithm, due to the limitation

of its algorithm theory, it is necessary to preset the number

of decomposition modes k and the penalty factor α before

performing signal processing. According to the theoretical

study of the VMD, the preset decomposition modal num-

ber k is too large, there will be over-decomposition when

processing the signal; If the k value is too small, the under-

decomposition phenomenon will occur when the signal is

processed.If the value of the penalty factor α is larger,

the smaller the bandwidth of the obtained k modal func-

tions;the value of α is smaller, the larger the bandwidth of

the obtained k modal functions.It can be seen that the preset

k value and α value have great influence on the VMD decom-

position result.Therefore, selecting the appropriate number

of decomposition modes k and the penalty factor α are the

key to accurately extract fault information.MOPSO is widely

used because of its simple principle, fast convergence, and

good global search performance. Therefore, this paper uses

the MOPSO algorithm proposed by Coello et al. [21] to

optimize the VMD parameters. The key part of optimiz-

ing the VMD parameters based on this algorithm is the

selection of multiple fitness functions. Due to PSE is the

extension of information entropy in the frequency domain,

it is related to the distribution of frequency components.

The frequency spectrum entropy is used to quantify the

degree of the chaos of various fault vibration signals from

the magnitude and distribution of frequency domain ampli-

tude. PSE reflects the complexity of the signal frequency

composition.

The principle of PSE algorithm is as follows:

Step1: Calculate the power spectrum of x(t).

s (f) =
1

2πN
|x(w)|2 (7)

where N is the signal length; x(w) is the Fourier transform of

x(t).

Step2: The probability density function of the

spectrum is obtained by normalizing all frequency

components:

Pi =
s(fi)

∑N
k=1 s(fk )

i = 1, 2, 3, 4, . . . ,N (8)

where s(fi) is the spectral energy of the frequency component

fi;Pi is the corresponding probability density; N is the number

of frequency components in the total probability density fast

Fourier transform.

Step3: The PSE value is:

H = −
∑N

k=1
Pi logPi (9)

Meanwhile, SDE combines the advantages of symbolic

dynamics and information theory. It can effectively remove

background noise, and use state mode probability and state

transition to preserve fault information. SDE has well perfor-

mance in vibration signal analysis of amplitude and frequency

information [21].

The principle of the SDE algorithm is as follows:

Given a time series X{x(k), k = 1, 2,... N}, the length is N,

and the SDE algorithm steps are as follows:

Step1: Due to the advantages of adaptive segmentation,

time series are converted to symbol time series (called

symbolization).
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Step2: Construct the embedded vector Z
m,λ
j using symbol

time series, the formula is as (10), (11).

Z
m,λ
j {z(j), z(j + λ), . . . . . . z(j + (m− 1)λ)} (10)

j = 1, 2, . . . ..,N − (m − 1)λ (11)

where m represents the embedded size and λ represents the

delay.

Step3: Calculate the probability p
(

qε,m,λ
α

)

of each state pat-

tern using equation (12).

The symbol time series in which the embedded size is m and

the number of symbols is ε has εm state patterns.

p
(

qε,m,λ
α

)

∥

∥

∥

{

j : j ≤ N−(m−1) λ, type
(

Z
ε,m,λ
j

)

=qε,m,λ
α

}∥

∥

∥

N−(m−1)λ

(12)

where type(.) represents the mapping of symbol space to state

space. ||. || indicates the cardinality of a set.

Step4: Construct the state mode matrix using the probability

of state pattern qε,m,λ
α as

[

p
(

q
ε,m,λ
1

)

, p
(

q
ε,m,λ
2

)

, . . . ..p
(

qε,m,λ
m

)

]

1×εm
.

Step5: The state transition probability p
(

σb | qε,m,λ
α

)

is calcu-

lated using the formula (13).

p
(

σb | qε,m,λ
α

)

=

∥

∥

∥

{

j : j≤N−mλ, type
(

Z
ε,m,λ
j

)

=qε,m,λ
α ,Z (j+mλ=σb)

}∥

∥

∥

N−mλ
(13)

where α = 1,2,. . . .; εm; b = 1, 2,. . . . ε. ε represents the

number of symbols; εm is the number of states.

Step6: The following (14) state transition matrix is con-

structed based on p
(

σb | qε,m,λ
α

)

:











p (σ1 | q1) · · · p (σε | q1)

...
. . .

...

p
(

σ1 | qmε
)

· · · p
(

σε | qmε
)











ε×εm

(14)

Step7: SDE based on Shannon entropy is calculated as fol-

lows:

SDEnorm (X ,m, λ, ε) =−
∑εm

α=1ε
p(qε,m,λ

α ) ln p
(

qε,m,λ
α

)

−
∑εm

α=1ε

∑ε

b=1
p

(

qε,m,λ
α

)

×ln
(

p
(

qε,m,λ
α

)

.p
(

σb | qε,m,λ
α

))

(15)

Step8: The SDE value is normalized using the following

formula.

SDEnorm (X ,m, λ, ε) = SDE(X ,m, λ, ε)
/

ln(εm+1) (16)

Therefore SDE satisfies that 0 < SDEnorm (X ,m, λ, ε) < 1

C. PARAMETER OPTIMIZATION STEPS ARE AS FOLLOWS

Step1: Set the basic parameters of the algorithm, including

the population size np, the save set size nR, the maximum

iteration number mI, the upper and lower bounds of each

dimension position of a particle, Var Min and Var Max,

the inertia weight W, and the learning factors c1 and c2.

Among them,when the number of populations is small, the

algorithm is easy to fall into the local optimal possibility,

affecting the global search ability. However, if the popula-

tion is too large, it will increase the calculation time and

affect the calculation efficiency. Therefore, when selecting

the size of the population, the reliability and calculation time

of the algorithm should be considered comprehensively. For

a typical problem, it can be 30 populations, and for complex

problems, it can be 50 populations. The algorithm uses 30 ini-

tial population numbers, each of which is equivalent to one

vector. that is, 30 initial vectors are used in this algorithm;The

save set size nR is to store all the non-dominated solution

sets in the particle swarm into the save set. When the save

set capacity reaches the maximum nR, the particles in the

sparse area are preferentially retained when the save set is

updated, and the particles in the dense area are replaced. And

the global extremum is selected in the storage set, and the

particle swarm continuously searches for the optimal solution

under the guidance of the extreme value; The maximum

number of iterations mI is a preset algorithm iteration stop

condition. When the algorithm is iteratively updated to the

corresponding number of times, the algorithm terminates; Var

Min and Var Max can improve the global search ability of

the particles and improve the convergence speed and con-

vergence precision of the algorithm; The inertia weight W

indicates how much the original velocity of the particle can

be retained. In the process of algorithm iteration, the inertia

weight value should be continuously reduced to ensure the

strong global search ability of the algorithm. Therefore, this

paper chooses the dynamic value of this parameter between

0.4 and 0.9; The learning factors c1 and c2 are also called

acceleration constants, c1 regulates the step size at which

the particles fly to their best position, and c2 regulates

the step size at which the particles fly to the global best

position.

Step2: Initialize the multi-objective particle swarm optimiza-

tion parameter [k, α], randomly generate the position P(i)

of each particle, and initialize the velocity V(i)= 0 of each

particle.

Step3: Calculate the fitness value of each particle in the

population.

Where the value of PSE and the value of SDE are used to

calculate the fitness value of each particle in the population.

Because PSE and SDE are used as objective functions for

parameter optimization, the values are used to measure the

parameters. When the value of PSE is smaller, the signal

exhibits strong sparse characteristics, and the IMF obtained

by the VMD processing contains more fault characteristic

information. The value of SDE is smaller, the more regular

and periodic the distribution of time series, which can better
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TABLE 1. The parameters of the simulation signal.

FIGURE 1. Flow chart of the proposed method.

measure the complexity of time series. Therefore, when the

value of PSE and the value of SDEare small, the correspond-

ing parameters are optimal.

Step4: Select the non-dominated solution from the particle

swarm, and store them into save set R.

Step5: Generate a hypercubes for a search space, and locate

the particles using hypercubes as a coordinate system. Which

defines the coordinates of each particle according to its objec-

tive function value.

Step6: Initialize the memory of each particle and store it in the

save set R, which is also used as a guide to the search space.

Step7: Initialize the number of iterations t= 1, when the

number of loop iterations is less than or equal to themaximum

number of iterations mI, perform the following steps.
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FIGURE 2. The time domain waveforms that make up the simulated
signal.

a) Calculate each particle velocity using equation (17).

v (i) = w × v [i] + c1 × r1

× (pb [i] − p [i]) + c2 × r2 × (R [h] − p[i]) (17)

where w is the inertia weight; c1 and c2 are the learning fac-

tors; r1 and r2 are the random numbers between [0 1]; pb [i] is

the historical optimal value of the particles; p[i] is the current

value of the particle i; R [h] is the value taken from the save

set, and the index value h is selected as follows: first, divide

any number x>1 by the particle size, and the obtained value is

assigned to a plurality of particle hypercube, Then,we apply

roulette-wheel selection using these fitness values to select

the hypercube from which we will take the corresponding

particle. Once the hypercube has been selected, we select

randomly a particle within such hypercube.

b) Update the new position of the particle as follows (18).

p [i] = p [i] + v[i] (18)

c) Keep the particles in the search space to prevent them from

crossing the border. When the decision variable exceeds the

boundary, the decision variable first takes the correspond-

ing boundary value, and then the flight speed is multiplied

by (−1) to cause the particles to searches in the opposite

direction.

d) Calculate the fitness value of each particle of the

population.

e) Update save set R. Insert all current non-dominated solu-

tions into the save set R, and the dominated solution will be

deleted. Due to the capacity of the save set R is limited, once

the capacity is maximized, the second criterion is applied, that

is, the particles in the sparse area are preferentially retained,

and the particles in the dense area are replaced.

f) When the current position of the particle is better than the

individual historical optimal position, theparticle position is

updated with Pb[i] = p [i]. The Pareto dominance criterion

is applied to determine which position in the memory is

reserved. If the memory position dominates the current posi-

tion, the memory position is retained; otherwise, the current

position is retained. If neither is dominated by the other party,

then choose one to make a reservation.

g) t = t + 1.

Step8: The number of cycles is equal to mI, ending the

program.

III. SIMULATION

A. SIMULATION SIGNAL CONSTRUCTION

When the gearbox has a composite fault, its vibration signal

are often coexisting with multiple modulation sources.So,

in order to make the simulation analysis closer to the engi-

neering reality, the simulation signal should be closer to the

actual gearbox fault signal. Therefore, in the construction of

composite fault simulation signals, this paper uses the bearing

FIGURE 3. MOPSO (a) Pareto optimal frontier solution set; and (b) The fitness value during the iteration process.
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FIGURE 4. EMMD decomposed IMFs and their corresponding spectra. (a) Time domain of IMFs after EMMD; and (b) The
spectrum corresponding to each layer of IMF.

FIGURE 5. VMD decomposed IMFs and their corresponding spectra. (a) Time domain of IMFs after VMD; and (b) The spectrum
corresponding to each layer of IMF.

inner ring fault signal and bearing rolling ball fault signal for

simulation analysis. The composition of the simulation signal

x(t) is as shown in the following equation (19):

x (t) = x1 (t) + x2 (t) + x3 (t) + 2.5randn(t) (19)

where: the composition signal x1 (t) = 2 sin (2π f1t) is a

sinusoidal signal;

The composition signal x2 (t) = (1 + cos (2π fn1t) +

cos(2π fn2t)) sin(2π fzt) is a gear fault simulation signal with

two modulation sources. fn1 and fn2 are the modulation

frequency of the modulation source and fz is the carrier

frequency, that is, the meshing frequency of the gear;

The composition signal x3 (t)=Am×exp
(

−g
/

−Tm
)

sin (2π fct) is a periodic impact signal, which is specifically

used to simulate the failure of the rolling bearing;

Am represents the impact amplitude, g is the damping

coefficient,Tm is the impact period, and fc is the rotation

frequency of the bearing;

The parameters of the simulated signal are shown in the

following table 1:
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FIGURE 6. Wind turbine gearbox test bench.

FIGURE 7. Bearing inner ring and rolling element failure diagram. (a) Bearing inner ring
peeling off; (b) bearing rolling body pitting.

Set the number of sampling points N to 3000 andthe sam-

pling frequency is1500 Hz. The time-domain waveforms of

the component signals x1 (t), x2 (t), x3 (t), and the simulation

signal x(t) are shown in figure 2.

B. COMPARISON OF DIFFERENT ALGORITHM

DECOMPOSITION RESULTS

The basic parameters of the multi-objective particle swar-

moptimization algorithm are set as follows [32].

The population size np = 30, the save set size nR = 30,

the maximum iteration number mI = 50, the inertia weight

W = 0.5, and the learning factor c1 = c2 = 1.965.

By using the method proposed in this paper, the number of

decomposition modal k and the penalty factor α in VMD

are optimized,the Pareto frontier optimal solution set and

the fitness value change with thenumber of iterations in

the multi-objective particle swarm optimization process are

shown in Figure 3. Among them, in figure 3(a), the fitness

function 1 is the value of the symbol dynamic entropy (SDE)

when calculating the fitness value of each particle in the

population; The fitness function 2 is value of the power spec-

trum entropy (PSE) when calculating the fitness value of each

particle in the population. In Figure 3(b), the fitness value is

the average value of the symbol dynamic entropy value and

the power spectrum entropy value. The minimum value in the

iterative process is the best influence parameter value, duo

FIGURE 8. Time-frequency spectra of complex fault signal of gearbox.
(a) Time domain of complex fault vibration signal; and (b) Spectrum of
complex fault vibration signal.

to the PSE value is smaller, the signal exhibits strong sparse

characteristics, and the IMF obtained by the VMD process-

ing contains more fault characteristic information. The SDE

value is smaller, the more regular and periodic the distribution

of time series, which can better measure the complexity of

time series. Therefore, when the smaller the mean value of

the symbol dynamic entropy and the power spectrum entropy,

corresponding parameters are optimal. That is, the optimal
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TABLE 2. Failure frequency.

FIGURE 9. EEMD decomposed IMFs and their corresponding spectra. (a) Time domain of IMFs after EEMD; and
(b) The spectrum corresponding to each layer of IMF.

impact parameter value is the minimum value during the

iteration process.

Obviously, the minimum value of fitness value is

0.6729 with 15 iterations. The optimal impact parameter

combination found is [k, α] = [3, 3548], and set the VMD

algorithm parameter k= 3, α = 3548. At the same time,

the simulated signal is processed using the improved VMD

algorithm.

In order to compare the results from different algorithms

for the same simulation signals, this section will use EEMD

and VMD to separately decompose the gearbox composite

fault simulation signal x1 (t) mentioned above. The analysis

results are shown in figure 4 and figure 5.

It can be found in figure 4 that EEMD decomposes to

11layers modal function when processing the simulated sig-

nal, but only the first five layers are meaningful. Among

the decomposition results of EEMD, decomposed compo-

nents are meaningless in IMF1; The frequency component

of 130 Hz is decomposed into IMF2 and IMF3, and modal

aliasing occurs. At the same time, the frequency component

of 32 Hz is decomposed into IMF4 and IMF5, and modal

aliasing also happens; The frequency component of 280 Hz

in the original signal can’t be extracted. It is shown that

although EEMD adopts the idea of noise-assisted analysis,

it still cannot avoid the occurrence of modal aliasing. It can

be found in figure 5, the VMD algorithm improved by the

parameter optimization proposed in this paper decomposes to

the 3 layers modal function when processing the simulation

signal: the low frequency component of 32 Hz in the origi-

nal signal is successfully extracted in IMF1,andIts spectrum

characteristics are very obvious; In IMF2, the 130 Hz center

frequency of the amplitude modulated signal is successfully

decomposed from the original signal containing strong noise;

In IMF3, the center frequency of 280 Hz and the 10 Hz

sideband uniformly distributed on both sides are also very

obvious. Therefore, through comparing the decomposition

results of the two algorithms, it is apparent that in the strong

noise environment, the improved VMD can not only effec-

tively eliminate the modal aliasing phenomenon of EEMD,

but also obtain very obvious fault frequency characteristics.

IV. EXPERIMENTAL VERIFICATION

In order to verify the feasibility of the proposed method

in engineering application, this method is applied to the

composite fault diagnosis of wind power gearbox. The wind

power gearbox test rig is used in this test verification,

whose main components include: electric motor, wind power

generator,the acceleration sensor, data acquisition analyzer,

VOLUME 7, 2019 44879



Z. Wang et al.: Application of Parameter Optimized VMD Method

FIGURE 10. Multi-objective particle swarm optimization (a) Pareto optimal frontier solution set; and (b) The fitness value during the iteration
process.

FIGURE 11. Time-spectrum diagram of IMFs after VMD decomposition. (a) Time domain of IMFs after VMF; and (b) The spectrum
corresponding to each layer of IMF.

gearbox and so on. At the same time, the output shaft has

a frequency of 30.24 Hz, the intermediate shaft frequency is

8.19 Hz, the low speed shaft frequency is 1.8 Hz, and the data

sampling frequency is 5000 Hz. The fault frequency obtained

by calculation is shown in table 2. The fault type of the gear-

box in this experiment is a composite fault, which includes

the inner ring of the bearing, as shown in figure 7(a); and the

pitting of the bearing rolling ball, as shown in figure 7(b).

It can be seen from figure 8 that the periodic shock

of the vibration signal collected by the sensor is irregular.

However, in the frequency domain diagram obtained by the

FFT transformation of the vibration signal, we can find the

characteristic frequency of the inner ring fault 84.3 Hz and its

double frequency 168.6 Hz,but there is no bearing rolling ball

failure frequency 27.3Hz does not appear. Thereby, the com-

posite fault signal needs to be further decomposed.

A. EEMD DECOMPOSITION RESULTS OF FAULT SIGNALS

The vibration signal is analyzed by the EEMD method,

and the obtained decomposition result is shown in figure 9.

As shown in the figure 9 that the signal is decomposed

into 12 layers by the EEMD method, which the first four

layers are noise components, and the 5th layer decomposes

the bearing inner ring fault frequency 84.3 Hz. However,

the 6th layer also decomposes the bearing inner ring fault

frequency of 84.3 Hz, which occurs the mode aliasing phe-

nomenon, the 7th layer decomposes the rolling ball fault

frequency 27.3Hz. 8th to 12th layer are meaningless inter-

ference components. It is obvious that the modal aliasing

phenomenon occurs when the gearbox fault frequency is

extracted by the EEMD method. Consequently, the fault

frequency cannot be successfully extracted efficiently and

accurately.

B. DECOMPOSITION RESULTS OF THE METHODS

PROPOSED IN THIS PAPER

The vibration signal is analyzed by the method presented

in this paper. Firstly, the power objective entropy (PSE) and

symbol dynamic entropy (SDE) are used as the fitness func-

tion to calculate the fitness value. Then the Pareto frontier

44880 VOLUME 7, 2019
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optimal solution set is determined using the multi-objective

particle swarm optimization algorithm through iteration.The

minimum value of the fitness obtained after processing is

0.444, The optimal combination of parameters found is [k,

α] = [3,4000], as shown in Figure 10. The fault signal

of the gearbox is decomposed by the VMD decomposition

method after parameter optimization, and the result is shown

in figure 11. The spectrogram of figure 11 shows that the

rolling ball fault frequency of 27.3 Hz and the inner ring

fault frequency of 84.3 Hz in the gearbox fault signal are

successfully extracted.Meanwhile, IMF3 decomposes out the

double frequency 168.6 Hz of the inner ring fault frequency

84.3 Hz, and the spectral characteristics are very obvious.

Compared to EEMD decomposition, VMD decomposition

doesn’t emerge modal aliasing. The validity of the proposed

method is proved.

V. CONCLUSION

This paper proposes a method to improve the VMD param-

eters and successfully applied to the fault diagnosis of wind

power gearbox. The proposed method can efficiently and

accurately determine the VMDparameter combination (k, α),

as well as effectively extract the composite fault characteris-

tics in the gearbox. The effectiveness of the proposed method

is verified by simulation and experiment.

The PSE and SDE proposed in this paper are fitness func-

tions, and then multi-objective particle swarm optimization

algorithm is used to obtain the Pareto frontier optimal solution

set, followed by normalization to get the optimal combination

of VMD parameters (k, α). The VMD algorithm with these

adaptive parameters of the optimization algorithm not only

overcomes the limitations of the VMD but also successfully

extracts the composite fault characteristics of the gearbox

under a strong background noise environment. And the valid-

ity of the algorithm is confirmed.

Compared with EEMD, the VMD decomposition sig-

nal with optimized parameters does not exhibit modal

aliasing.
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