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Abstract: Gene therapy, which aims to cure diseases by knocking out, editing, correcting or com-
pensating abnormal genes, provides new strategies for the treatment of tumors, genetic diseases
and other diseases that are closely related to human gene abnormalities. In order to deliver genes
efficiently to abnormal sites in vivo to achieve therapeutic effects, a variety of gene vectors have
been designed. Among them, peptide-based vectors show superior advantages because of their
ease of design, perfect biocompatibility and safety. Rationally designed peptides can carry nucleic
acids into cells to perform therapeutic effects by overcoming a series of biological barriers including
cellular uptake, endosomal escape, nuclear entrance and so on. Moreover, peptides can also be
incorporated into other delivery systems as functional segments. In this review, we referred to the
biological barriers for gene delivery in vivo and discussed several kinds of peptide-based nonviral
gene vectors developed for overcoming these barriers. These vectors can deliver different types
of genetic materials into targeted cells/tissues individually or in combination by having specific
structure–function relationships. Based on the general review of peptide-based gene delivery systems,
the current challenges and future perspectives in development of peptidic nonviral vectors for clinical
applications were also put forward, with the aim of providing guidance towards the rational design
and development of such systems.

Keywords: peptide; gene delivery; nonviral vector; self-assembly; gene therapy

1. Introduction

Gene therapy refers to the introduction of exogenous genes into target cells to correct
defective and abnormal genes for the purpose of treating diseases. With the development
of modern molecular biology and progress of human genome project, gene therapy has
become a promising strategy to treat cancer, gene diseases, infectious diseases, cardio-
vascular diseases and nervous system diseases [1]. The therapeutic nucleic acids used in
gene therapy include plasmid DNA, siRNA and other free nucleic acids [2]. However, it is
difficult for these nucleic acids to reach the target tissue due to their large molecular weight
and huge number of negative charges [3]. Therefore, developing safe and effective gene
delivery vectors is essential for gene therapy.

Generally, gene delivery vectors are categorized into two types, that is, viral vectors
and nonviral ones. Typically, viral vectors use modified viruses including retroviruses,
lentiviruses, adenoviruses and adeno-associated viruses to carry genes into cells due to
their advantages of high infection level of host cells [4]. Their accurate programmed
infection characteristics and efficient delivery ability of exogenous gene into host cells make
them the most widely used gene vectors in clinical trials. However, viral vectors have
inherent disadvantages such as potential carcinogenic effects, limited DNA encapsulation
ability, lack of targeting ability and difficulty in production [5]. Moreover, they may
also activate the host’s immune system and reduce the effectiveness of subsequent gene
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delivery [6]. These defects greatly limit the usage of virus vectors in clinical treatment and
further promote the development of nonviral gene delivery systems [7]. Compared with
viral vectors, nonviral vectors are usually easier to synthesize and operate, having lower
immune response, larger loading capacity of genetic material and better targeting ability.
Recently, a large number of efficient and safe nonviral vectors have been designed for gene
therapy. When using nonviral vectors to deliver nucleic acids such as DNA [8], messenger
(m)RNA [9], short interfering (si)RNA [10] and micro (mi)RNA into cells [11], they need to
overcome several biological barriers (Figure 1). First, the vectors should protect the nucleic
acids from degradation by endonucleases and exonucleases and help them evade immune
detection [12–14]. Second, the vectors need to contain specific groups and ligands both
to make nucleic acid molecules exude from the bloodstream to the target tissue and to
mediate cell entry. Third, siRNA and miRNA mimics must be loaded into the RNA-induced
silencing complex, while mRNA must bind to the translational machinery and DNA must
be further transported to the nucleus to play its function (Figure 2) [15]. The commonly
used nonviral vectors include cationic liposomes, cationic polymers, dendrimers, peptides
and so on [16]. Among them, peptides have been considered as unique tools for delivering
nucleic acid drugs due to their excellent biocompatibility and biodegradability, ease of
production and modification as well as being able to respond to external stimuli [17–19].
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Figure 2. Schematic illustration of different cellular pathways involved in gene silencing. Reprinted
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Nowadays, many peptides have been incorporated as functional components into
nonviral gene delivery systems to overcome various biological obstacles and deliver nucleic
acid drugs to target sites with high efficiency. Peptides used as non-viral gene vectors can
be divided into the following types according to their functions: cell penetrating peptides
(CPPs), membrane active peptides, targeting peptides, and nuclear localization signal
(NLS) peptides (Table 1). In this review, we first talk about the strategies for constructing
peptide–nucleic acid complexes, and then summarize the applications of these peptides
in gene delivery, as well as how to combine these peptides with other nonviral vectors to
achieve the purpose of improving transfection efficiency.

Table 1. Types of peptides designed for use in gene delivery.

Peptide Type Name Sequence a Reference

CPPs CHAT CHHHRRRWRRRHHHC [22]

LH2

Ac, T, C-LHHLCHLLHHLCHLAG
Ac-GALHCLHHLLHCLHHL

Ac -LHHLCHLLHHLCHLGA
Ac -LHHLCHLLHHLCHLGA

[23,24]

SRCRP2-11
SRCRP2-11-R

GRVEVLYRGSW
GRVRVLYRGSW [25]

R8 RRRRRRRR [26–29]
Penetratin RQIKIWFQNRRMKWKK [30]
WTAS PLKTPGKKKKGKPGKRKEQEKKKRRTR [31]
PF14 Stearyl-AGYLLGKLLOOLAAAALOOLL-NH2 [32]
CPP CGRRMKWKK [33]
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Table 1. Cont.

Peptide Type Name Sequence a Reference

Targeted peptides circular NGR CNGRCG [28]
NGR NGR [33,34]
RGD RGD [29,35–37]
Trivalent cRGD HCACAE[cyclo(RGD-D-FK)]E[cyclo(RGD-D-FK)]2 [38]
cRGD cyclo(RGD-D-FK) [39,40]
cyclic iRGD cyclo (CRGDKGPDC) [41]

Membrane active
peptides

RALA WEARLARALARALARHLARALAHALHACEA [42–44]
HALA2 WEARLARALARALARHLARALAHALHACEA [45]
(LLHH)3 CLLHHLLHHLLHH [46]
(LLKK)3-H6 LLKKLLKKLLKKCHHHHHH [46]
LAH4 KKALLALALHHLAHLALHLALALKKA [47]
KH27K KHHHHHHHHHHHHHHHHHHHHHHHHHHHK [48,49]
G3 GIIKKIIKKIIKKI [50]
Melittin GIGAVLEVLTTGLPALISWIEEEEQQ [51]
CMA-1 EEGIGAVLKVLTTGLPALISWIKRKRQQC [52]
CMA-2 GIGAVLKVLTTGLPALISWIHHHHEEC [53,54]
CMA-3 GIGAVLKVLTTG LPALISWIKRKREEC [54]
CMA-4 EEGIGAVLKVLTTG LPALISWIHHHHQQC [52]
NMA-3 CGIGAVLKVLTTGLPALISWI KRKREE [52,53]
acid-Melittin GIGAVLKVLTTGLPALISWIKRKRQQ [51]
Mel-L6A10 GIGAIEKVLETGLPTLISWIKNKRKQ [55]
RV-23 RIGVLLARLPKLFSLFKLMGKKV [53]

NLS peptides SV40 T antigen PKKKRKV [56–60]
Mouse FGF3 RLRRDAGGRGGVYEHLGGAPRRRK [61]
NLSV404 PKKKRKVGPKKKRKVGPKKKVGPKKKRKVGC [62]
Ku7O2 CKVTKRKHGAAGAASKRPKGKVTKRKHGAAGAASKRPK [63]

Other peptides Smart peptide Nap-FFGPLGLAG(CKm)nC [64]
24-mer β-annulus peptide INHVGGTGGAIMAPVAVTRQLVGS [65,66]
β-annulus-GGGCG peptide INHVGGTGGAIMAPVAVTRQLVGSGGGCG [67]
H4K5HCBZlCBZlH HHHHKKKKKC12LLHCBZlCBZlHLLGSPD [68]
K3C6SPD KKKC6WLVFFAQQGSPD [69,70]
CC REGVAKALRAVANALHYNASALEEVADALQKVKM [71]
Surfactant-like peptide IIIVVVAAAGGGKKK [72]

a All peptide sequences are given in the one-letter code amino acid name (Table A1, Appendix A).

2. Construction of Peptide–Nucleic Acid Complexes for Gene Delivery

To achieve the purpose of gene delivery, the functional peptides should be first fused
with nucleic acids to form complexes so as to play the roles of gene condensing, protection,
and delivery. Three main strategies can be adopted to achieve peptide/nucleic acid fusion.
The first is to link the peptide segment covalently with nucleic acid to produce a conjugated
molecule. For this strategy, the functional peptide segments are conjugated to the to-
be-delivered nucleic acid via chemical bonds (e.g., ester bond, disulfide bridge, thiol-
maleimide linkage) [73]. The superior advantage of this strategy is that the peptide–nucleic
acid conjugated molecule has defined structure and stoichiometry as well as high stability,
which can lead to repeatable delivery performance. This approach is particularly suitable
for charge-neutral nucleic acid analogs such as phosphonodiamidate morpholino oligomer
(PMO) and peptide nucleic acid (PNA) [74,75]. The peptide–nucleic acid conjugate can
easily cross the cell membranes and enter the nucleus and fulfill its biological functions.
Currently, this strategy has exhibited promise in clinical trials. For example, peptide-PNA
conjugates have been utilized in preclinical studies targeting c-myc for severe combined
immunodeficiency, while peptide-PMO conjugates have been employed for Duchenne
muscular dystrophy [76,77]. However, for this strategy, the covalent bond formation may
reduce the biological activity of nucleic acids or inhibit their release and expression in cells,
which may hinder their application. The second is the noncovalent complexation strategy,
which is to complex peptides with nucleic acids directly via noncovalent forces. For this
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strategy, the peptides are usually designed to have various positive charges, which can fist
bind with negatively charged nucleic acids to result in charge neutralization and then induce
hydrophobic collapse of the nucleic acid molecules into condensed nanoparticles [78]. This
strategy has superior advantages including ease of vector construction, high loading
amount of gene drug, and controllable genome release by introducing stimuli responsibility.
It is suitable for delivery of most nucleic acids involving plasmid DNA, siRNA, mRNA and
so on. Peptide–nucleic acid nanocomposites obtained by this method are easy to prepare
and have been attempted to treat a series of diseases including cancer and cardiovascular
diseases [79,80]. However, it should be noted that the peptide should be well designed
to endow the peptide carrier with high functionality and avoid loss of peptide function
because of its electrostatic binding with nucleic acids. The third strategy is to modify
functional peptide segments on the surface of specific nanoparticles to produce composite
nanoplatforms, which can further be used to complex with nucleic acids for delivery
purposes. This strategy can take advantage of the nanoparticles to facilitate cellular uptake
as well as to give multifunctionalities [81], which is especially suitable for development of
systems for combined therapy. In summary, the above three strategies, each having specific
features in peptide/nucleic acid fusion, have been extensively used in gene delivery.

3. Application of CPPs in Gene Delivery

Composed of 10–20 amino acids, CPPs are one class of peptides which have the
potential to penetrate bio-membrane and transport bioactive substances into cells [82]. In
recent years, a variety of substances such as hydrophilic proteins, nucleic acids and even
nanoparticles have been carried by CPPs across cell membrane into the cytoplasm to serve
specific functions. This rapid intracellular transport is not destructive to cell membranes,
and the active substances can be delivered into a variety of cells regardless of the cell type.
Use of CPPs to deliver nucleic acids and drugs for gene therapy and disease treatment has
therefore attracted extensive attention. For example, Emma et al. designed a new 15-amino
acid linear peptide CHAT that contains six arginine residues, the minimum number of
residues required for cell uptake [22]. The cysteine residues located at both ends can
enhance the stability of the delivery system and achieve cargo release in cells. Experiments
demonstrated that CHAT peptide can transfect plasmid (p)DNA into various cell lines,
resulting in successful reporter-gene expression in vivo in 4T1 and MDA-MB-231 breast
xenograft models (Figure 3a). The transfection efficiency in tumor sites is comparable to
that of commercial transfectants, making it a low-cost, easily formulated delivery system
for the administration of nucleic acid therapeutics. However, some inherent properties
of CPPs limit their clinical application. First, when CPPs are administered in vivo, they
are penetrable only at concentrations above micromoles, which will cause many systemic
side effects. In this case, designing new CPPs and improving their ability to penetrate cell
membranes are of great importance for enhancing the safety of CPP application. Recently,
a pH-active CPP called dimer LH2 was designed by Dougherty and co-workers because
they found that amphiphilic CPPs in dimeric form showed higher cell-penetrating activity
compared with the monomeric ones [23]. As expected, dimer LH2 can effectively deliver
nucleic acid drugs to triple-negative breast cancer cell MDA-MB-231 with only tens of
nanomolar concentration, showing strong membrane penetrating ability and antitumor
effects [24]. In addition to using CPPs as carriers to deliver pDNA into cells, naked siRNA
must be protected and delivered by carriers to enter the cell, because it is unstable, and
readily degraded by nucleases in the serum environment and absorbed by tissues [83].
To solve this problem, Martina et al. used DMBT1-derived peptides with membrane
penetrating ability as carriers to prepare siRNA delivery nanoparticles, which can complex
with siRNA and transfect human breast metastatic adenocarcinoma MCF7 cells [25]. The
delivered siRNA exhibited effective gene silencing in MCF7-recombinant cells. The study
laid the foundation for developing a new vector for therapeutic siRNA delivery.

Second, most CPPs can be internalized by all cell types and lack the ability to target
specific tissues as particular objectives. This imprecise feature will lead to their low stability
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in blood, poor tissue penetration and limited cell uptake, thus greatly reducing their
targeting efficiency towards specific tissues. To solve this problem, several strategies
have been developed to improve the specificity of CPPs to pathological tissues. Among
them, combing targeting molecules such as RGD (Arginine-Glycine-Aspartic acid), NGR
(Asparagine-Glycine-Arginine) peptide, folic acid (FA) and hyaluronic acid with CPPs is
a very effective strategy [84–86]. These targeting molecules are usually overexpressed in
tumor types, but not in normal cells. Therefore, they can improve the targeting effect for
pathological tissues, whilst healthy tissues are not affected by drug delivery. For example,
Qi-ying Jiang conjugated the target ligand of FA and the CPP segment of octaarginine (R8)
to an existing vector (PEI600-CD) composed of β-cyclodextrin and low-molecular-weight
polyethylenimine (PEI) to produce a new gene vector FA-PC/R8-PC [26]. This vector can
form ternary nanocomplexes with pDNA, and further deliver it to tumor sites in vivo with
excellent gene transfection efficiency (Figure 3b). Moreover, hyaluronic acid coupled with
CPPs can effectively deliver siRNA to macrophages within the atherosclerotic plaques
and enhance gene delivery to macrophages in antiatherosclerotic therapy [30], which is a
promising nanocarrier for efficient macrophage-targeted gene delivery and antiatherogen
(Figure 3c).

In addition to being used as vectors for gene delivery alone, CPPs can also be combined
with other non-viral vectors such as liposomes and cationic polymers to achieve high gene
transfection efficiency. Integrating different types of functional vectors into one gene
delivery system can exert a synergistic effect between the components, improving the low
permeability and poor selectivity of CPPs, and so enhance the gene delivery efficiency.
Ikramy et al. developed an efficient gene delivery system by combining a CPP segment
(R8) and pH-sensitive cationic lipid (YSK05) [27]. Positive nanoparticles can be formed by
attaching high density R8 to the surface of YSK05 nanoparticles. The particles can further
encapsulate pDNA to produce complexes that can lead to high gene transfection efficiency
due to the synergistic effect between R8 and YSK05. Obdulia and co-workers also developed
a gene delivery vector by co-assembly of CPP (WTAS) and a poly β-amino ester (PBAE)
polymer [31]. The WTAS-PBAE vector showed high transfection rate, and the results of cell
transfection experiments with GL26 cells revealed that WTAS-PBAE vector loaded with GFP
pDNA led to virtually complete transfection (> 90%). This excellent transfection efficiency
makes it a very promising gene delivery vector for delivering a variety of genetic materials.
In addition, the combination of CPPs and inorganic nanoparticles also shows great potential
in the application of delivering nucleic acid drugs. For example, Dowaidar et al. found
that the conjugation of CPPs-oligonucleotides with magnetic iron oxide nanoparticles can
promote cellular uptake of the plasmid and improve the transfection efficiency, which
opens up a new way for selective and efficient gene therapy [32].

4. Application of Targeted Peptides in Gene Delivery

During gene delivery, an off-target effect may occur when the therapeutic nucleic
acids bind to non-specific cells, which is undesirable and will decrease the therapeutic
effect of gene therapy. Therefore, selectively delivering vector-nucleic acid complexes to
the target cells and exerting the therapeutic effect at specific sites are critical to improve
the transfection efficiency of gene therapy [87]. Conjugating targeting ligands such as FA,
hyaluronic acid and biomolecules including peptides and proteins can greatly increase the
targeting of the gene delivery systems because they can specifically bind to the receptors
on cells. Among them, peptides are excellent gene delivery targeting ligands due to their
good biocompatibility, ease of synthesis and modification as well as their high response
to stimuli. Thus far, more than 700 targeted peptides have been discovered for targeting
different cells. The most widely used target peptides among them are NGR and RGD which
can specifically recognize tumor angiogenic markers and provide new venues for exploring
tumor targeting agents [84].

The NGR motif, whose tumor-targeting ability relies on its specific interaction with
CD13 (aminopeptidase N), was identified from a tumor homing peptide. It is often selec-
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tively overexpressed in neovascular and some tumor cells, but seldom expressed in quiet
vascular endothelial cells. NGR peptides have now been used to promote the targeted
delivery of therapeutic agents and enhance antitumor effects [88]. A bi-functional peptide,
NGR-10R, which consists of an N-terminal circular NGR motif (CNGRCG) and a C-terminal
R8 sequence was designed for gene therapy. The R8 sequence at the end of NGR-10R can
bind to siRNA through electrostatic interaction to form NGR-10R/siRNA nanoparticles.
Thanks to the NGR motif, NGR-10R/siRNA nanoparticles can be specifically delivered to
MDA-MB-231 cells and localized around the nucleus, thus robustly repressing gene expres-
sion in MDA-MB-231 and HUVEC (a CD13+/αvβ3

+ cell) (Figure 4a) [28]. In the study of
Yang, as a targeted peptide, NGR plays a navigational effect, enabling the pcCPP/NGR-LP
dual-modified liposomes vector to accumulate at the tumor site. Finally, with the aid of
CPPs, the siRNA-loaded vector enters target cells efficiently [33]. In addition to targeting
siRNA to MDA-MB-231 cells, the NGR motif can effectively deliver siRNA to HT-1080
cells and downregulate target genes with the synergistic effect of other vectors. Chen et al.
designed the LPD-poly(ethylene glycol) (PEG)-NGR vector by modifying PEGylated LPD
using the NGR motif. It can target CD13 expressed in the tumor cells or tumor vascular
endothelium, effectively delivering siRNA to the cytoplasm of HT-1080 cells and silence
the target gene [34].

Different from NRG, the RGD peptide can specifically bind to integrin in tumor en-
dothelial cells and act as ligand to target tumor cells that overexpress αvβ3 integrin [89,90].
As an attractive tumor cell receptor, integrin plays a major role in promoting the prolifera-
tion, migration, invasion and survival of tumor cells. Therefore, gene vectors modified by
RGD peptide can block cell–cell and cell-matrix adhesions by competing with adhesion
proteins for cell surface integrins, thus achieving targeted selectivity to tumor cells and
improving the efficiency of gene transfection. In view of this, a large number of RGD
peptide-based gene vectors have been developed. Recently, lung cancer and bronchial
cancer have become the most deadly cancers due to the aggravation of air pollution. In
order to develop new targeted, effective and less painful therapies, Yang et al. synthesized
the RRPH (RGD-R8-PEG-HA) which is composed of peptide (RGD-R8) and PEGylation on
HA to coat PFC (plasmid complex). The obtained RRPHC nanoparticles (RRPH coated PFC
complex) achieve long-term circulation and tumor tissue-penetration while maintaining
the high transfection efficiency of PFC [29]. Kim et al. designed a targeted gene vector,
RGD/PEI/WSC, which can combine the RGD to chitosan and PEI, for αVβ3 integrin-
overexpressing tumor cells [35]. In vivo experiments show that the vector can suppress
the growth of PC3 prostate tumor cell xenograft model by silencing BCL2 mRNA, which
is expected to be a good candidate for a specific targeted gene vector without cytotoxicity
(Figure 4b).

Oncolytic adenovirus has been widely used in clinical trials of cancer gene ther-
apy [91,92]. Moreover, tumor targeted gene virus therapy (CTGVT) may be an effective
strategy for the treatment of advanced or metastatic cancer [93]. In a previous study, Luo
et al. found that replicating adenovirus (AD-ZD55-miR-143) showed specific anti-rectal can-
cer efficacy in vitro. However, its anti-tumor effect in vivo is not ideal, because the vector
does not increase the chance of reaching target cells. To solve this problem, they developed
AD-RGD-survivin-ZD55-miR-143, a novel triple regulatory oncolytic adenovirus which
significantly enhanced the anti-tumor effect and directly broadened the treatment options
for colorectal cancer [36]. RGD peptides with a circular structure, i.e., cyclic (c)RGDs can
also be used for tumor targeting studies—being more active due to their conformation-less
assembly than linear RGD oligopeptides. Moreover, (c)RCDs are resistant to proteoly-
sis and have higher affinity to integrin receptors [94]. Therefore, many five membered
ring RGDs containing pentapeptides have been used to endow gene vectors with tumor
targeting [95]. Alam et al. reported that cRGDs can selectively enter cancer cells overex-
pressing αvβ3 integrin carrying siRNA for gene silencing [38]. A further study indicated
that cRGDs can specifically guide siRNA to cells expressing αvβ3, resulting in effective
knocking out of selected genes and significantly reducing tumor growth [39]. In addition,
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cRGDs were employed to promote cellular internalization of polyplex micelles encapsulat-
ing anti-angiogenic pDNA by tumor vascular endothelial cells, which abundantly express
RGD-specific αvβ3 and αvβ5 integrin receptors and thereby exhibit anti-tumor activity
against pancreatic adenocarcinoma upon systemic injection [96,97]. Moreover, liposomes
modified with cRGD peptide can be used to deliver drugs to targeted cancer cells [40].

Nanomaterials 2022, 12, 4076 6 of 24 
 

 

cells [25]. The delivered siRNA exhibited effective gene silencing in MCF7-recombinant 
cells. The study laid the foundation for developing a new vector for therapeutic siRNA 
delivery. 

 
Figure 3. (a) CHAT peptide condenses pDNA to produce cationic nanoparticles less than 200 nm in 
diameter. The complex can cross the cell membrane through endocytosis and successfully escape 
from the endosomes, obtaining high transfection efficiency. Reprinted with permission from Ref. 
[22]. Copyright 2020, Elsevier. (b) The process of preparation of nanoparticles formed from FA-
PC/R8-PC/pDNA complex. Reprinted with permission from Ref. [26]. Copyright 2011, Elsevier. (c) 
CPPs condense siRNA and deliver it to macrophages. Reprinted with permission from Ref. [30]. 
Copyright 2018, American Chemical Society. 

Second, most CPPs can be internalized by all cell types and lack the ability to target 
specific tissues as particular objectives. This imprecise feature will lead to their low stabil-
ity in blood, poor tissue penetration and limited cell uptake, thus greatly reducing their 
targeting efficiency towards specific tissues. To solve this problem, several strategies have 
been developed to improve the specificity of CPPs to pathological tissues. Among them, 
combing targeting molecules such as RGD (Arginine-Glycine-Aspartic acid), NGR (As-
paragine-Glycine-Arginine) peptide, folic acid (FA) and hyaluronic acid with CPPs is a 
very effective strategy [84–86]. These targeting molecules are usually overexpressed in 
tumor types, but not in normal cells. Therefore, they can improve the targeting effect for 
pathological tissues, whilst healthy tissues are not affected by drug delivery. For example, 
Qi-ying Jiang conjugated the target ligand of FA and the CPP segment of octaarginine (R8) 
to an existing vector (PEI600-CD) composed of β-cyclodextrin and low-molecular-weight 
polyethylenimine (PEI) to produce a new gene vector FA-PC/R8-PC [26]. This vector can 

Figure 3. (a) CHAT peptide condenses pDNA to produce cationic nanoparticles less than 200 nm in
diameter. The complex can cross the cell membrane through endocytosis and successfully escape
from the endosomes, obtaining high transfection efficiency. Reprinted with permission from Ref. [22].
Copyright 2020, Elsevier. (b) The process of preparation of nanoparticles formed from FA-PC/R8-
PC/pDNA complex. Reprinted with permission from Ref. [26]. Copyright 2011, Elsevier. (c) CPPs
condense siRNA and deliver it to macrophages. Reprinted with permission from Ref. [30]. Copyright
2018, American Chemical Society.

Our group is also devoted to designing peptide carriers with targeting functions.
Recently, we have designed an amphiphilic peptide Ac-RGDGPLGLAGI3GR8-NH2 with
two charged chain segments distributed at the end and a hydrophobic chain segment in
the middle [37]. It can selectively kill cancer cells through the specific recognition and
binding of RGD fragments to cancer cell membranes and cleavage of PLGLA fragments by
tumor-overexpressed matrix metalloproteinase-7 enzymes. The R8 sequence can induce
efficient condensation of DNA into dense nanoparticles, resist enzymatic degradation of
DNA, ensure successful delivery of DNA into cells, and improve the expression level as
well as transfection rate of target genes [87]. Moreover, we also combined the cRGD peptide
to gold nanoparticles (AuNPs) which has been widely used in the delivery of nucleic acid
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molecules due to its good biocompatibility and easy surface functionalization [98,99]. We
designed the peptide of sequence (CRGDKGPDC)GPLGLAGIIIGRRRRRRR-NH2 (CPIR28)
which was grafted onto the surface of AuNPs by the one-pot synthesis method [41]. The
CPIR28-AuNPs nanocomposite can effectively condense DNA and improve the intracellular
transport of genes (Figure 4c).
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Copyright 2017, Elsevier. (c) CRIP28-AuNPs form nanocomplexes with nucleic acids by electrostatic
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5. Application of Membrane Active Peptides in Gene Delivery

After cell uptake, successful release of vector/nucleic acid complexes from endosomes
is a major obstacle for effective gene therapy. After the vector/nucleic acid complexes
cross the membrane barrier into the cell through endocytosis, vesicles will enclose them
and develop into early endosomes, which then mature to form late endosomes and then
fuse with lysosomes. In order to exert the therapeutic effect of nucleic acid drugs, the
complexes need to escape from the endosomes and enter into the cytoplasm. Otherwise,
the nucleic acid drugs will be degraded by hydrolases [46]. Therefore, developing vectors
with endosomal escape ability is essential for efficient gene delivery. There are two ways to
achieve endosomal escape. First, considering the acidic environment inside the endosomes,
materials with a buffer effect in the acidic environment, such as chlorine and calcium, can be
added to assist endosomal escape. These buffer agents can prevent endosomes from binding
to lysosomes, vacuolate endosomes and then decrease the membrane stability. However,
these chemicals are generally only used in vitro and not suitable for clinical applications due
to their potential cytotoxicity. Nevertheless, the acidic endosomal environment suggests
that we can introduce amino acids with a acidic buffering effect into the carrier to destroy
the endosome membrane by proton pump for the purpose of endosomal escape. Since only
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histidine has a buffering effect among the 20 common amino acids due to its imidazole
group, it is often embedded into the carrier to improve endosomal escape during delivery of
nucleic acids. RALA, which is a 30-mer cationic amphipathic helical peptide, contains seven
hydrophilic arginine residues on one side of the helix, and hydrophobic leucine residues on
the other side. When the pH drops, the α-helicity of RALA increases to achieve endosomal
escape and release of the cargo [42]. Therefore, Vimal K et al. used RALA peptides to
condense mRNA and effectively deliver them to dendritic cells [43]. Subsequently, the
RALA-mRNA nanocomplexes successfully escaped from endosomes and expressed mRNA
in the cell cytosol to promote antigen specific T cell proliferation as well as evoking T cell
immunity in vivo (Figure 5a). In addition to delivering mRNA, RALA can also deliver
siRNA with high efficiency. Eoghan J. Mulholland et al. reported that RALA is an effective
siRNA carrier targeting the FK506-binding protein and has great potential in promoting
angiogenesis for advanced wound healing applications (Figure 5b) [44]. Recent studies
have found that the introduction of histidine into RALA peptide can further improve the
endosomal escape ability of the vectors, thereby increasing the transfection efficiency. For
example, Liu et al. designed a new peptide-based vector HALA2 with ability of endosomal
escape and high cell transfection efficiency by adjusting the ratio of histidine and arginine
in the RALA peptide [45]. HALA2 replaced two arginines close to the C-terminal of RALA
with histidine, which reduced the number of positively charged amino acids in HALA2
from 7 to 5, resulting in a better transfection rate than RALA. In addition, introducing
histidine fragments into other kinds of vectors can also improve their endosomal escape
ability. Chitosan has the advantages of non-toxicity, non-immunogenicity, biodegradability
and good biocompatibility as a gene vector. However, chitosan cannot mediate the escape
of endosome due to its low endosomal escape rate and poor buffer capacity. For this reason,
Liu et al. introduced histidine into chitosan and obtained a new vector with good solubility,
strong binding ability to siRNA and excellent endosomal escape performance [100].

Secondly, using membrane active peptides with membrane destruction capability
to destroy the endosomal membrane can also realize endosomal escape and release the
vector/nucleic acid complex into the cytoplasm. Recently, a series of membrane active
peptides have been designed. For example, (LLHH)3 and (LLKK)3-H6 are two typical am-
phiphilic membrane active peptides that can destroy endosomal membranes and regulate
the “proton sponge effect”. Introducing them into vectors containing rigid acyl and pol-
yarginine, Yang et al. designed two multifunctional peptide vectors, C18-C(LLKK)3-H6-R8
and C18-C(LLHH)3C-R8. They found that each functional fragment showed a synergistic
effect, and the presence of membrane active peptide significantly improved the endosomal
escape efficiency and transfection rate, which greatly promotes the application of peptide-
based vectors in the treatment of genetic diseases [46]. In the past few years, Bechinger
and co-workers have been devoted to developing pH-responsive cationic amphiphilic
membrane active peptides rich in histidine residues for gene delivery. They have designed
a variety of LAH4-based peptides which have been proven to be able to bind to plasmid
DNA and facilitate its cellular uptake and endosomal escape [47,101–103]. Among them,
some derivative peptides of LAH4 not only have the ability to bind to plasmid DNA, but
also have strong siRNA and mRNA delivery capabilities [47]. To date, the interactions
of LAH4-based peptides and bio-membrane have been studied in detail by biophysical
methods, and the results indicate that these peptides show strong delivery capacity for a
variety of cargoes, including nucleic acids, peptides and proteins [104]. The histidine-rich
amphiphilic peptide KH27K has also been developed as a “proton sponge” escape endoso-
mal agent. Unlike LAH4, KH27K is currently mainly used to deliver virus particles into the
cell to achieve the intracellular release of the virus, and this “membrane release” activity is
consistent with its pH dependent hemolysis activity. However, there is no clear study on
the intracellular delivery of nucleic acid molecules [48,49].
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Antibacterial peptides (AMPs) with an α-helical amphiphilic structure can also effec-
tively promote endosomal escape. They are primarily found in bacteria and have activities
against a variety of microorganisms. Most of them are composed of nearly 50% hydropho-
bic residues and are usually positively charged due to the presence of lysine and arginine
fragments. The spatially separated hydrophobic and charged regions endow them with
membrane interaction activity. In view of the characteristics of AMPs, Cirillo et al. designed
a short cationic amphiphilic α-helical peptide G(IIKK)3I-NH2 with endosomal escape abil-
ity and high affinity towards colon cancer cells [50]. They report that when interacting
with negatively charged DPPG small unilamellar vesicles, the peptides fold into α-helical
structure helping to carry nucleic acids across the cell membrane and achieving endoso-
mal escape, thus enabling the protection and selective delivery of siRNA to cancer cells
(Figure 5c). Melittin is a multifunctional AMP that can inhibit many Gram-negative and
Gram-positive bacteria. It is widely used to facilitate the endosomal escape of nanoparticles
because of its significant cleavage activity in mammals both in vivo and in vitro. However,
this amphiphilic peptide from bee venom has obvious toxicity to mammalian cells. If it
is directly used to deliver nucleic acids, the transfection efficiency will be reduced due
to the increase of cytotoxicity [105]. Therefore, melittin analogues have been designed in
order to reduce the toxicity while promoting the ability to promote endosomal escape [106].
Glutamic acid and histidine residues on peptides are negatively charged due to deprotona-
tion in the extracellular medium; however, in endosomes with a pH of about 5, the two
amino acids are protonated, which reduces the hydrophilicity of the peptide and exposes
its cleavage activity. Therefore, the method of replacing the basic amino acids in melittin
with glutamic acid or histidine can be used to enhance the cleavage ability of the pH
sensitive peptide. In views of this principle, a series of novel pH-sensitive peptides have
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been developed. Melittin analogues such as CMA-1, CMA-2, CMA-3, CMA-4, NMA-3 [52]
and acid-melittin [51] have been obtained and used to conjugate with PEI to improve the
intracellular endosomal escape of the PEI/DNA complex. Compared with CMA-1-PEI and
CMA-4-PEI that covalently linked PEI to the N-terminal of peptide, C-terminal modified
CMA-2-PEI, CMA-3-PEI and acid-melittin-PEI complexes showed strong cleavage activity
at pH 5. The transfection experiments also showed that CMA-2-PEI and CMA3-PEI com-
plexes induced significant gene expression [53,54]. Not all N-terminal modified melittin
analogues have poor cleavage ability. For example, Kloeckneret al. proved that the trans-
fection efficiency can be significantly improved by introducing N-terminal PEI-coupled
melittin analogue NMA-3 into the EGF/OEI-HD-1 complex gene vector [52]. In addi-
tion, considering the effect of glutamate replacement location on peptide cleavage activity,
Tamemoto et al. designed four melittin analogues and studied the optimal position of glu-
tamate substitution. The results showed that a novel attenuated cationic cleavage peptide
MEL-L6A10 with higher delivery activity, relatively lower cytotoxicity and higher endolytic
activity can be designed by placing Glu on the boundary of the hydrophobic/hydrophilic
region [55]. RV-23 is a pH-sensitive endolytic peptide extracted from Rana Linnaeus. Zhang
et al. obtained a pH-sensitive endolytic peptide by replacing the positive charge residues
in RV with glutamate. This substituted RV-23 peptide can promote the obvious destruction
of cell intima and promote the entry of the carrier/nucleic acid complex into the cytoplasm.
Thus, the gene transfection rate was significantly increased and the PEI-mediated cell
transfection rate promoted [53].

6. Application of NLS Peptides in Gene Delivery

In gene delivery, some nucleic acid drugs, such as siRNA and mRNA, can directly play
a therapeutic role in the cytoplasm after endosomal escape. However, for pDNA, DNA
needs to be further transferred into the nucleus to realize its therapeutic effect. In such cases,
whether DNA can be assisted to enter the nucleus is a key factor to evaluate the delivery ca-
pacity of non-viral gene vectors [56]. Macromolecules such as proteins cannot directly enter
the nucleus due to the strong impedance from the nuclear envelope, and their transport into
the nucleus must be regulated by the nuclear pore complex (NPC) [107,108]. When the pro-
tein enters the nucleus, the NLS (a short cationic peptide sequence) on the proteins can be
recognized by the corresponding nuclear transporter, which helps them reach the nucleus
through NPC with the assistance of transporter and nucleoporin [109,110]. Based on this,
introducing NLS peptide sequences into non-viral vectors may achieve efficient delivery of
the therapeutic DNA into the nucleus. Generally, NLS peptides can be divided into two
categories, termed monopartite NLS (MP NLS) and bipartite NLS (BP NLS). The MP NLS
is a single cluster composed of 4–8 basic amino acids, and the most common MP NLS is
the basic heptad-peptide derived from SV40 virus large T antigen. Since this NLS is only
related to nuclear transport and has no effect on improving cell uptake, it needs to enter
the cytoplasm first to assist gene drugs to enter the nucleus [57]. The MP NLS peptides are
often combined with CPPs to fabricate vectors which can promote transmembrane trans-
port, nuclear localization and further realize targeting delivery of pDNA. For example, Yan
et al. constructed a new nucleus-targeted NLS (KALA-SA) vector by combining MP NLS,
KALA (a cationic CPP) and stearic acid (SA). Besides enhancing cytoplasmic transport, this
vector realized targeting localization and provided a promising strategy for the treatment
of lung cancer [56]. Moreover, conjugating MP NLS peptide with targeted peptide RGD can
also achieve an excellent therapeutic effect. Following this strategy, Ozcelik modified MP
NLS peptide and RGD peptide onto AuNPs with radio-sensitizer ability to initiate X-ray
radiation-induced cell death and achieve the effect of killing or inhibiting cancer cells while
retaining the normal cells. Interestingly, the results indicated that AuNPs with both cancer
cell targeting and nuclear targeting capabilities are far more specific and lethal than AuNPs
modified by NLS or RGD alone [58]. In order to significantly improve the delivery capacity,
Hao et al. integrated NLS with CPPs (TAT) and RGD (REDV) with a selectively targeting
function for endothelial cells to obtain the REDV-TAT-NLS triple tandem peptides [59].
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By inserting glycine sequences with different repeats into the triple tandem peptides, the
functions of each peptide were synergistically performed. The peptide complexes can be
used as vector to deliver pZNF580 plasmid in endothelial cells, which can significantly
improve the revascularization ability of human umbilical vein endothelial cells in vitro
and in vivo, thus providing a promising and effective delivery option for angiogenesis
treatment of vascular diseases (Figure 6a). Recent studies revealed that Mice Fibroblast
Growth Factor 3 (FGF3) is a peptide containing multiple NLS peptides. RLRR and RRRK
are two peptide sequences that can induce nuclear localization in this NLS. Introducing
the RRRK peptide fragment into PAMAM non-viral vectors can significantly improve the
transfection efficiency and gene expression of the vectors [61]. In addition, using four NLS
derived from SV40 virus with glycine residues as spacers, Ritter synthesized the NLS
tetramer of SV40 large T antigen. This lysine-rich peptide solves the past problem of
NLS interfering with gene expression by covalent binding to nucleic acid molecules: it
binds and concentrates nucleic acid molecules by electrostatic interaction to form stable
polymers with nuclear transport properties [62]. More importantly, NLS has also been used
in clustered regularly interspersed short palindromic repeats (CRISPR)/CRISPR-associated
protein 9 (Cas9) gene editing technology which is widely studied nowadays. As a nuclear
targeting peptide, NLS can specifically transport the vector into the nucleus, so that the
Cas9/sgRNA plasmids can be accurately delivered to the tumor sites. Studies have shown
that combination of NLS peptides with other non-viral vectors can significantly improve
the gene editing ability of Cas9/sgRNA. For example, using NLS peptide and AS1411
aptamer as delivery vector, Cas9/sgRNA can achieve effective genome editing in targeted
tumor cells [60], down-regulate the expression of FAK protein in tumor cells, and thus lead
to tumor cell apoptosis (Figure 6b).
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and endosomal escape, the complexes enter the nucleus by the action of NLS to promote the ex-
pression of pZNF580 plasmid and enhance the revascularization ability of cells. Reprinted with
permission from Ref. [59]. Copyright 2017, American Chemical Society. (b) The Cas9/sgRNA plasmid
gene delivery system was prepared by the self-assembly method, which can specifically deliver the
plasmid to the nuclei of tumor cells by the targeting of NLS, and knock down the protein tyrosine
kinase 2 (PTK2) gene to the down-regulated local adhesion kinase (FAK). Reprinted with permission
from Ref. [60]. Copyright 2019, American Chemical Society.

In addition to adding MP NLS to various nonviral vectors to achieve efficient nuclear
delivery of therapeutic DNA, BP NLS composed of two or more positively charged amino
acid clusters have also been developed and used for gene delivery. Matschke synthesized
a modified NLS dimer structure, NLS-Ku7O2. Highly efficient nuclear transport and
transgenic expression were realized by co-assembling this BP NLS-Ku7O2 with PEI and
DNA into a ternary gene carrier complex [63].

7. Application of Other Peptides in Gene Delivery

To date, great success has been achieved in developing nonviral vectors using materials
including peptides, proteins, dendrimer and liposomes. Although the gene transduction
efficiency has been improved, the gene expression level is still far lower than that of
viral vectors and cannot meet the clinical requirements. However, the inherent toxicity,
immunogenicity and complex preparation process of viral vectors greatly limit their clinical
application [64]. Therefore, great efforts have been devoted to building supramolecular
assemblies that can simulate both the viral structure and function. The therapeutic nucleic
acids are encapsulated into these supramolecular assemblies and delivered into cells, in
the hope of obtaining efficient gene delivery vectors while reducing the inherent risk of
viruses [111–113]. Recently, because of the good biocompatibility and low cytotoxicity of
peptides, more and more research has been focused on imitating the virus structure through
the co-assembly of peptide and nucleic acid [114,115]. Spherical viral capsids have discrete
nanospace, good cell transfection ability and biodegradability, and can therefore be used
as nanocarriers for nucleic acid drug delivery [116–118]. Inspired by the spherical virus,
Matsuura found that the 24-mer β-annulus peptide involved in dodecahedral skeleton
formation of tomato bushy stunt virus can spontaneously assemble into a “spherical
artificial virus-like capsid” with a size of 30–50 nm. The cationic interior of the artificial
viral capsid is hollow, allowing DNA molecules to be effectively encapsulated [65,66].
Based on the above, Matsuura K. used β-cyclic GGGCG peptide as the binding site of
AuNPs, which finally self-assembled into nanocapsules with a diameter of 50 nm. This
strategy extends the design of artificial viral capsids and can be further used for the
delivery of nucleic acid molecules [67]. The short peptide H4K5HCBZlCBZlH obtained
by rational design is also a spherical viral capsid. Compared with the past research on
spherical artificial viruses, this spherical viral capsid has a low aspect ratio because of
adding the cysteine in the center of the short peptide H4K5HCBZlCBZlH. This nanostructure
can not only mimic the sequential decomposition of spherical viruses in response to stimuli,
but also simulate the complex morphology and intracellular transformation of spherical
viruses, making it an effective DNA delivery vector [68]. In addition to spherical artificial
virus particles, filamentous, rod-shaped and cocoon-like virus particles have also been
developed as artificial viruses. For example, the short peptide K3C6SPD which contains
three fragments including N-terminal cationic fragment, β-sheet forming fragment and
C-terminal hydrophilic fragment can be co-assembled to obtain cocoon-like artificial virus
particles (Figure 7a) [69,70]. Ruff designed triblock molecules SP-CC-PEG which can self-
assemble into mushroom nanostructures [71]. Using self-assembled non-centrosymmetric
nanostructures similar to supramolecular mushrooms as caps, virus-like particles with a
certain length are created and then wrapped on DNA to generate filamentous particles
(Figure 7b). Marchetti designed a triblock peptide C−S10−B containing a segment of
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artificial lysine capsid using a de novo design method. Through electrostatic interaction,
it interacted with the phosphate of single stranded or double stranded DNA and co-
assembled into coronavirus-like particles, mimicking the corresponding function of viral
capsid proteins [119]. These theoretical studies provide new ideas for current nucleic acid
delivery.
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the side chain. It can complex with pDNA or mRNA and enhance transfection efficiency 
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(b) The mushroom shaped nanostructures SP-CC-PEG created by the synergistic self-assembly of
three functional fragments, which has high affinity with DNA by electrostatic interaction, is used
to prepare synthetic filamentous viruses. Reprinted with permission from Ref. [71]. Copyright
2013, American Chemical Society. (c) The dumbbell-like peptide, I3V3A3G3K3, binds onto the DNA
chain through electrostatic interactions, and then self-associates into β-sheets under hydrophobic
interactions and hydrogen bonding, the resulting final formed structure being able to imitate the
essence of viral capsid to condense and wrap DNA. Reprinted with permission from Ref. [72].
Copyright 2018, American Chemical Society. (d) NapFFGPLGLAG(CKm)nC peptides, containing
the multifunctional segment, self-assemble into stable nanospheres which can encapsulate DNA by
interacting with DNA in the interior, and finally realize intracellular delivery and release of genome.
Reprinted with permission from Ref. [64]. Copyright 2022, Elsevier.

The efficient delivery of nucleic acids has been achieved by constructing new nonviral
delivery systems using single or several lysines as functional fragments. Furthermore,
many studies have shown that cationic poly(L-lysine) (PLL) can also be used to achieve
efficient nucleic acid transport in vivo. PLL can mediate condensation of anionic nu-
cleic acids to form smaller nanoparticles and protect them from enzymatic and physical
degradation [120]. Yugyeong Kim et al. synthesized a new cationic AB2 miktoarm block
copolymer consisting of two cationic PLL blocks and one PEG block, which can form effec-
tive nanocomplexes with pDNA. The nanocomplexes can release pDNA effectively under
reducing conditions and show high level of gene expression [121]. However, for PLL, its
in vitro transfection efficiency is poor in the absence of any covalently attached functional
moieties to promote gene targeting or uptake [120]. To solve this problem, researchers have
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discovered a new cationic poly-amino acid, that is, poly(L-ornithine) (PLO). Compared to
PLL that contains a tetramethylene spacer, PLO possesses a trimethylene unit in the side
chain. It can complex with pDNA or mRNA and enhance transfection efficiency [122]. One
big issue of nonviral gene delivery is unnecessary uptake by the reticuloendothelial system,
mainly the liver. In general, 60–70% of nucleic acid molecules are taken up by scavenger
receptors on liver Kupffer cells when being injected into the body without the protection of
carrier molecules. This nonspecific scavenging behavior results in a significant reduction
in the efficiency of drug entry into target tissues [123]. Lysine polymer exhibits excellent
potential in solving this problem by avoiding unwanted uptake by the reticuloendothelial
system. Recently, Anjaneyulu Dirisala et al. found that oligo(L-lysine) conjugated linear
or two-armed PEG can transiently and selectively mask liver scavenger cells, effectively
inhibiting sinusoidal clearance of nonviral gene carriers, thereby increasing their gene
transduction efficiency in target tissues [124].

The formation of artificial viruses is based on the non-covalent interaction of pep-
tide/peptide or peptide/DNA. By rational design of the peptide structure, the morphology,
stability and transfection efficiency of the peptide/DNA hybrid structure can be regulated
to construct artificial viruses [125]. In recent years, our group has been focusing on the
design and study of different surfactant-like peptides to induce effective DNA condensation
and so produce artificial viruses for protecting DNA from enzymatic degradation. For
example, we designed six surfactant-like peptides with the same amino acid composition
but different primary sequences. Because the peptide residues have different side chain size
and hydrophobicity, this can lead to different self-assembled structures [126]. Among them,
I3V3A3G3K3 is a dumbbell-like peptide which can effectively induce DNA condensation
into a virus-like structure through non-covalent interactions such as electrostatic inter-
action, hydrophobic interaction and hydrogen bonding [72]. The final formed structure
can imitate the essence of a viral capsid to condense and wrap DNA, which is conducive
to effective gene delivery in the later stage (Figure 7c). AKAEAKAE, another peptide
segment we designed, has strong β-sheet forming capability and can co-assemble with
PNA to obtain peptide nucleic acid-peptide conjugate, T′3(AKAE)2. It can condense DNA
at low micromole concentrations, which suggests it can be a gene delivery vector [112,127].
NapFFGPLGLAG(CKm)nC peptides have been developed by introducing several func-
tional segments, that is, an aromatic segment of Nap-FF to promote peptide assembly by
providing hydrophobic interaction, an enzyme-cleavable segment of GPLGLA to target
cancer cells, and several positively charged K residues for DNA binding. These peptides
can self-assemble into homogenous capsid-like nanospheres with high stability under the
synergy of functional segments [64]. Moreover, they can further co-assemble with DNA to
protect the genome from enzymatic digestion and greatly improve the efficiency of gene
delivery (Figure 7d).

8. Concluding Remarks and Future Perspectives

Developing versatile vectors to deliver therapeutic nucleic acids into target cells/tissues
is critical for gene therapy. As promising candidates, peptide-based vectors have been
widely used for delivering therapeutic nucleic acids. In addition to condensing nucleic
acids to form nanoparticles for protecting them from being degraded by enzymes, the
rationally designed functional peptides can also help to overcome a series of biological
barriers including crossing cell membrane, escaping from endosome, entering the nucleus,
etc., and finally release the therapeutic nucleic acids at the target sites. These functional
peptides can not only be used alone to overcome such biological barriers in gene delivery,
but also can be combined to form multifunctional peptide vectors. Moreover, they can also
be introduced into other nonviral gene delivery systems as functional elements to enhance
the delivery capacity, which greatly expands the application of peptides in gene therapy.
However, it is worth noting that although there have been a large number of reports on
peptide-based gene delivery systems, most of them are still in the stage of theoretical
research and animal experiments, and there are still many challenges before peptide vectors
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being considered for clinical use. First, the peptide-based vectors often suffer from short
circulating half-time and poor chemical/physical stability, which greatly hinder the use
of peptide–nucleic acid complexes in clinical trials. Effective strategies such as modifying
the peptides with unnatural amino acids should be developed to improve the structural
stability of the peptide-based gene delivery systems. Secondly, although peptide sequences
with different functions can be combined to overcome various barriers for efficient gene
delivery, this approach carries the risk of reducing individual functions. Therefore, the
combination of peptide with other components without affecting the function of each part
is still a problem to be solved. Thirdly, how to precisely control the microstructures of
the peptide–nucleic acids complexes so as to achieve effective cellular uptake and gene
transfection at targeted sites is another important issue. Modifying the peptidic vectors
with stimulus-responsive fragments to design smart delivery systems so that they can
perceive changes in the disease microenvironment and trigger gene release may be an
effective way to solve this problem. In summary, although there has been much study
and great success in the field of peptide-based gene vectors, researchers still need to move
forward to find solutions for promoting peptidic gene delivery systems for them to become
a gene therapy product that can be approved for clinical applications. Such research would
not only promote the rapid development of peptide-based gene delivery systems, but also
enable some emerging gene therapy strategies, such as CRISPR/CAS9 technology and
mRNA vaccines to be applied in the human body at an early date.
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Appendix A

Table A1. Full names and corresponding one-letter codes of the amino acids.

Full Amino Acid Names One-Letter Codes

Alanine A
Arginine R
Asparagine N
Aspartic acid D
Cysteine C
Glutamine Q
Glutamic acid E
Glycine G
Histidine H
Isoleucine I
Leucine L
Lysine K
Methionine M
Phenylalanine F
Proline P
Serine S
Threonine T
Tryptophan W
Tyrosine Y
Valine V
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