
THE AMERICAN SOCIETY OF MECHANICAL ENGINEERS 
Three Park Avenue, New York, N.Y. 10016-5990 

.99-G1-225 

The Society shall not be responsible for statements or opinions advanced in papers or discussion at meetings of the Society Or of its Divisions Or , 
Sections, or printed in Its publications. Dit;inclon is printed only U the paper is published M an ASME Journal. Authorization to photocopy 
for internal or personal use'is granted to libraries and other users registered with the Copyright Clearancetenter (CCC) provided 
93/article is paid to CCC, 222 Rosewood Dr., Danvers, MA 01923. Requests for special permissionor bulk reproduction should be ad-
dressed to the ASME Technical Publishing Department. 

Copyright 0 1999 byASME 
	

All Rights Reserved 	 Printed in U.S.A. 

APPLICATION OF PERTURBATION METHODOLOGY AND DIRECTIONAL 
FILTERING FOR EARLY ROTOR CRACK DETECTION 

Paul Goldman 
Agnes Muszynska 
Donald E Ben fly 

Kenwood P. Dayton 
BRDRC 

1711 Orbit Way, Bldg. 1 
Minden, NV 89423, USA 

r illintjm i 

Mauro Garcin 
Politecnico di Torino 

Corso Duca Degli Abruzzi, 24 
10129 Torino, Italy 

ABSTRACT 
This paper documents analytical and experimental research of the lateral and torsional responses of a cracked 

rotor to different types of excitation. The experimental research has been performed on a rotor rig, which emulate a 
turbogenerator. It includes driving motor coupled to the main rotor, a lateral nonsynchronous perturbation device, 
and a generator with an electrical field consisting of a constant component (constant torsional load) and a sinusoidal 
component, provided by a signal generator. The generator was used as a torsional nonsynchronous perturbation 
device. The midspan of the rotor was modified so that a section could be changed starting with a circular cross-
section (undamaged rotor) to the cross-section with transverse crack The lateral and torsional responses have been 
measured at two axial locations. The obtained lateral data was processed using directional filtering into forward and 
reverse components of the corresponding filtered elliptical orbits. The forward component of the lateral response to 
nonsynchronous perturbation allows to identify overall stiffness reduction and rotating stiffness asymmetry 
introduced by the change in midspan rotor cross-section, while the reverse component largly depends on the support 
asymmetry. The nonsynchronous torsional excitation allows identify of the system torsional dynamic stiffness and 
it's reduction due to the crack. The ratio of the filtered to lx or to the pemnbation frequency rotor responses at two 
axial locations was considered as an indicator of a lateral mode shape change due to the crack. The experimental 
results are compared with the analytical model of the rotor response, which was obtained by the application of a 
perturbation method of small parameter to the system of nonlinear equations. The equations describe the rotor 
system with four lateral (two displacements and two inclination angles) and two torsional degrees of freedom. 

1. INTRODUCTION 

Over the years many papers on early detection of shaft cracks have been published. The continuing interest of 
scientists and engineers is stimulated by a severity of the malfunction in terms of lost and safety. A relatively high 
frequency of crack occurance also motivates a continued investigation into the subject. According to Bendy, 
Muszynslca (1986) during a period of 10 years at least 28 rotor failures due to cracks were documented in the USA 
power industry. 

Dimentberg (1945) was apparently the first to report the effect of the rotating stiffness asymmetry on the shaft 
lateral vibration. Henry and Olcah-Avae (1976) performed a computer study where the weight of the rotor was 
reported to be responsible for the 2x resonance. Mayes and Davis (1976) studied the behavior of a cracked shaft 
model which took into account opening and closing of the crack as a stiffness step-function. Gasch (1976) modeled 
the breathing crack by a spring-loaded hinge, and performed a computer simulation which showed a subharrnonic 
resonance. Grabowski (1979) used a modal approach to the problem. He developed a theoretical model of the crack 
mechanism, which showed a good correlation with static experiments, and used it in a dynamic model of the rotor. 
Inagald, ICanalci and Shirald (1979) applied the transfer matrix method. They modeled the breathing crack as a step- 
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function for the bending moment and applied the Fourier series expansion to find the solution. Muszynska (1982) 
considered both gaping and breathing cracks and investigated the interaction between rotating and stationary 
stiffness asymmetries. Nelson and Nataraj (1986) investigated analytically the spectruin change due to the 
nonlinearities introduced by cracks. Bently and Muszynslca (1986) emphasized the importance of the observation of 
the rotor lx and 2x filtered response vector changes for early crack detection, including not only amplitudes, but 
also phases. A significant number of papers were published on the finite element modeling of the cracked shafts, for 
example: Chen and Wang (1986), Schmallhorst and Dirt (1987). The free mode shape change due to the crack has 
been investigated by Goldman et al. (1996). 

In comparison to the great number of papers on the lateral vibration, which is considered as the major effect of 
the cracked rotors, the number of papers on the torsional vibration due to cracks is much less. Among them 
Dimarogonas and Massouros (1981) reported the first torsional natural frequency reduction due to the transverse 
crack. Christides and Barr (1986) developed partial differential equations for the torsional vibration of the cracked 
shaft under the assumptions which uncoupled lateral and torsional modes. The finite element model was applied to 
the modeling of the torsional vibration of the cracked shafts in the paper by Chen and Wang (1986). Papadopoulos 
and Dimarogonas (1989) derived the cross-coupled local stiffness matrix, which resulted in the lateral/torsional 
cross-coupling effect. Muszynslca, Goldman and Bently (1992) and Bendy, Goldman Muszynslca (1994) 
investigated analytically and experimentally the other lateral/torsional cross-coupling mechanism (due to the 
combination of the unbalance, shaft stiffness asymmetry, and radial side load). 

In spite of number of papers and recommendations on the early crack detection, shafts keep breaking, sometimes 
without exhibiting detectable changes in some of the recommended parameters. That brings a conclusion that just a 
passive vibration monitoring is not always sufficient. An active testing for early shaft crack detection might be 
required in some cases. This paper presents the active testing technology and dicusses analytical and experimental 
results on the cracked rotor lateral and torsional responses to different types of excitations: unbalance, constant 
radial load, lateral and torsional nonsynchronous harmonic excitations. 

2. EXPERIMENTAL SETUP 

The schematic diagram of the experimental setup is shown in Fig. 1. The experimental rotor rig consists of 
the main rotor with the interchangeable midspan, and the two perturbation devices. 

The main rotor includes a variable speed, go  horsepower electric motor, which is connected to the main 
shaft through a flexible coupling. The main shaft is a 10 mm outside diameter steel rod cut into two sections. The 
inner end of each section is female threaded to accept the male threads of the midspan. There are two types of 
midspans manufactured for the experimentation (undamaged and cracked), each fabricated from the same material 
as the main shaft. Berg®  Quick-2-Clamp" clamps are used at the junctions of the main rotor and midspan ends to 
reduce asymmetry and increase the stiffness of the rotor at the junctions. Three bearings, 1 bronze bushing bearing 
(B1) and 2 rolling element bearings (B2 & B3) support the main rotor. The bronze bushing bearing is used to 
introduce damping to the system. The rolling element bearings are used to increase the stiffness of the rotor. 

In order to limit the number of lateral vibration modes at the midspan to a single mode, placing it between 
bearings B2 and B3 laterally restricts the outboard disk D2. The masses used in this case are both made of steel 
with dimensions of 4.9" diameter, .5" thickness, and approximately 1210 grams. The inboard mass was placed close 
to the midspan as possible such that the natural frequency of the system's lateral vibration would coincide with the 
natural frequency of the system's torsional vibration. A spring stand was placed near the mass at the inboard side of 
the midspan to control constant radial loading of the system. 

Two torsional measurement gears, G I  and 02, were located at each end of the main rotor near each of the 
masses. Placing the gears near the masses ensures that the torsional measurements will not be taken near a nodal 
point, thus increasing the signal to noise ratio of the measurements. Two sets of lateral proximity probes are used to 
take lateral vibration measurements at the outboard side of the midspan and near the inboard disk, DI. The 
proximity probes are standard Bently Nevada Corporation 5 mm type probes. The main rotor as well as the lateral 
perturbator has independent Keyphasor m  signals to provide a corresponding phase reference. The phase reference 
for the nonsynchronous torsional perturbation is the transistor-to-transistor logic (TTL) pulse from the function 
generator. 

The nonsynchronous lateral excitation is provided by a constant force perturbator located on the rnidspan 
section. The constant force perturbator device is based on the concept if constant elastic eccentricity. Electric 
motors separate from the main drive motor drives the constant force perturbator through a toothed drive belt. The 
teeth on the drive belt prevent slip between the drive motor and the constant force perturbator giving more accurate 
phase reference. 
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Figure 1. Schematic of the experimental setup. 

Torsional perturbation is applied by a torsional perturbator assembly, which is attached to the outboard end 
of the main rotor using a Berg ®  Quick-2-ClampTh  clamp. The torsional perturbator consists of two torsional 
measurement gears fixed to a 10 nun shaft. Two rolling element bearings, B4 & B5 support the shaft. In order to 
increase the torsional response between the two gears, 03 & G4, and proportionally increase the signal to noise ratio, 
the shaft is reduced to 5 mm. The shaft is connected to an electric motor, identical to the drive motor, through a 
torsionally rigid coupling. The electric motor acts as a generator, since it is being driven by the main rotor, and 
serves as the source of the nonsynchronous torsional perturbation. Modifying the field of the generator by a 
harmonic signal, results in a variable torque being applied to the main rotor through the shaft of the torsional 
petturbator assembly. The actual resulting torque input into the main rotor system is the response measured between 
gears 03 and 04  multiplied by the stiffness of the reduced diameter section between the two gears. 

2. MATHEMATICAL MODEL 

The physical model of the rotor presented in Fig. 2, consists of two rigid bodies. The first rigid body is considered 
having two angular (j-angle of yaw and yr -angle of pitch), two displacement Cr and y) and one torsional (0) degrees 
of freedom. It models the part of the main rotor (see Fig.!) between two sets of proximity probes P 1  and P2. Five 
measurements: four laterals (from two sets of probes P I  and PO and one torsional (from the gear G1)- determine the 
described five degrees of freedom of this rigid body. It is supported at the driving end by an anisotropic stationary 
stiffness element with major stiffness axes X and Y and corresponding stiffnesses (K a  — AK„.)/ 2 and 

(K,c, + AK, )! 2 ( AK, is a measure of the support stiffness anisotropy). 
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Figure 2. Physical model of the rotor. 

The support stiffness is connected in sequence with rotating symmetric stiffness element with shiftless K / 2. The 
outboard end of the first rigid body is supported with the similar stationary stffness element, which is connected in 
sequence with the rotating stiffness element with major stiffness axes e and ij and corresponding stiffnesses 
Ko  K1 — ,A)— AK, 1/ 2 and K ro  K1 — + AK, 1/ 2 , where A and AK, are overall stiffness reduction and 
stiffness asymmetry metry mesures. The second rigid body corresponds to the outboard disk 02 of the experimental 
rig (see Fig.1). Asymmetry and average reduction of the rotating shiftless at the inboard end of the rotor represents 
the effect of a crack. The angle 9 describes the second rigid body (see Fig. 2) the only torsional degree of freedom. 
It is associated with the torsional signal from the gear 02. The torsional spring between these angles has stiffness 
Kg, (1 — A, ) , where A, is an original torsional stiffness reduction due to the crack. The kinetic energy of the 
rotor system in Fig. 2 can be expressed as follows: 

T; M(±2  + 9 2 )+ 	—24510 +L(j 2  +* 2 )+ 
2 	 2 	 2 

J 
Ma4pcos(0 + — 	+8)1 

2 
where U J, It  are correspondingly mass, polar and transverse moments of inertia of the inboard disk, 4 is the polar 
moment of inertia of the inboard disk, a, Sare polar coordinates of the mass center of the inboard disk expressed in 
the rotating frame. The potential energy of the system can be presented as follows: 

(1) 
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measurements Pi and P2  . In addition to kinetic and potential energies the generalized forces affect the rotor 
system: 

Qx  + jQy  = Poen' + Fe' - 	+ j9), -Q  + jQ0  = rD12 (-1 +JO 

Q0  = Td, — D„0, Q, = -D,2 0 + To  + Tpx, cost° I t 
where P0 , F are magnitudes of the constant radial force and nonsynchronous perturbation force, D is lateral 
damping evenly distributed between two supports of the inboard disk, Dd and D a  are torsional modal dampings, Tdr  
is a driving torque, Tu, and T0,0  are constant and amplitude of harmonic components of torque created by the 
generator. After the introduction of the following nomenclature: 

K 0 K toM . v,0  
I, = A 4P 2 , It = K21 1,, JP =b2IP' vm = M' n  = Koip  I'm ' 

D 	D„ 	Da 
 in = —, g = 2govi.  411 - V 10  10  211K0 ,717, 	Icio 21KT ,

)5./ 
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the equations of motion can be written as follows: 
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(I) = 	—C2  (lie - herd°.  )+ sin(m 	- 	
2

sin (m +5 -o- 1 r)= 1/42 ) 
4 	 2  

Here e is a measure of smallness and all terms of the third order are neglected. 
To simplify the separation of torsional modes it was assumed that b = 1, c n  = c 12 = Ct although. the 

introduction of normal coordinates for uncoupled torsional equations leads to similar equations in general case The 
other assumptions are as follows: 

(6)  

(7)  
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A, A„q,p,f ,po ,g 	 g,q, at 0(e) 
	

(8) 
As a consequence from the assumption (8) the following estimations can be made: 

h,fl „ 	0(6), gQfr2) 
	

(9) 

The system of Eqs. (6) has been derived on the bases of relations (8), (9) with an accuracy up to the second order of 
smallness. It is important to note that within the consideration of terms up to the second order of smallness the 
terms H and 0 (Eqs. (7)) do not include crack-related information and can be exluded from further considerations. 
The rest of the system of Eqs. (6) can be treated by the method of Lapunov- Poincare. The solution in original 
variables can be expressed as follows: 

Man' 	eM+5) [1+ IQ/  e-2-'s ]+ 	K2d  e-i(c1+15)  - unbalance response 
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T
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where the fo lowing dynamic stiffness components are included 

DS(w) = K0 (1 — A / 2) — Mco 2  + jD co ; PDS((0.,co)= K0 1 2  — 0 2 1, +Owl p  + jD12  a); 

R7DS(w) = —I pa,' + j13,co; 17DS(w)=21C,0 (1— A,) —1,,co 2  + AU) 
The torsional response could also include synchronous components if they are present in driving and/or load torque. 
The other torsional components such as laterally driven synchronous components,"snapping action" (see Bendy et. 
al. (1997)) are small under the current set of assumptions. As expected the rigid body torsional dynamic stiffness 
(RTDS) is not affected by the crack, while the dynamic stiffness of the twisting torsional mode (7TDS) is affected. 
That dictates the necessity of subtracting the results of one plain torsional measurement from another for the rotor 
crack detection. 

Considering rotor lateral response to the unbalance, it is important to note that rotating stiffness asymmetry 
introduced by the crack manifested in the sensitivity of the lx forward component to the angular location of 
unbalance, while the support stiffness asymmetry is reflected in the lx reverse component. 

The rotor response to the radial load includes forward 2x component due to the rotating stiffness asymmetry, and 
reverse 2x component due to the support stiffness asymmetry. 

-z +iv = (10) 
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The nonsynchronous perturbation actually separates response due to the support asymmetry from that due to the 
rotating stiffness asymmetry: the former relates to the reverse component with frequency of perturbation, while the 
latter is responsible for the component with frequency 20 — ai l . 

It is important to note that the approximate solution (10) of the system of equations (6) is valid only if stable. 
Although the study of stability is outside the scope of this paper, it can be noted that the generating approximation of 
the system (6) has an instability zone in the proximity of the undamaged rotor translation mode resonance: 
I — A / 2 —ql 2<m<1—A/ 2 +ql 2 (see, for example, Muszynslca (1982) for similar results). In this narrow 
rotative speed range (rotating stiffness asymmetry parameter q is considered small) the solution (10) is not valid. 
The term with time-varying coefficient in the first of Egs. (6) has the second order of smallness and, therefore, can 
only slightly influence the boundaries of instability zone, defined by the generating approximation. Outside of the 
specified instability zone the solution (10) provided by the method of small parameter has accuracy up to the order 
of small parameter (see Giacaglia (1972)). 

One of the important consequences of the expressions (10) is that the ratio of lateral rotor response z2 measured at 
location P2 to the lateral rotor response z1 measured at location PI (Fig. 1) appeared to be very sensitive to the crack. 
Filtered to lx components this ratio can be expressed as follows: 

(z: [z  + 1( —/ +./0] ix 1+ 	K0 12 ( A + qe-2)6 )  
1  jix  [z — /(—z + jy/)] ix 	K0 12  — 11 2  (I — I p )+ jD12 f1 

	 (12) 

Note that the angular variable —z + Avis measurable only by its contribution into the lateral displacements at 
different axial locations. The ratio in Eq. (12) characterizes the mode shape change due to the crack and is easy to 
measure. In the case of this ratio calculated for the nonsynchronous components, it will only include term related to 
the overall stiffness reduction: 

[z +4—z + A/1 K0/2  A 

K0 12 —j,012  + /pcko, +jD12 0.) 1  

From the experimental point of view the lateral dynamic stiffness of the translational mode (mode determined by the 
displacement of the mass center) for the forward component in relation to the direction of excitation force rotation 
(FDS) can be expressed as follows: 

Ko (1— 	 M0 2  + _WO FDS = 
2Ma 

	

	 A  +qe -2)8  il2 eg  

2 2MaCl 2e's  [ ° 
K (1— 

2 ) 	
—1130] — ,1130] 

	

RDS
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, — 
 (z, + z 	 Kod 

	

2F0 	
[K0 (1— —A )— Alto,' — jDco l l 

2  

	

RDS
' 

— 
(z, + z 	 K od 

3. EXPERIMENTAL RESULTS 

The experimental results are presented according to the types of excitation applied to the rotor system. The 
results of excitation of the rotor system with undamaged midspan section are compared with that obtained for the 
midspan with the transverse crack. The crack was created by applying a cycling load to the cantilever beam with a 
V-shaped stress concentrator. After the crack had developed the part of the cantilever beam with crack was cut and 

z, 

Cl 
[z —1(—x + jig)] 

— 1+ (13) 

2 

FDS. = 
 2F0  	Ko ( A) 	+ poi  

(14)  
(z i  + z2 ) ., 	2 ) 

while the lateral dynamic stiffness of the translational mode for the reverse component (RDS) is determined by the 
relations 

2 

(15)  
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installed as a midsection of the rotor rig (see Fig. 1). The approximate depth of the crack is 10%. It has been 
determined by analyzing the photographic pictures of the crack made under the microscope. Since the duration of 
the experiment was short in comparison with the duration of load cycling to create the crack, it is assumed that the 
crack depth has not changed during the experiment. The actual position of the crack in the rotor rig was chosen as 
closed to the undamaged rotor antinodal point as possible. According to the analytical investigation presented in the 
paper by Goldman et. al. (1996) the axial crack location at the antinodal point allows for the maximum sensitivity to 
the crack of that particular mode. The actual crack axial position in the experimental setup has an estimated 
sensitivity of 80% relative to that at the antinodal point. 

3.1 TORSIONAL NONSYNCHRONOUS EXCITATION 

As it was described above, the modification of the electric generator field using harmonic output of the function 
generator provides nonsynchronous torsional perturbation of the rotor. The resulting resistance torque has a 
harmonic component. Sweeping the frequency of the function generator and measuring the torsional response at the 
gears G I  to G. the following parameters can be identified: perturbation torqu(G 2-G I )K, (K,=211 lb in/deg is a 
torsional stiffness of the reduced diameter shaft between gears 02 and GI), torsional compliance of the main rotor = 
(03-04)./(02-G1)Kc  (a ratio of dynamic twist angle between 1 plains of torsional measurements 03 and 04 filtered to 
the torsional perturbation frequency, to the input perturbation torque) and torsional twist dynamic stiffness 
(77D.S14 torsional compliance of the main rotor). The data is presented in the Bode plot format and dynamic 
stiffness format (Figure 3). The comparison of the torsional compliance and dynamic stiffness of the main rotor in 
undamaged case with that for the case of the rotor with crack shows the resonance frequency reduction on about 3% 
while the torsional stiffness reduction is about 40% (it shows a stiffening effect of the rotor system for high 
amplitudes at the resonance), with significant damping reduction. In the case of high radial force the lateral rotor 
response shows a component with torsional nonsynchronous perturbation frequency (Figure 4). 

3.2 LATERAL NONSYNCHRONOUS EXCITATION 

The nonsynchronous lateral excitation is provided by the constant force perturbator based on the constant elastic 
eccentricity, which is rotated by its own drive. Perturbation is performed in the direction of rotation. The lateral 
response measured at two axial locations PI and 1>2 is filtered to the perturbation frequency. The resulting elliptic 
orbits are separated into the forward (in the direction of perturbation), and reverse (in the direction opposite to the 
perturbation) components. This process is referred to as a directional filtering. As it was shown in the analytical 
part only forward components are related to the rotor crack, while reverse components are caused by the support 
asymmetry. The average of two forward components, measured at location P I  and location P2 represents the 
translational motion of the inboard disk. This data in the format of Bode plot and dynamic stiffness is shown in Fig. 
5. Note that the difference in the lateral resonance frequencies between undamaged and cracked rotors is about 1% 
while actual reduction of the lateral stiffness is 15%. 

50 39 NO 	 1:03 3331 9 NO NO a 	 IMO 1E03 AM MA UM AM AM WM AM UM WA 
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Figure 3. Torsional compliance (A) and direct dynamic stiffness (B) of the main rotor with and without crack at 
12000 rpm. The direct stiffness approximation as a parabola according to Eq. (II) gives the following numbers: 
2K,0  = 1400 lb • in / rad, A, = 04. 
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Figure 4. Lateral response to the torsional perturbation with applied radial load: A) Bode plot, B) Full spectrum 
cascade. Note the cross-coupling apperance under the radial load conditions. 
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Figure 5. Forward component of the lateral response of the inboard disk mass center to lateral forward 
nonsynchronous perturbation (A) and dynamic stiffness of the main rotor FDS. ,  (B) with and without crack. The 

direct stiffness approximation as a parabola according to Eq. (11) gives the following numbers: 
Ko  = 930 lb /in, A = 0.15. 

4. CONCLUSIONS 

The analytical and experimental results presented above lead to the following conclusions: 

• The rotor crack manifests in changes of the forward components of lateral response filtered orbits (lx filterd in 
the case of synchronous excitation, filtered to the perturbation frequency in case of nonsynchronous lateral 
perturbation). The reverse components are related to the support stiffness asymmetry. This makes directional 
filtering an effective data processing technique for early crack detection. The results of directional filtering can 
be presented in full spectrum format. 

• Due to nonlinearities of the rotor system at high lateral and torsional amplitudes and possible instabilities the 
resonance frequencies are not very sensitive to the rotor crack. The dynamic stiffness identification procedure 
allows identifying lateral and torsional stiffness, which exhibit much higher sensitivity to the crack. Torsional 
mode is affected more then lateral mode. 

• The analytical results show the sensitivity of the mode shape to the crack. Under the different set of 
assumptions this sensitivity was also analytically investigated in Goldman et. al. (1996). This result requires 
further experimental investigation. The sensitivity of the modal lateral rotor response to the crack axial location 
and its depth has been at least analytically studied, while the torsional modes sensitivity to the crack is almost 
completely unknown. 
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• From the practical application stand point the information on the mode shapes and dynamic stiffness can be 
obtained by differential data processing from the original start up and that with the trial weight. The result is 
usually presented as an influence vector. It is reciprocal to the synchronous dynamic stiffness. As ills stated 
above only forward components of lateral response have to be taken into account. The ratio of the influence 
vectors at different rotor axial locations can be used as a mode shape inicator. 

NOMENCLATURE 
a, 
b2=1/4, air-Jr/I p  

A b  
d, q 
DS(w) 

FDS 

4 

Ko 
Kro  
(KaLIK)/2 
K,0  

n 
Al', 41, 
PDS 
Poe 
Po,  la ;tier 

Qr Qr Qv 
RDS 
RTDS 
To  
Td, 
Tp„,coscot 
TTDS 
z=x+b,  
131,132 

A t  

Ch Ca 

156—n iv 

vro vto 

0'1,2 

polar coordinates of inboard disk mass center in rotating frame 
transversal inboard and outboard disks moments of inertia ratios 
lateral and torsional damping at inboard and outboard disks 
lateral stationary and rotating silliness asymmetry parameters 
lateral dynamic stiffness of translational mode 
nonsynchronous lateral excitation force 
lateral dynamic stiffiless for the translational mode forward component 
nondirnensional lateral displacement vector 
outboard disk polar moment of inertia 
half length of the first rigid body 
original total lateral stiffness of the rotor/bearing system at the inboard disk location 
lateral rotating stiffness of undamaged rotor 
lateral stationary support stiffness in major stiffness axes X and Y 
torsional stiffness of the undamaged rotor 
nonclimensional half length of the first rigid body 
rotative speed and torsional natural frequencies ratios 
Mass, polar and transversal moment of inertia of the inboard disk 
lateral dynamic stiffness of the pivotal mode 
constant radial load 
nondimensional magnitudes of constant radial load, nonsynchtonous lateral and torsional 
perturbations 
generalized forces 
lateral dynamic stiffiiess for the translational mode reverse component 
torsional dynamic stiffness for the rigid body mode 
constant component of the resistance torque 
driving torque 
torsional nonsynchronous perturbation torque 
torsional dynamic stiffness for the twisting mode 
first rigid body center of mass lateral displacement vector 
modal coordinates for torsional rigid body and twisting modes 
average rotor lateral stiffness reduction parameter 
torsional stiffness reduction parameter 
rotating stiffness asymmetry due to the crack 
measure of the order of smallness 
lateral and torsional inboard and outboard disks damping factors 
rotating strong and weak major stiffness axes of the cracked rotor 
angular displacement vector combined from the angle x of yaw and angle s of pitch 
nondimensional eccentricity of the first rigid body center of mass 
lateral and torsional natural frequencies of undamaged rotor 
gyration radius of inboard disk 
lateral and torsional perturbation frequencies ratios 
nondimensional time 

10 

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/G

T/proceedings-pdf/G
T1999/78613/V004T03A028/4216544/v004t03a028-99-gt-225.pdf by guest on 21 August 2022



LITERATURE 
1. Bently, D. E., Muszynslca, A., "Detection of Rotor Cracks", Proceedings of 15th Turbomachinery Symposium, 

Corpus Christi, Texas, Nov. 1986, pp. 129-139. 
2. Bendy, D. E., Goldman, P., Muszynska, A, ""Snapping" Torsional Response of an Anisotropic Rarlialfty 

Loaded Rotor", ASME TURBO EXPO 1995, Transactions of ASME, Journal of Engineering for Gas Turbines 
and Power, v. 119, No. 2, 1997 

3. Chen, W. H., Wang, H. L., "Finite element analysis of axisynunetric cracked solid subjected to torsional 
loadings", Eng. Frac. Mech., vol. 23, No 4, 1986, pp. 705-717. 

4. Christides, S., Barr, A. D. S., "Torsional vibration of cracked beams of non-circular cross-section", Int. J. Mech. 
Sc-i., vol. 28, No 7, 1986, pp. 473-490. 

5. Cohen, R., Porat,I., "Coupled Torsional and Transverse Vibration of Unbalanced Rotor", J. of Applied 
Mechanics, 1985, vol. 52, No 9, pp. 701-705. 

6. Dimarogonas, A. D., Papadopoulos, C. A., "Vibration of cracked shafts in bending", J. Sound Vib., Vol. 91, 
1983, pp. 583-593. 

7. Dimarogonas, A. D., Massouros, G., "Torsional vibration of a shaft with circumferential crack", Eng. Frac. 
Mech., vol. 15, No 3-4, 1981, pp. 439-444. 

8. Dimentberg, F. M, "Flexural Vibration of Rotating Shafts", Butterworth, London, 1961. 
9. Din, B. 0., Schmalhorst, B. K., "Crack depth Analysis of a Rotating Shaft by Vibration Measurement", 11th 

ASME Conf. Vib. Noise, Boston, DE v. 2, 1987, pp. 607-614. 
10. Giacalglia, G. E. 0., "Perturbation Methods in Non-Linear Systems", Springer-Verlag, New York, 1972, 319 

pp. 
11. Gasch, R., "Dynamic behavior of a simple rotor with a cross-sectional crack", Vibrations in Rotating 

Machinery, Inst. of Mech. Eng., London, 1976, pp. 123-128. 
12. Goldman, P., Bently, D. E., Muszynska, A "The Modal Diagnostics of Rotors with Clacks", International ME 

96 Congress and Exhibition, November 1996, Atlanta, Georgia, USA. 
13. Grabowski, B., "The vibrational behavior of a turbine rotor containing a transverse crack", J. Mech. Des., vol. 

102, 1979, pp. 15-19. 
14. Henry, T. A., Olcah-Avae, B. E., "Vibrations in cracked shafts", Vibrations in Rotating Machinery, In.st of 

Mech. Eng., London, 1976, pp. 15-19. 
15. Inagalci, Y., Kanald, H., Shiralci, K., "Transverse Vibrations of a General Cracked Rotor Bearing System", 

ASME Paper 81-DET-45, 1981. 
16. Mayes, I. W., Davies, W. G. R., "The Vibrational Behavior of a Rotating Shaft System Containing a Transverse 

Crack",!. Mech. E. Conference, Paper C178176,1976. 
17. Muszynslca, A., "Shaft Crack Detection", Seventh Machinery Dynamics Seminar, Canada, 1982. 
18. Muszynska, A., Goldman, P., Bendy, D. E., "Torsional /lateral Cross-Coupled Responses Due to Shaft 

Anisotropy: A new Tool in Shaft Crack Detection", 1MechE, C 432-090, Bath, United Kingdom, 1992. 
19. Nelson, H. D., Nataraj, C., "The Dynamics of a Rotor System with a Cracked Shaft", ASME J. Vibration, 

Acoustics, Stress and Reliability in Design, vol. 108, No 2, 00. pp. 189-196. 
20. Papadopoulos, C. A., Dimarogonas, A. P., "Coupled Vibration of Cracked Shafts", Rotating Machinery 

Dynamics, ASME, DE-Vol. 18-2, 1989, pp. 7-12. 
21. Qian, G., Cu, S., Jiang, J., "Finite element model of cracked plates application to vibration problem", Comput 

Str., 39, 5, 1991, pp. 483-487. 

11 

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/G

T/proceedings-pdf/G
T1999/78613/V004T03A028/4216544/v004t03a028-99-gt-225.pdf by guest on 21 August 2022


	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11

