
61

Application of Pfortran and Co-Array Fortran
in the parallelization of the GROMOS96
molecular dynamics module

Piotr Bałaa, Terry Clarkb and L. Ridgway Scottb
aFaculty of Mathematics and Computer Science, N.

Copernicus University, Chopina 12/18, 87-100 Toruń,

Poland

Tel.: +48 56 611 3468; Fax: +48 56 622 8979;

E-mail: bala@mat.uni.torun.pl
bDepartment of Computer Science, University of

Chicago and Computation Institute, 1100 E. 58th

Street, Chicago, IL 60637, USA

E-mail: {ridg,twclark}@cs.uchicago.edu

After at least a decade of parallel tool development, paral-
lelization of scientific applications remains a significant un-
dertaking. Typically parallelization is a specialized activity
supported only partially by the programming tool set, with
the programmer involved with parallel issues in addition to
sequential ones. The details of concern range from algo-
rithm design down to low-level data movement details. The
aim of parallel programming tools is to automate the latter
without sacrificing performance and portability, allowing the
programmer to focus on algorithm specification and develop-
ment. We present our use of two similar parallelization tools,
Pfortran and Cray’s Co-Array Fortran, in the parallelization
of the GROMOS96 molecular dynamics module. Our paral-
lelization started from the GROMOS96 distribution’s shared-
memory implementation of the replicated algorithm, but used
little of that existing parallel structure. Consequently, our par-
allelization was close to starting with the sequential version.
We found the intuitive extensions to Pfortran and Co-Array
Fortran helpful in the rapid parallelization of the project. We
present performance figures for both the Pfortran and Co-
Array Fortran parallelizations showing linear speedup within
the range expected by these parallelization methods.

1. Introduction

Molecular dynamics (MD) is widely used to inves-
tigate function of biomolecular systems with large size
and long time scales. Biomolecular complexes con-

sisting of components such as proteins, lipids, DNA
and RNA, and solvent are typically large in simulation
terms. The explosive growth in interest in investigat-
ing inherently complex biomolecular systems such as
solvated protein complexes leads to molecular systems
with tens to hundreds of thousands of atoms, as for
example in [39]. Parallel algorithms are critical to the
application and progress of MD in order to 1) improve
the accuracy of simulation models, 2) extend the length
of simulations, and 3) simulate large, complex systems.
Numerous MD parallelizations have been described in
the literature, ranging from the easy to implement repli-
cated algorithm [6,20] to the more difficult to imple-
ment spatial decomposition [9,30], which is generally
more scalable. The force decomposition algorithm is
an intermediate approach in that it is generally more
efficient than the replicated algorithm and easier to im-
plement than the spatial decomposition [27].

The ease of implementation of an MD algorithm is
important given the need for multiple algorithms to ad-
dress the variability encountered in mapping molecu-
lar dynamics algorithms onto parallel architectures [8,
9]. In addition, experimenting with MD algorithms
on novel parallel architectures is facilitated by tools
aiding the parallelization process. Various tools have
been applied to molecular dynamics simulations with
varying success. Data parallel approaches have been
found to be problematic due to the irregularity inherent
to molecular dynamics [38], which is compounded by
unstructured legacy applications [7]. Low-level tools
such as MPI have been successful for performance [27],
but do compromise readability and consequently main-
tenance after the development period. Many good tools
have been developed for problems structured similar-
ly to molecular dynamics, but often target regularly
structured applications, for example [12].

There remains a long way to go in expediting the

development of robust molecular dynamics algorithms.
At the moment, there are tools which we have found

Scientific Programming 9 (2001) 61–68
ISSN 1058-9244 / $8.00 2001, IOS Press. All rights reserved

62 P. Bała et al. / Application of Pfortran and Co-Array Fortran in the parallelization of the GROMOS96 molecular dynamics module

to fill somewhat the void. We used the tool Pfortran
to implement the replicated algorithm for the GRO-
MOS96 MD module [36], followed by a parallelization
using Co-Array Fortran. Our Pfortran parallelization
was completed after an aggregate of about 60 hours for
a team of two over a period of one week. The effort
started with an SGI parallelization based on SGI direc-
tives. The parallelization is machine independent and
performs robustly.

We briefly review the MD model; the interested read-
er is referred to [1,21,18] for detailed treatments. The
MD method provides a numerical solution of classical
(Newtonian) equations of motion

mi

d2ri

dt2
= Fi(r1, r2, . . . , rN) (1)

where the force Fi(r1, r2, . . . , rN) acting on particle i

is defined by the interaction potentialUi(r1, r2, . . . , rN).
The general functional form of the potential is

U(r1, r2, . . . , rN)

=
∑

bonds

Kb(rij − r0
ij)

2 +
∑

angles

Ka(ψij − ψ0
ij)

2

+
∑

torsions

Kt

(

1 + Ctcos(mtφt − φ0
t)

)

(2)

+
∑

i<j

(

Aij

r6
ij

+
Bij

r12
ij

)

+
∑

i<j

(

qiqj

rij

)

+Uspecial

where rij is the distance between atoms i and j, and
other constants define force field parameters for dif-
ferent chemical atom types. Well known algorithms
such as leap-frog [34] and Verlet [33,22] are used to
calculate new positions and velocities.

2. Related work

The parallelization of molecular dynamics has been
explored widely in the literature [4,6,8,9,11,15,19,23,
27,29–31]. Fortunately, molecular dynamics simula-
tions of biomolecular systems are well suited for par-
allel computation since the forces acting on each atom
can be calculated independently with a small amount
of boundary information consisting of a neighborhood
of atomic coordinates and in some cases, velocities.
The leading computational component of the MD cal-
culation involves the nonbonded forces, a calculation
generally quadratic in the number of atoms that can be

reduced to close to a linear dependence with the cutoff
radius approximation coupled with strategic use of a
pairlist [16,37]. Other algorithms used to reduce the
cost of evaluation of nonbonded interactions include
reaction field methods [32] and multipole expansions
of coulombic interactions [1,5,10,28].

The shortcomings of parallel paradigm support for
molecular dynamics stems from the difficulties posed
by the irregularity of the calculation [12,14,40], and a
general shortage of integrated tools for parallelization.
Popular parallelization libraries such as PVM [13] and
MPI [24], while suitable for irregular applications, of-
fer little abstraction, requiring the programmer to man-
age low-level details in the communication mechanism
such as message identifiers. Higher-level methods such
as HPF [17] encounter difficulties in dealing with ir-
regular problems and legacy code [7].

3. Pfortran and Co-Array Fortran

A Fortran implementation of the Planguages, the
Pfortran compiler extends Fortran with the Planguage
operators which are designed for specifying off-process
access [2,3]. In a sequential program the assignment
statement specifies a move of a value at the memory
location represented by j to the memory location rep-
resented by i. Planguages allow the same type of as-
signment, however, the memory need not be local, as
in the following example in a two-process system

i@0 = j@1

stating the intention to move the value at the memory
location represented by j at process 1 to the memory
location represented by i at process 0.

With the aid of the @ operator one can efficiently
specify broadcast of the value at memory location a

for logical process 0 to the memory location a on all
processes:

a = a@0

The other Pfortran operator consists of a pair of curly
braces with a leading function, f{}. This operator
represents in one fell swoop the common case of a
reduction operation where the function f is applied to
data across all processes. For example, to sum an array
distributed across nProc processes, with one element
per process, one can write

sum = +{a}

Although a is a scalar at each process, it is logically
an array across nProc processes. With @ and {}, a

P. Bała et al. / Application of Pfortran and Co-Array Fortran in the parallelization of the GROMOS96 molecular dynamics module 63

variety of operations involving off-process data can be
concisely formulated.

In the Planguage model, processes interact through
the same statement. Programmers have access to the
local process identifier called myProc. With myProc,
the programmer distributes data and computational
workload. The Planguage translators transform user-
supplied expressions into algorithms with generic calls
to a system-dependent library using MPI, PVM, shared
memory libraries or other system-specific libraries.

Cray Co-Array Fortran is the other parallelization
tool considered in this study [25,26]. Co-Array For-
tran introduces an additional array dimension for arrays
distributed across processes. Co-Array Fortran gen-
erally requires more changes in the legacy code than
does Pfortran, however, Co-Array Fortran provides au-
tomatic distribution of user-defined arrays. Co-Array
Fortran does not supply intrinsic reduction-operation
syntax; these algorithms must be built on point-to-point
exchanges by the programmer.

4. Parallelization strategy

We noted in the introduction that the molecular dy-
namics parallelization methods of domain decomposi-

tion and the replicated algorithm are at the extremes in
implementation difficulty, domain decomposition be-
ing the more difficult. In terms of minimizing com-
munication, domain decomposition can be shown to
be optimal for various communication topologies and
switches. With the replicated model, on the other hand,
the accumulation of forces is a global operation. Both
algorithms scale with respect to increasing problem size
while maintaining a suitable workload per process [8,
9], however, the replicated algorithm reaches a scala-
bility limit as a function of the number of processes
as a result of the global force accumulation [8]. The
replicated algorithm, which was implemented in this
study, performs more robustly than the spatial decom-
position for a range of processor and problem configu-
rations [9], making it the preferred method under some
common conditions. In addition, the replicated algo-
rithm is straightforward to implement.

4.1. Pairlist parallelization

Our parallelization of the replicated algorithm mod-
ified three parts of the program: 1) force calculation,
2) pairlist calculation, and 3) I/O. We consider the
principal components of the overall strategy shown in

Fig. 1. Parallelization Schematic. One cycle through the flowchart
constitutes a single timestep. The parallelized nonbonded pairlist
and force calculations are shown as branched regions of the flowchart
indicating the process-dependent control flow through that part of
the program. The single-line edges between components represent
portions of the program executed redundantly at each process. The
pairlist is calculated at intervals (roughly once every 10 timesteps);
inter-process data movement (black circle) follows to accumulate
energies and to exchange pairlist data used to retain an indexing
scheme compatible with the sequential code. The force calculation is
performed in parallel and at every timestep; immediately following,
the forces are accumulated with a reduction operation (second black
circle) as described in the text. The remainder of the timestep is
performed redundantly by all processes, with each process holding
the same system state.

Fig. 1. In the pairlist calculation all atom pairs are
scanned, and for each atom a list of atoms located with-
in the cut-off radius is tabulated:

do i = 1, n
jl = 0
do j = i+1, n
if (| X(i) - X(j) | < R) then
jl = jl + 1
JNBL(jl,i) = j

endif
enddo
JNB(i) = jl

enddo

GROMOS96 interactions models non-bonded inter-
actions collectively between charge groups, rather than
atoms. This modification does not change the algorithm

64 P. Bała et al. / Application of Pfortran and Co-Array Fortran in the parallelization of the GROMOS96 molecular dynamics module

presented above, however its practical implementation
is more complicated (see [7] for details).

Based on the pair list, the forces can be evaluated
efficiently as given in this pseudo code:

do i = 1, n
F(i) = 0
do j = start(i), end(i)
tmpforce = force (X(i), X(JNB(j)))
F(i) = F(i) + tmpforce
F(JNB(j)) = F(JNB(j)) - tmpforce

enddo
enddo

Both the force and pairlist portions parallelization are
based on a modulo strategy implementing a cyclic dis-
tribution of pairs for the nonbonded-force routines [4],
where in pseudo code

if (MOD(chargeGroup-1,nProc).EQ.
myProc)

perform calculations

endif.

Our parallelization began with the GROMOS96 dis-
tribution’s SGI-specific shared-memory code where
each process calculates neighbors and forces for the
portion of the pairlist assigned to it by the cyclic dis-
tribution. In a distributed memory implementation is a
good idea to distribute (rather than replicate) the pairlist
array since it is the largest data structure in the pro-
gram. Note that the cyclic distribution approximately,
but effectively, distributes the load in the calculation.

4.2. Force calculation parallelization

At the end of the force-calculation loop the replicated
algorithm leaves processes with incomplete nonbonded
forces, making it necessary to accumulate the values
with a global summation. This step requires significant
communication and becomes the barrier to scalability
with the replicated algorithm. However, the algorithm
is effective over a wide range of process and problem
configurations where the computation costs dominates
the communication cost.

The partial results calculated at each process are
stored in a local copy of the force array (F in Pfortran
pseudo code and F dist where Co-Array Fortran is
used). Upon completion of the force calculation in
each timestep, the partial forces are summed into the
the force array at each process.

The global accumulation of the force array is ex-
pressed concisely by the Pfortran reduction operator
as

F(1:natoms*3) = +{F(1:natoms*3)}.

The notation specifies that the summation operator
be applied to each instance of F in the process group
with the mathematical meaning

Fi = F
(0)
i + F

(1)
i + · · · + F

(P−1)
i (3)

for 1 ≤ i ≤ natoms ∗ 3 and P processes.
Without reduction operators, the Co-Array Fortran

implementation of the force accumulation can be per-
formed through explicit point-to-point exchanges as

F(1:natoms) = 0.0
call sync images()
do iproc = 0, nProc-1
F(1:natoms*3) = F(1:natoms*3) +
F dist(1:natoms*3)[iproc]

enddo.

The co-array F dist is distributed across images,
the Co-Array Fortran equivalent to processes, with the
image specified by the index within the square brackets.
The array F is a usual sequential array, local to each
process and therefore considered replicated. So, in the
code segment above,each process accesses the co-array
portion of each other process to perform the sum in
Eq. 3. sync images is a familiar shared–memory
construct required to insure the one-sided accesses of
non-local memory are consistent with the point of ac-
cess in the program. In the Pfortran implementation,
the consistency determination is left to the implemen-
tation of the compiler. In the current Pfortran, synchro-
nization is achieved through message buffering.

The force calculation for covalent bonds, angles, di-
hedrals and torsions may be performed independently
and in parallel for each component. In the present im-
plementation this part of the program was not paral-
lelized due to its meager contribution to the total exe-
cution time.

4.3. I/O

A typical I/O strategy for SPMD codes is to use a
designated process to open and read data, then to com-
municate the data obtained from files to all other pro-
cesses over a network. Similarly, non-replicated data is
sent to, and then output from, a designated process. In
that way, sequential semantics are retained for file I/O.
In the Pfortran model, I/O from the sequential program
must be modified to retain the sequential semantics.
With the Cray Co-Array Fortran, however, the compil-
er allows for synchronous file operations; that is, the

P. Bała et al. / Application of Pfortran and Co-Array Fortran in the parallelization of the GROMOS96 molecular dynamics module 65

disk operations are performed by all nodes and data is
read by all images. Thus with Co-Array Fortran, I/O
modifications are not required in general.

A typical read operation is written using Pfortran as
follows

if (myProc.eq.0) then
read(unit,*) temperature

endif
temperature = temperature@0

with the designated process broadcasting the value
read. For the typical write operation, the designated
process outputs the values. In the following example,
partial energy terms are summed to the total energy
for the system, and output by the designated process:

energy = +{energy}
if (myProc.eq.0) then
write(unit,*) energy

endif

More complicated “gathers” of data to the designated
process may be required, however for the replicated
algorithm, the resulting replication of state simplifies
this step. Performed manually, the I/O modifications
were the most tedious aspect of our replicated algorithm
implementation using Pfortran.

4.4. Parallelization details

GROMOS96 is written in FORTRAN77 for which
Co-Array Fortran and Pfortran are supersets. The Pfor-
tran implementation can run on systems where Pfortran
is ported, independent of the underlying communica-
tion paradigm; at present, MPI, PVM and a parallel
simulator are targeted by Pfortran.1 A port to a new
communication library requires only changes in the
Pfortran communication library. The Co-Array Fortran
version is dependent on Cray systems, thus limiting the
portability.

The roughly 40,000 lines of GROMOS molecular
dynamics code required the introduction of 65 declara-
tions of co-arrays, about 300 lines containing co-array
syntax, and almost the same number of calls to the Co-
Array Fortran image-synchronization procedure. With
Pfortran, various reduction operations were required
33 times, with another 290 off-process data-access op-
erations. In both the Co-Array Fortran and Pfortran
parallelizations, most of modifications were associat-

1Other Pfortran ports exist, but for machines that are no longer
marketed.

ed with the I/O subroutines, a feature of the replicated
algorithm and I/O in general. The source code mod-
ifications to the code were reduced with the abstrac-
tions provided by Co-Array Fortran and Pfortran, com-
pared to an implementation using standard communi-
cation libraries such as MPI or PVM. Co-Array Fortran
and especially Pfortran requires just one additional line
for each point-to-point communication compared to at
least several lines of code using MPI or PVM libraries.
Moreover, the co-array syntax and Pfortran operators
provide an intuitive notation aiding the reasoning about
the program in a way not dissimilar to the “+” operator
in sequential languages.

5. Program performance

The performance of the parallelized GROMOS MD
codes was measured using HIV-1 protease in water.
The total system of 18,700 atoms consists of 1,970 pro-
tein atoms, 14 ions and 5,572 water molecules. Peri-
odic boundary conditions were used and a nonbonded-
interaction cut-off radius of 8 Å. The principal features
of the three multiprocessor systems used in this study
are summarized in Table 1.

We found close to linear speedup for the systems
tested (Fig. 2). On the Cray T3E the program scales
up to 32 processors (Fig. 3). With more processors we
expect the communication costs to dominate (Figs 2
and 3) for the HIV-1 system and parameters. Note that
the one-time cost of data inputting was not removed
from the total time. In practice this cost will be amor-
tized by runs longer than our short, 100-step run with
the I/O costs effectively going to zero and improving
prospects for scalability.

The communication costs are dominated by the re-
duction of the force array during each timestep. This
cost depends on the algorithm and the underlying
communication layer. From Fig. 4, as expected, the
O(N+logP) algorithm underlying Pfortran reductions
outperforms the Co-Array Fortran reduction algorithm
we implemented in this study, a collection of point-to-
point exchanges (see Fig. 3).

6. Concluding remarks

We completed an adaptation of the replicated algo-
rithm implemented in the GROMOS96 MD module (as
an SGI-specific implementation for shared-memory) to
a portable distributed-memory version in about 60 pro-

66 P. Bała et al. / Application of Pfortran and Co-Array Fortran in the parallelization of the GROMOS96 molecular dynamics module

Table 1
Features of the parallel computer systems and environments

Nodes Processor Network OS

CRAY Unicos
T3E 36 300MHz 4 Gbit/sec mk 2.0.5

3D torus MPT 1.3

SGI
Power 8 194 MHz 8 Gbit/sec IRIX 6.2
Challenge custom
R10K interconnect

Pentium 8 300–600 MHz 0.1 Gbit/sec Linux 6.2
cluster Ethernet MPICH 1.1.2

100

1000

1 2 4 8 16 32

T
im

e
 [
s
]

Number of nodes

T3E
CAF
SGI

Cluster

Fig. 2. Total execution time for several processor configurations on SGI, Cray T3E and cluster of workstations. “CAF” denotes results for
Co-Array Fortran on the Cray T3E, whereas the Pfortran implementation using MPI is labeled “T3E”.

grammer hours. The parallel version of the code re-
tains full functionality of the numerous options in the
GROMOS96 MD module. The adaptation of the SGI-
specific code was tantamount to parallelizing from the
sequential version given the few changes made to the
sequential coded to arrive at the SGI-specific shared-
memory. The abstractions provided by the Planguages
allowed us to focus our attention on details of logic
unhampered by message-passing details, such as pro-
viding a message-passing API with message sizes and
tags, proper communicator and so on. What is more,
the maintainability of the Pfortran code after parallel
development is improved over an MPI version and the
source code is portable to systems where the Pfortran
compiler has been ported.

We next adapted the Pfortran code to Co-Array For-
tran, finding both implementations to scale with num-
ber of processors as expected using the replicated al-
gorithm on a constant-size problem. Pfortran has per-

formance comparable to Co-Array Fortran, without the
portability limitations. Pfortran also provides built in
reduction operations and the facility for user-defined
ones. On the T3E, the O(N + logP) algorithm un-
derlying Pfortran reductions outperforms the Co-Array
Fortran reduction algorithm that we implemented as a
collection of point-to-point exchanges. Development
of efficient Co-Array Fortran reductions is left to the
programmer. Having a library of such routines would
be very useful.

The small number of extensions and intuitive appli-
cation of Pfortran and Co-Array Fortran contribute to
making them effective tools for developing explicitly-
parallel scientific applications. Key advantages in us-
ing both approaches are 1) code with performance close
to if not at the underlying libraries, 2) machine inde-
pendence, 3) compiler optimizations, and 4) improved
code readability. The abstractions allowing the pro-
grammer to manipulate off-process data accesses fa-

P. Bała et al. / Application of Pfortran and Co-Array Fortran in the parallelization of the GROMOS96 molecular dynamics module 67

1

10

100

1 2 4 8 16 32

T
im

e
 [
s
]

Number of nodes

Total time

I/O

Force

Force reduction

Fig. 3. Execution time for different sections of the code for as a function of the number of Cray T3E computing nodes.

1

10

100

1 2 4 8 16 32

T
im

e
 [
s
]

Number of nodes

T3E
CAF
SGI

Cluster

Fig. 4. Communication time for the reduction of the long-range force array for different numbers of computing nodes. CAF denotes results for
Co-Array fortran on Cray T3E.

cilitate one’s ability to reason about a code. That the
off-process data access syntax are part of the language
also permits compiler optimizations, which would be
difficult to perform with an API such as that provided
by MPI (unpublished work in progress). Our use of
Co-Array Fortran does not take advantage of its shared-
memory paradigm, but it does highlight the advantage
of the abstractions provided by Co-Array Fortran and
Pfortran. The parallel programming models provided
by the two paradigms have orthogonal and potentially
complementary aspects. We are exploring the use of
the paradigms together in a programming language.

Acknowledgements

Piotr Bala was supported by the Polish State Com-
mittee for Scientific Research. Terry Clark and L. Ridg-
way Scott were supported by NSF with the Nation-
al Partnership for Advanced Computational Infrastruc-
ture, NPACI. The computations were performed at the
ICM, Warsaw University and the High Performance
Computing Laboratory at the University of Chicago.

References

[1] M.J. Allen and D.J. Tildesley, Computer Simulation of Liquids,
Oxford University Press, 1987.

68 P. Bała et al. / Application of Pfortran and Co-Array Fortran in the parallelization of the GROMOS96 molecular dynamics module

[2] B. Bagheri, Parallel Programming with Guarded Objects,

Pennsylvania State University, Department of Computer Sci-
ence, PhD dissertation, 1994.

[3] B. Bagheri, T. Clark and L.R. Scott, Pfortran: a parallel dialect
of Fortran, ACM Fortran Forum 11 (1992), 20–31.

[4] B.R. Brooks and M. Hodoscek, Parallelization of CHARMM
for MIMD machines. Chemical Design Automation News 7

(1992), 16–22.
[5] T.C. Bishop, R.D. Skeel and K. Schulten, Difficulties with

multiple time stepping and fast multipole algorithm in molec-
ular dynamics. Journal of Computational Chemistry 18(14)
(1997), 1785–1791.

[6] T. Clark and J.A. McCammon, Parallelization of a molecu-
lar dynamics non-bonded force algorithm for MIMD architec-
tures, Computers & Chemistry 14 (1990), 219–224.

[7] T. Clark, R. von Hanxleden and K. Kennedy, Experiences
in data-parallel programming. Journal of Scientific Program-

ming 6 (1997), 153–138.
[8] T. Clark, R. von Hanxleden, K. Kennedy, C. Koelbel and

L.R. Scott, Evaluating parallel languages for molecular dy-
namics computations. in: Scalable High Performance Com-

puting Conference, IEEE Comput. Soc. Press, 1992, pp. 98–
105.

[9] T. Clark, R. von Hanxleden, J.A. McCammon and L.R. Scott,
Parallelizing molecular dynamics using spatial decomposition.
in: Scalable High Performance Computing Conference, IEEE,
Knoxville, 1994, pp. 95–102.

[10] H.-Q. Ding, N. Karasawa and W.A. Goddard III, Atomic level
simulations on a million particles: The cell multipole method
for Coulomb and London nonbond interactions. Journal of

Computational Physics 97 (1992), 4309–4315.
[11] D. Fincham, Parallel computers and molecular simulation.

Molecular Simulation 1 (1987), 1–45.
[12] S.J.Fink, S.R. Kohn and S.B. Baden, Efficient run-time sup-

port for irregular block-structured applications, J. Parallel and

Distributed Computing 50 (1998), 61–82.
[13] G.A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek

and V. Sunderam, PVM: Parallel Virtual Machine, The MIT
Press, 1994.

[14] R. von Hanxleden, K. Kennedy, C. Koelbel, R. Das and J. Saltz,
Compiler analysis for irregular problems in Fortran D, in: Pro-

ceedings of the Fifth Workshop on Languages and Compilers

for Parallel Computing, New Haven, 1992.
[15] H. Heller, H. Grubmuller and K. Schulten, Molecular dynam-

ics simulation on a parallel computer. Molecular Simulation

5 (1990), 133–1650.
[16] J.W. Eastwood R.W. Hockney, Computer Simulation Using

Particles, Cambridge University Press, Cambridge, 1987.
[17] Proceedings of the High Performance Fortran Forum, Hous-

ton, 1992.
[18] R.W. Hockney and J.W. Eastwood, Computer simulation us-

ing particles, Institute of Physics Publishing, Bristol and
Philadelphia, 1994.

[19] L.V. Kalé, R. Skeel, M. Bhandarkar, R. Brunner, A. Gursoy,
N. Krawetz, J. Phillips, A. Shinozaki, K. Varadarajan and
K. Schulten. NAMD2: Greater scalability for parallel molec-
ular dynamics, Journal of Computational Physics 151 (1999),
283–312.

[20] S.L. Lin, J. Mellor-Crummey, B.M. Pettitt and G.N. Jr.
Phillips, Molecular dynamics on a distributed-memory multi-
processor, Journal of Computational Chemistry 13(8) (1992),
1022–1035.

[21] J.A. McCammon and S.C. Harvey, Dynamics of proteins and

nucleic acids, Cambridge University Press, Cambridge, 1987.
[22] J.A. McCammon, B.M. Pettitt and L.R. Scott, Ordinary dif-

ferential equations of molecular dynamics. Computers Math.

Applications 28(10–12) (1994), 319–326.
[23] F. Müller-Plathe and D. Brown, Multi-colour algorithms in

molecular simulation: Vectorisation and parallelisation of in-
ternal forces and constraints, Computer Physics Communica-

tions 64 (1991), 7–14.
[24] Message Passing Interface Forum, MPI: a message-passing

interface standard. Technical report, 1994.
[25] R.W. Numrich, F−−: a parallel extension to Cray Fortran,

Scientific Programming 6 (1997), 275–284.
[26] R.W. Numrich, J. Reid and K. Kim, Writing a multigrid

solver using co-array Fortran, in: Recent Advances in Applied

Parallel Computing, Lecture Notes in Computer Science 1541,
B. Kågström, J. Dongarra, E. Elmroth and J. Waśniewski, eds,
Springer-Verlag Berlin, 1998, pp. 390–399.

[27] S. Plimpton, Fast parallel algorithms for short-range molecular
dynamics. Journal of Computational Physics 117 (1995), 1–
19.

[28] J. Singer, The Parallel Fast Multipole Method in Molecular
Dynamics. PhD thesis, University of Houston, August 1995.

[29] W. Smith, Molecular dynamics on hypercube parallel comput-
ers. Computer Physics Communications 62 (1991), 229–248.

[30] T.P. Straatsma, M. Philippopoulos and J.A. McCammon,
NWChem: Exploiting parallelism in molecular simulations.
Computer Physics Communications 128 (2000), 377–385.

[31] V.E. Taylor, R.L. Stevens and K.E. Arnold, Parallel molecu-
lar dynamics: Implications for massively parallel machines.
Journal of Parallel and Distributed Computing 45 (1997),
166–175.

[32] I.G. Tironi, R. Sperb, P.E. Smith and W.F. Gunsteren, A gen-
eralized reaction field method for molecular dynamics simu-
lations, Journal of Chemical Physics 102 (1995), 5451–5459.

[33] W.F. van Gunsteren and H.J.C. Berendsen, Algorithms for
Brownian dynamics, Molecular Physics 45 (1982), 637–647.

[34] W.F. van Gunsteren and H.J.C. Berendsen, A leap-frog algo-
rithm for stochastic dynamics. Molecular Simulation 1 (1988),
173–182.

[35] W.F. van Gunsteren, H.J.C. Berendsen, F. Colonna, D. Perahia,
J.P. Hollenberg and D. Lellouch, On searching neighbors in
computer simulations of macromolecular systems, Journal of

Computational Chemistry 5 (1984), 272–279.
[36] W.F. van Gunsteren, S.R. Billeter, A.A. Eising, P.H. Hunen-

berger, P. Kruger, A.E. Mark, W.R.P. Scott and I.G. Tironi,
Biomolecular Simulation: The GROMOS96 Manual and User

Guide, ETH Zurich and BIOMOS b.v., Zurich, Groningen,
1996.

[37] L. Verlet, Computer experiments on classical fluids. I. Ther-
modynamical properties of Lennard-Jones molecules, Physi-

cal Review 159 (1967), 98.
[38] R. von Hanxleden, Compiler Support for Machine-

Independent Parallelization of Irregular Problems, PhD the-
sis, Rice University, 1994.

[39] S.T. Wlodek, T. Clark, L.R. Scott and J.A. McCammon,
Molecular dynamics of acetylcholinesterase dimer complexed
with tacrine, Journal of the American Chemical Society 119

(1997), 9513–9522.
[40] Z. Zhang and J. Torrellas, Speeding up irregular applications in

shared-memory multiprocessors: Memory binding and group
prefetching, Comp. Arch. News 23 (1995), 188–199.

Submit your manuscripts at

http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable

Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in

Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

