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Abstract—In this paper, the physical spline finite element method
(PSFEM) is applied to the fullwave analysis of inhomogeneous
waveguides. Combining (rectangular) edge element and the PSFEM,
the cubic spline interpolation is successfully applied to the wave
equation. For waveguide problems, the resulting nonlinear eigenvalue
problem is solved by a simple iteration method in which the initial
estimate is taken as the linear Lagrange interpolation, and then the
solutions are improved by a few iterations. The bandwidth of the
resultant matrix from the PSFEM is the same as that of linear
Lagrange interpolation and is sparse. As a result, sparse matrix solver
can be used. Three typical examples are demonstrated and compared
with the analytical solutions and with the linear Lagrange interpolation
results. It is observed that the present method converges much faster
than the Lagrange interpolation method.

1. INTRODUCTION

In electromagnetics and microwave engineering, waveguide structures
are important, both theoretically and practically. In theory, analytical
solutions exist for many standard waveguides such as rectangular
and circular metal waveguides, even for partially loaded dielectric
waveguides. In applications, waveguides are basic components in
microwave and optical networks. Therefore, the analysis of arbitrary
waveguide structures has been a very active research topic for decades.
Various techniques have been published, including separation of
variables, conformal mapping, integral equation method, transmission
† X. Zhou is currently with Agere Systems Inc., 156 Wyndham Drive, Allentown, PA
18104, USA
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line matrix (TLM), finite difference (FD), finite difference time-domain
(FDTD), and finite element method (FEM). Among them, FEM is
the most popular because of its solid mathematical foundation and
flexibility in handling complicated geometries. The node-based FEM
has been successfully applied to waveguide structures since 1960s [1].
Most important progresses are collected in a book [2]. In the 1980s,
a “revolutionary” approach, edge (vector) element, was re-discovered.
Its advantages have been recognized very soon in electromagnetics [3].
It can overcome all known drawbacks of FEM against other approaches.
Especially, spurious (nonphysical) modes disappear naturally at all [4].
There is a trend that most authors are moving to the edge-based FEM.
The commercial software package, Ansoft HFSS, is an edge based FEM
tool. Attentions continue to be paid to efficiency and accuracy in more
applications.

In either node-based or edge-based FEM, various orders of
Lagrange interpolation are still dominating. Up to 8 order (p-element)
Lagrange interpolation was implemented [5]. The implementation
can be very difficult and inefficient. Furthermore, at the nodes or
on the edges, discontinuous derivatives of fields still exist that may
cause problems. One the other hand, spline interpolation has caught
little attention. Very few articles of splines in FEM can be found
[6], where only the B-spline was discussed. Because of the difficulty
in implementation, spline functions have not been used in the FEM
widely [7].

In recent papers [8, 9], a new finite element, physical spline
finite element method (PSFEM), has been successfully developed
and applied to one dimensional electromagnetic problems. The
new interpolation greatly improves the accuracy and efficiency in
one dimensional cases by incorporating physical equations into
interpolations. However, in order to make the PSFEM practical in
engineering, its extension to higher dimensions is necessary. In this
paper, the PSFEM will be extended to a typical two-dimensional (2D)
problem — the full wave analysis of waveguides. The initial results
were shortly reported in [10]. The fundamental features introduced in
PSFEM are described in [8, 9] in details, and will not be repeated here.
The paper is organized as follows. Section 1 presents the functional for
general waveguide problems. Section 2 reviews the edge finite element
using the first order Lagrange interpolation. Section 3 applies the new
physical spline finite element (PSFEM) to the edge finite element of
waveguide problems. Section 4 describes a simple iteration algorithm
for the resultant nonlinear eigenvalue problem. Three typical numerical
examples are presented in Section 5 to show the effectiveness of the
physical spline elements.
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2. FUNCTIONAL FOR LOSSY, ANISOTROPIC
WAVEGUIDE STRUCTURES

A general waveguide problem can be considered as a special case
of structures with imperfectly conducting walls that are described
mathematically by

∇× E = −jωµH (1a)
∇× H = jω¯̄ε · E (1b)

∇ · (¯̄ε · E) = ρ (1c)
∇ · (µH) = 0 (1d)

in the finite computation region V . The boundary conditions are

n × E = P on S1 (2a)

n̂× 1
µr

∇× E − γpn̂× n̂× E = U on S2 (2b)

for the Dirichlet or Cauchy boundaries, where

γp = jk0

√
εrc − j σ

ωε0

µrc
. (3)

The functional is given as [11]

I =
∫

v

[
1
µr

(∇× Ea) · (∇× E) − k2
0E

a · ¯̄εr · E
]
dv

+jωµ0

∫
v
(Je · Ea + Jea · E ) dv

+
∫

s2

(U · Ea + Ua · E) ds−
∫

s2

γp (n̂× Ea) · (n̂× E) ds (4)

where Ea is the testing field of E. For waveguides, the special physical
considerations are:

• integrals at two virtual end surfaces must vanish,
• For sources-free regions Je = 0,Ja

e = 0,
• In most cases, we have U = 0,Ua = 0.

Based on the considerations above and the z-independent property, the
functional on the cross section of a waveguide is

Ip =
∫ [

1
µr

(∇× Ea) · (∇× E) − k2
0E

a · ¯̄εr · E
]
dΩ

−
∫

l2
γp (n̂× Ea) · (n̂× E) dl. (5)
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Usually, the original field can be expressed as

E(x, y, z) = (Et(x, y) + ẑEz(x, y))e−γz (6)

Obviously, it propagates in the positive z direction if the time
convention is ejωt. About the testing field, we have a few choices such
as the original field itself [3], the complex conjugate of the original
field, etc. However, the following is more convenient in our problem.
The wave propagating in the negative z direction can be chosen as the
adjoint field [12, 13]

Ea = (Et − ẑEz)eγz. (7)

Because it is not a TEM wave, the z component (Ez �= 0) must be
considered correctly. Separating the transverse and z component of
the operator and using some vector identities, we arrive at

(∇× Ea) · (∇× E) = (∇t × Et) · (∇t × Et)
− (γEt + ∇tEz) · (γEt + ∇tEz)

Ea · ¯̄εr · E = Et · ¯̄εrz · Et − ¯̄εrzE
2
z

(n̂× Ea) · (n̂× E) = (n̂× Et) · (n̂× Et) − E2
z . (8)

Substituting (8) into (6), we have

Ip =
∫ 1
µr

[(∇t × Et) · (∇t × Et)] dΩ

−
∫

l2
γp

[
(n̂× Et) · (n̂× Et) − E2

z

]
dl

−k2
0

∫ [
Et · ¯̄εrz · Et − ¯̄εrzE

2
z

]
dΩ. (9)

Mathematically, this functional can be discretized to yield a standard
eigenvalue problem of k2

0, provided γ is given. However, in waveguide
case, we are mostly interested in finding the propagation constant γ
itself. Then, we transfer the functional above into a desired form that
can be discretized to a standard eigenvalue problem of γ, provided k0

is given. Observing the γ term (γEt + ∇tEz), if we set

Ez = γez
Et = et (10)

we can have
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Ip =
∫ [

1
µr

(∇t × et) · (∇t × et) − k2
0et · ¯̄εrt · et

]
dΩ

−γ2
{∫ [

1
µr

(et + ∇tez) · (et + ∇tez) − k2
0
¯̄εrze

2
z

]
dΩ −

∫
l2
γpe

2
zdl

}

−
∫

l2
γp (n̂× et) · (n̂× et) dl. (11)

3. REVIEW OF EDGE FEM

3.1. Lagrange Interpolation

The finite element method was early applied to structural engineering,
especially scalar problems. So, traditional node expansions are created
in a natural way. The method was not used in electromagnetics
until 1968. The same node expansions are also invoked directly.
However, contrary to what we expect, spurious mode unpredictably
occurs in some cases [14]. Therefore, some approaches such as penalty
function method have been proposed to suppress spurious modes [4].
From the mathematical point of view, this implies that the solution
space must have been extended. In other words, some conditions
(equations) are not considered correctly. Although the penalty terms
can be added to the functionals to enforce the divergence conditions,
they are cumbersome and unnatural. A natural way is to consider
the divergence equations at the next stage, the construction of basic
elements or interpolation functions. Traditional node based elements
are discussed in details in [15]. It is shown that most node based
elements do not satisfy the divergence equations. It is a good idea to
incorporate vector properties of electromagnetic fields in constructing
basic elements. These basic considerations lead to the so-called
vector (edge) elements. Although vector elements were described forty
years ago [16], they are noticed and used widely in electromagnetics
until recently. In order to make some comments we summarize the
construction of rectangular elements as follows.

Consider the rectangular element shown in Fig. 1. The side lengths
are lx and ly in the x and y directions, respectively. The geometric
center is (xc, yc). Decomposing the vector field (for example electric
field) into x and y components, each component is one dimensional.
The field at an arbitrary point (x, y) can be expressed in terms of the
x and y components on the four edges. Suppose each field component
varies linearly with respect to the related coordinates. Taking Ex as
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yc
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Figure 1. Rectangular edge element.

an example, from the geometric similarities shown in Fig. 1, we get

Ex2 − Ex1

ly
=
Ex − (Ex1 + Ex2)/2

y − yc
. (12)

This equation can be simplified to the desired form, in terms of the x
and y components on the edges as

Ex =
1
ly

(
yc +

ly
2
− y

)
Ex1 +

1
ly

(
y − yc +

ly
2

)
Ex2 (13)

which is independent of the x coordinate. Note that this does not
mean the total field is independent of x because the y component Ey

is a function of x. Eq. (13) is actually the first order (linear) Lagrange
type interpolation.

In the same way, the y component can be expressed as

Ey =
1
lx

(
xc +

lx
2
− x

)
Ey1 +

1
lx

(
x− xc +

lx
2

)
Ey2. (14)

If the edges are defined as shown in the figure, the field is expanded as

E =
4∑

i=1

NiEi (15)

where only the tangential components Ei on the edges are required.
The vector interpolations or basis functions are identified as

N1(y) =
1
ly

(
yc +

ly
2
− y

)
x̂
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N2(y) =
1
ly

(
y − yc +

ly
2

)
x̂

N3(x) =
1
lx

(
xc +

lx
2
− x

)
ŷ

N4(x) =
1
lx

(
x− xc +

lx
2

)
ŷ. (16)

The advantage is that each vector interpolation function consists
of only a tangential component along the corresponding edge. So,
the tangential continuity of the field across all edgeds is guaranteed
automatically. The boundary conditions on the inner discontinuous
interfaces can be included easily. Other more flexible shape elements
are possible. They are needed when we want to model complicated
structures. However, the interpolation above introduces implicitly
another assumption: the Ex is a function of y only; the Ey is a
function of x only. Or in general, all kinds of (first order) edge elements
imply that the tangential components along any given edge are equal.
This can be concluded directly from the expansions. Equivalently, the
tangential components are the average values that are the unknowns
in FEM. This assumption is not generally true in physics.

The vector basis functions above are used to expand transverse
components in waveguide problems. For the longitudinal component,
node-based interpolations are still needed. They are given as

N1(x, y) =
1
lxly

(
xc +

lx
2
− x

) (
yc +

ly
2
− y

)

N2(x, y) =
1
lxly

(
x− xc +

lx
2

) (
yc +

ly
2
− y

)

N3(x, y) =
1
lxly

(
x− xc +

lx
2

) (
y − yc +

ly
2

)

N4(x, y) =
1
lxly

(
xc +

lx
2
− x

) (
y − yc +

ly
2

)
. (17)

3.2. System Eigenvalue Problem

It is well known that based on the Lagrange interpolations, the
functional (11) can be discretized to the following system eigenvalue
problem [

Att 0
0 0

] [
et
ez

]
= γ2

[
Btt Btz

Bzt Bzz

] [
et
ez

]
. (18)

Mathematically, it is a generalized eigenvalue problem

[A][X] = λ[B][X]. (19)
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3.3. Subspace Iteration Method

The most time-consuming part of FEM is the solution of the resultant
matrix equations. In our case, it is the generalized eigenvalue problem
(19). Two reasons indicate that the standard “dense” matrix methods
can not be used. First, only the dominant and a few near-dominant
waveguide modes are desired in practice. It is not necessary to solve
all eigen values and eigenvectors since only those that are less than
the testing frequency k0 are physically meaningful. Secondly, the
matrices [A] and [B] are usually large sparse if only first order Lagrange
interpolation is employed. Therefore, sparse matrix techniques must
be adopted. Subspace iteration method is one of the efficient sparse
techniques. It is first proposed by K. Bathe [17]. Its applications to
waveguide problems are described in [18, 19] and [20]. The procedure
is summarized as follows

1. Choose initial vectors [X0]N×p and a shift η. Where N is the
number of freedom of the problem (p << N).

2. Iterate

([A] − η [B])
[
Xs+1

]
= [B] [Xs][

As+1
]

=
[
Xs+1

]T
([A] − η [B])

[
Xs+1

]
[
Bs+1

]
=

[
Xs+1

]
[B]

[
Xs+1

]
. (20)

3. Stop the iterations by solving[
As+1

] [
U s+1

]
=

[
Bs+1

] [
U s+1

] [
χs+1

]
. (21)

4. ith (i ≤ p) eigenvalue is given by

λs+1
i = χs+1

i + η (22)

and eigenvector [
Xs+1

]
=

[
Xs+1

] [
U s+1

]
. (23)

5. Check the convergence∣∣∣∣∣λ
s+1
i − λs

i

λs+1
i

∣∣∣∣∣ ≤ TOL (24)

where TOL is a given tolerance.
Note that the costs of CUP time and memory are proportional

to about N1.5 and N respectively, if only one eigenvalue and its
corresponding eigenvector are solved [19].
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4. PSFEM IMPLEMENTATION

As we have done in one-dimensional problems [8, 9], Maxwell’s
equations can be embedded in the cubic splines to implement PSFEM.
It is noted that in the edge element above, it is assumed implicitly that
the x component of the field is independent of x, and the y component
of the field is independent of y. That is, within an element

Ee(x, y) = Ee
x(y)x̂+ Ee

y(x)ŷ + Ee
z(x, y)ẑ. (25)

So the one-dimensional physical spline interpolation is applicable
directly to Ee

x(y) and Ee
y(x).

4.1. Interpolation of Transverse Components

Let us consider non-magnetic materials with

¯̄εer =


 ¯̄εerxx 0 0

0 ¯̄εeryy 0
0 0 ¯̄εerzz


 (26)

since general cases can be diagonalized [3, p.207] within an element.
We have

∇2Ee(x, y) = −k2
0µ

e
r
¯̄εer · Ee(x, y). (27)

Considering (25), we obtain

d2Ee
x(y)

dy2
= −(k2

0µ
e
r
¯̄εerxx + γ2)Ee

x(y) (28a)

d2Ee
y(x)

dx2
= −(k2

0µ
e
r
¯̄εeryy + γ2)Ee

y(x) (28b)

∇2
tE

e
z(x, y) = −(k2

0µ
e
r
¯̄εerzz + γ2)Ee

z(x, y). (28c)

In terms of ex, ey, and ez, they are

d2eex(y)
dy2

= −(k2
0µ

e
r
¯̄εerxx + γ2)eex(y) (29a)

d2eey(x)
dx2

= −(k2
0µ

e
r
¯̄εeryy + γ2)eey(x) (29b)

∇2
t e

e
z(x, y) = −(k2

0µ
e
r
¯̄εerzz + γ2)eez(x, y). (29c)

Expanding ex and ey using the one-dimensional physical splines yields
the following field interpolations

ee
x(y) =

2∑
i=1

[
(Ne

i · x̂) −M e
i (k2

0µ
e
r
¯̄εerxx + γ2)

]
eex(ye

i )x̂ (30a)
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ee
y(x) =

4∑
i=3

[
(Ne

i · ŷ) −M e
i (k2

0µ
e
r
¯̄εeryy + γ2)

]
eey(x

e
i )ŷ (30b)

where

M e
i (y) =

1
6

[
(Ne

i · x̂)3 − (Ne
i · x̂)

]
(ley)

2, (i = 1, 2) (31a)

M e
i (x) =

1
6

[
(Ne

i · ŷ)3 − (Ne
i · ŷ)

]
(lex)2, (i = 3, 4). (31b)

To simplify the notation, let

pe
x = −(k2

0µ
e
r
¯̄εerxx + γ2) (32a)

pe
y = −(k2

0µ
e
r
¯̄εeryy + γ2) (32b)

and

Be
1(y) = [(Ne

1 · x̂) +M e
1p

e
x] x̂ (33a)

Be
2(y) = [(Ne

2 · x̂) +M e
2p

e
x] x̂ (33b)

Be
3(x) =

[
(Ne

3 · ŷ) +M e
3p

e
y

]
ŷ (33c)

Be
4(x) =

[
(Ne

4 · ŷ) +M e
4p

e
y

]
ŷ. (33d)

Then

ee
t (x, y) =

4∑
i=1

Be
i e

e
ti (34)

which is similar to the traditional edge element interpolation (15).

4.2. Interpolation of Longitudinal Component

Next we need to consider interpolation of longitudinal component ez.
Similarly, it is easy to construct 2D PSFEM for a four node element
as follows

eez(x, y) =
4∑

i=1

Be
i (x, y)e

e
zi (35)

where the scalar complex expansion function is

Be
i (x, y) = [N e

i (x, y) +M e
zip

e
z] . (36)

Considering the cubic splice requirements and ∇2
t = ∂2/∂x2 + ∂2/∂y2,

there is one and only one possible expansion of M e
zi, which is

M e
zi(x, y) =

1
6((lex)2 + (ley)2)

[
(N e

i )3 −N e
i

]
(lex)2(ley)

2, (i = 1, 2, 3, 4)

(37)
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and
pe

z = −(k2
0µ

e
r
¯̄εerzz + γ2). (38)

4.3. Evaluation of Elemental Matrices

As usual, in the numerical implementation of finite element method, all
elemental integrations must be evaluated based on the corresponding
interpolations or expansions. In the PSFEM, the interpolations are
described for rectangular elements. All matrices can be evaluated
analytically in this case. Typical elemental matrices resulting from
the discretization of the functional (11) contain the following integrals

Ee
ij =

∫ ∫
Ωe

(∇× Be
i ) ·

(
∇× Be

j

)
dΩ (39a)

F e
ij =

∫ ∫
Ωe

Be
i · Be

jdΩ (39b)

Ge
ij =

∫ ∫
Ωe

Be
i ·

(
∇tB

e
j

)
dΩ (39c)

He
ij =

∫ ∫
Ωe

(∇tB
e
i ) ·

(
∇tB

e
j

)
dΩ (39d)

Ie
ij =

∫ ∫
Ωe
Be

iB
e
jdΩ. (39e)

After tedious manipulations, the following analytical results are
obtained

Ee
11 =

lex
ley

+
1
45
p2

xl
e
x(ley)

3 (40a)

Ee
12 = − l

e
x

ley
+

7
360

p2
xl

e
x(ley)

3 (40b)

Ee
13 = −1 (40c)

Ee
14 = 1 (40d)

Ee
21 = Ee

12 (40e)
Ee

22 = Ee
11 (40f)

Ee
23 = 1 (40g)

Ee
24 = −1 (40h)

Ee
31 = −1 (40i)

Ee
32 = 1 (40j)

Ee
33 =

ley
lex

+
1
45
p2

yl
e
y(l

e
x)3 (40k)
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Ee
34 = −

ley
lex

+
7

360
p2

yl
e
y(l

e
x)3 (40l)

Ee
41 = 1 (40m)

Ee
42 = −1 (40n)

Ee
43 = Ee

34 (40o)
Ee

44 = Ee
33 (40p)

F e
11 = lexl

e
y

[
1
3
− 2

45
(ley)

2px

(
1 − 1

21
(ley)

2px

)]
(41a)

F e
12 = lexl

e
y

[
1
6
− 1

180
(ley)

2px

(
7 − 31

84
(ley)

2px

)]
(41b)

F e
13 = 0 (41c)
F e

14 = 0 (41d)
F e

21 = F e
12 (41e)

F e
22 = F e

11 (41f)
F e

23 = 0 (41g)
F e

24 = 0 (41h)
F e

31 = 0 (41i)
F e

32 = 0 (41j)

F e
33 = lexl

e
y

[
1
3
− 2

45
(lex)2py

(
1 − 1

21
(lex)2py

)]
(41k)

F e
34 = lexl

e
y

[
1
6
− 1

180
(lex)2py

(
7 − 31

84
(lex)2py

)]
(41l)

F e
41 = 0 (41m)
F e

42 = 0 (41n)
F e

43 = F e
34 (41o)

F e
44 = F e

33 (41p)

Ge
11 = −1

3
ley +

1
45
ley

[
(ley)

2px + t

(
1 − 2

21
(ley)

2px

)]
(42a)

Ge
12 = −Ge

11 (42b)

Ge
13 =

1
6
ley −

1
360

ley

[
7(ley)

2px + t

(
7 − 31

42
(ley)

2px

)]
(42c)

Ge
14 = −Ge

13 (42d)
Ge

21 = −Ge
13 (42e)

Ge
22 = Ge

13 (42f)
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Ge
23 = −Ge

11 (42g)
Ge

24 = Ge
11 (42h)

Ge
31 = −1

3
lex +

1
45
lex

[
(lex)2px + t

(
1 − 2

21
(lex)2px

)]
(42i)

Ge
32 = −1

6
lex +

1
360

lex

[
7(lex)2px + t

(
7 − 31

42
(lex)2px

)]
(42j)

Ge
33 = −Ge

32 (42k)
Ge

34 = −Ge
31 (42l)

Ge
41 = Ge

32 (42m)
Ge

42 = Ge
31 (42n)

Ge
43 = Ge

34 (42o)
Ge

44 = Ge
33 (42p)

He
11 =

1
3

(
ley
lex

+
lex
ley

)
− 1

9
lexl

e
ypz

(
2
5
− 1

21
t

)
(43a)

He
12 = −1

6

(
2ley
lex

− l
e
x

ley

)
+

1
180

t

[(
8ley
lex

− 7lex
ley

)

+
1

420
t

(
167ley
lex

+
50lex
ley

)]
(43b)

He
13 = −1

6

(
ley
lex

+
lex
ley

)
+

1
180

lexl
e
ypz

(
7 − 289

840
t

)
(43c)

He
14 = −1

6

(
2lex
ley

−
ley
lex

)
+

1
180

t

[(
8lex
ley

−
7ley
lex

)

+
1

420
t

(
167lex
ley

+
50ley
lex

)]
(43d)

He
21 = He

12 (43e)
He

22 = He
11 (43f)

He
23 = He

14 (43g)
He

24 = He
13 (43h)

He
31 = He

13 (43i)
He

32 = He
23 (43j)

He
33 = He

11 (43k)
He

34 = He
12 (43l)

He
41 = He

14 (43m)
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He
42 = He

24 (43n)
He

43 = He
34 (43o)

He
44 = He

11 (43p)

Ie
11 = lexl

e
y

[
1
9
− 2

675
t

(
8 − 71

147
t

)]
(44a)

Ie
12 = lexl

e
y

[
1
18

− 1
2700

t

(
41 − 1613

588
t

)]
(44b)

Ie
13 = lexl

e
y

[
1
36

− 1
10800

t

(
91 − 4027

588
t

)]
(44c)

Ie
14 = Ie

12 (44d)
Ie
21 = Ie

12 (44e)
Ie
22 = Ie

11 (44f)
Ie
23 = Ie

14 (44g)
Ie
24 = Ie

13 (44h)
Ie
34 = Ie

13 (44i)
Ie
32 = Ie

23 (44j)
Ie
33 = Ie

11 (44k)
Ie
34 = Ie

12 (44l)
Ie
41 = Ie

14 (44m)
Ie
42 = Ie

24 (44n)
Ie
43 = Ie

34 (44o)
Ie
44 = Ie

33. (44p)

In all the formulas above

t =
(lex)2(lex)2

(lex)2 + (lex)2
pz. (45)

Once these elemental matrices are evaluated, we are ready to solve
the corresponding PSFEM problems. Because of the assumption (25),
a factor of 0.5 is introduced in px and py of the G matrices. Obviously,
if px = py = pz = 0, all the matrices above reduce to the ones in the
linear Lagrange elements.

5. ITERATION ALGORITHM FOR NONLINEAR
EIGENVALUE PROBLEMS

It is easy to realize that the PSFEM results in a complicated eigenvalue
problem. Since all elemental integrals or matrices are functions of
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the unknown eigenvalue γ2, the resulting problem is expected to be a
nonlinear eigenvalue problem

[A(λ)][X] = λ[B(λ)][X]. (46)

Strictly speaking, (46) is quite different from (19). It is generally
difficult to solve the nonlinear eigenvalue problem (46) directly. The
solution of (46) type problem is still an active research interest in
mathematics [21]. Fortunately, we developed the following iteration
algorithm to overcome this difficulty.

1. Use the traditional Lagrange interpolation solution with course
mesh as the initial values for eigenvalues and fields. That is to solve
(19) as initial values for the following iterations.

2. Iterate

[A(λ(s))][X] = λ(s+1)[B(λ(s))][X]. (47)

Eq. (47) is a regular generalized eigenvalue problem. Then the same
subspace iteration method describe in Section 3.3 can be used to solve
(47) in each iteration. It is found that only two or three iterations
result in convergent eigenvalues in practice.

6. NUMERICAL EXPERIMENTS

Any numerical techniques must be verified with numerical experiments.
The attractive effects of the PSFEM in analysis of waveguide structures
will be tested in this section. Three classical examples are employed
to emphasize various aspects of the PSFEM. It is a good thing that
analytical solutions exist in all three examples, then the comparisons
are reliable.

6.1. A Standard Rectangular Waveguide

A rectangular air filled waveguide is used to demonstrate the
suppression of spurious modes using edge elements. The cutoff
wavenumber of a rectangular waveguide of dimensions a and b is given
by [22]

kTE
c

kc10
=

√
m2 +

(
na

b

)2

m = 0, 1, 2, ... n = 0, 1, 2, .... m = n �= 0

for TE modes, and

kTM
c

kc10
=

√
m2 +

(
na

b

)2

m = 1, 2, ... n = 1, 2, ....
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for TM modes. The first ten modes for both TE and TM modes
are listed in the TABLE 8.1 and TABLE 8.2 of [22]. Table 1
compares our results for the first five modes with analytical ones and
the results obtained by the existing edge element FEM (Lagrange
interpolation) and the PSFEM.N is the number of uniform elements in
each direction. The computation frequency is 200 MHz. An excellent
agreement has been observed. No spurious mode appears. Notice that
TE11 and TM11 modes should be degenerate. However, Lagrange FEM
yields some difference. The PSFEM converges to the same up to 9th
decimal. Table 2 illustrates the convergence of the two methods for
the fundamental mode TE10. It is immediately concluded that the
PSFEM converges much faster. Even in the extreme case, with only
2× 2 mesh, the PSFEM works well while the Lagrange FEM does not.
Equivalently, the PSFEM saves a lot of computation time.

Table 1. Comparison of cutoff wavenumber of a rectangular
waveguide.

Modes kc

Analytical PSFEM Lagrange
N=10 N=30 N=10 N=30

TE10 1.396263402 1.396262944 1.396262382 1.40201115 1.396900458
TE20 2.792526803 2.792594618 2.792526256 2.838658747 2.797632829
TE01 3.141592654 3.141593262 3.141592008 3.154526737 3.143027678
TE11 3.437899924 3.442959083 3.438510391 3.452059993 3.439470449
TM11 3.437899924 3.442959083 3.438510391 3.452054346 3.439476812

Table 2. Comparison of convergence of two methods for TE10 mode
of a rectangular waveguide with a/b = 2.25.

N kc percentage error
PSFEM Lagrange PSFEM Lagrange

2(minimum) 1.402680591 1.539599762 0.460% 10.266%
3 1.396930044 1.460592495 0.048% 4.607%
6 1.396274055 1.412261944 0.001% 1.146%
9 1.396263434 1.403361534 0.000% 0.508%
12 1.396262572 1.400253158 0.000% 0.286%
15 1.396262433 1.398815719 0.000% 0.183%
18 1.398035243 0.127%
21 1.397564762 0.093%
24 1.397259452 0.071%
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Table 3. Comparison of convergence of three methods for the
fundamental mode of a partially dielectric filled rectangular waveguide
with, εr = 2.45, a/b = 0.45, d/a = 0.50.

Frequency a/ 0 kz/k0 Error%
(108Hz) Analytical PSFEM Lagrange PSFEM Lagrange
1.200000 0.180125 0.000000 0.000002 0.000003
1.288889 0.193467 0.354678 0.355883 0.329029 0.340 7.232
1.377778 0.206810 0.551107 0.551836 0.536975 0.132 2.564
1.466667 0.220152 0.672805 0.673364 0.662616 0.083 1.514
1.555556 0.233495 0.761098 0.761560 0.753081 0.061 1.053
1.644444 0.246837 0.829714 0.830108 0.823109 0.048 0.796
1.733333 0.260180 0.885326 0.885669 0.879724 0.039 0.633
1.822222 0.273523 0.931771 0.932073 0.926919 0.032 0.521
1.911111 0.286865 0.971476 0.971744 0.967205 0.028 0.440
2.000000 0.300208 1.006075 1.006313 1.002264 0.024 0.379

λ

0 1
0

0.1

0.2

0.3

0.4

0.5

x

y

Figure 2. Discretization of a rectangular waveguide.

6.2. A Lossy Dielectric Waveguide

A rectangular metallic filled with homogeneous, isotropic and lossy
dielectric is solved. In this case, we have the exact analytic solution of
the propagation constant [23]

γ = α+ jβ = k0

√(
mπ

k0a

)2

+
(
nπ

k0b

)2

− εr (48)

where m and n are the mode indices for the x and y directions.
The discretization of the structure is shown in Fig. 2. Only 10 × 10
nonuniform meshes in geometric progression (1×0.5) in each direction
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are used to demonstrate the numerical computations. The relative
dielectric constant is

εr = 4 − j100.

The numerical and analytic results of the attenuation constant and
phase constant of the dominate mode TE10 are compared in Fig. 3 and
Fig. 4, respectively. It is seen that the PSFEM works very well in lossy
cases.

6.3. A Partially Dielectric-Filled Waveguide

The structure is shown in Fig. 5. This is another well-known test
problem of numerical techniques for waveguide structures. It is first
solved analytically by L. Pincherle [24] and then cited in [12, 22, 25].

The propagation constant for TMx(LSMx) is determined by [25]

k2
x1 +

(
nπ

b

)2

+ k2
z = ω2ε1µ1 (49a)

k2
x2 +

(
nπ

b

)2

+ k2
z = ω2ε2µ2 (49b)

and the transcendental equation

kx1

ε1
tan kx1d+

kx2

ε2
tan kx2(a− d) = 0 (50)

For TEx(LSEx) mode, (50) is replaced by

kx1

ε1
cot kx1d+

kx2

ε2
cot kx2(a− d) = 0. (51)

Similar structures are solved using FEM in [26–28] etc. In order
to be comparable with existing literature, the same structure used in
[25, p.161] is solved here using analytical, PSFEM and Lagrange FEM.
Fig. 6 shows the results for the first three modes. Notice that from the
present results, the curve given in Fig. 4–7 of [25] may not be accurate
enough. For example, at a/λ0 = 0.3, kz/k0 is a little bit less than 1.0 in
[25], but the present analytic calculation is a little bit greater than 1.0.
The analytical results are verified with several math tools. The curve
in [25] is after earlier computation of N. H. Frank, it is possible that
the solution of the transcendental equations was not accurate enough
at that time. A copy can be found in [29, p.393].

It can be seen clearly that the PSFEM results are in better
agreement with the analytical solution. To emphasize this point,
numerical data are listed in Table 3. Again the PSFEM converges
much faster than the traditional FEM does.
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Figure 3. Attenuation of the lossy dielectric-loaded waveguide.
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Figure 4. Dispersion of a lossy dielectric-loaded waveguide.
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Figure 5. Description of a partially dielectric-filled waveguide.
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Figure 6. Propagation constant for the first three modes of a partially
dielectric filled rectangular waveguide with, εr = 2.45, a/b = 0.45,
d/a = 0.50.
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7. CONCLUSION

The physical spline finite element method (PSFEM) is successfully
extended to 2D electromagnetic problems, namely, the full wave
analysis of waveguides. The corresponding system matrix has
the same bandwidth as the linear Lagrange elements. However,
the convergence and accuracy are improved significantly. The
implementation shows the usefulness of PSFEM in electromagnetic
engineering. In waveguide problems, the resultant nonlinear eigenvalue
problem is very challenging. New algorithms for solving it are needed.
On the other hand, it is worthwhile to extend the PSFEM to 3D guided
wave cases and to scattering and radiation problems.
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