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Abstract: The last decade has witnessed a surge of interest in artificial neural network in many different areas 

of scientific research. Despite the rapid expansion in the application of neural networks, few efforts have been 

carried out to introduce such a powerful tool into lubrication studies. Thus, this work aims to apply the 

physics-informed neural network (PINN) to the hydrodynamic lubrication analysis. The 2D Reynolds equation 

is solved. The PINN is a meshless method and does not require big data for network training compared with 

classical methods. Our results are consistent with those obtained by experiments and the finite element method. 

Hence, we envision that the PINN method will have great application potential in lubrication and bearing 

research.  

 

Keywords: physics-informed neural network; hydrodynamic lubrication; slider bearing 

 

 
 

1  Introduction 

Effective hydrodynamic lubrication plays a crucial 

role in bearing performance [1]. The hydrodynamics 

of lubricants in bearings is governed by the Reynolds 

equation. Hence, its accurate solution paves the critical 

foundation that supports the realisation of different 

types of bearings and contributes to almost every aspect 

in engineering lubrication [1]. The 1D Reynolds 

equation appears to be a simple form that assumes 

uniform pressure distribution (i.e., zero pressure 

gradient) across the entrainment direction and can be 

readily analytically solved [2]. Gohar and Safa [2] 

derived an analytical expression of the pressure 

distribution from the 1D Reynolds equation. However, 

the 1D Reynolds equation is only valid for bearings 

of infinite width, where the width B of the bearing 

(across the entrainment direction) is at least 3 times 

greater than its length L (in the entrainment direction) 

[2]. The 2D Reynolds equation must be solved to 

account for the side-leakage in bearings of finite width, 

such as slider bearings [3]. Although the 2D Reynolds 

equation has no analytical solution, researchers 

managed to solve it by numerical methods, such as 

the finite difference [4], finite volume [5], or finite 

element (FEM) [6] methods. These numerical methods 

rely on grid discretisation [7] and have been proven 

to be effective for lubrication analysis. However, 

few of these methods are able to take full advantage 

of modern technologies, such as artificial neural 

network [8] and machine learning [9], which have 

already been applied in various areas of engineering 

research [8‒10].  

Recently, advances in neural networks have stridden 

ahead and brought their impact to the edge of 

tribology research [11]. Zhang et al. [12] adopted the 

neural network to predict the wear loss of bushings 

in the variable stator vane assemblies and achieved 

more than 90% accuracy rate in the prediction of 

wear loss. Canbulut et al. [13] designed a simple  
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Nomenclature 

b Bias of neuron 

B Bearing width (m) 

( )C w  Loss during training 

h Film thickness (m) 

h0 Outlet film thickness (m) 

H Dimensionless film thickness (
o

/H h h ) 

L Bearing length (m) 
T[ , ]N X Y  Neural network 

Ne Maximum allowable epoch number 

NL Layer number 

Nn Neuron number of each layer 

 p Pressure (Pa) 

 P Dimensionless pressure ( 2

0
/ ( )P ph U L ) 

 U Sliding velocity (m/s) 

 W Applied load (N) 

 z Neuron output 

λ  Working condition vector 

  Lubricant viscosity ( Pa s ) 

  Inclination 

( )   Activation function 

w  Weight of neuron 

L  Lubrication domain 

  
 
feedforward neural network to predict the frictional 

power loss in the hydrostatic bearings. The predicted 

power loss greatly correlated with the experimental 

measurements. In contrast with the conventional 

method for friction prediction, the constructed neural 

network [13] is able to simultaneously process multiple 

inputs, such as surface roughness and sliding velocity. 

Perčić et al. [14] presented a new method for friction 

prediction at nanoscale by mapping the input–output 

patterns with machine learning and forecasting the 

friction through data processing. They also adopted 

the artificial intelligence model to generate mathematical 

expressions for friction prediction. Sadegh et al. [15] 

combined the back-propagation neural network  

and generic algorithm to analyse the frequencies of 

measured signals, such that the different lubrication 

states of journal bearings, namely, hydrodynamic, 

mixed and boundary, could be distinguished. 

Although the neural network technology has 

extended the frontiers of tribology research, classical 

neural networks require large data sets for neural 

network training. This requirement largely limits their 

application potential. To overcome this drawback, 

Raissi et al. [16] devised a physics-informed neural 

network (PINN) to solve the partial differential 

equations (PDEs) by leveraging the universal 

approximating ability of neural networks [17]. They 

exploited automatic differentiation tools in neural 

networks to obtain the derivatives in the PDEs and 

converted the PDEs into PINNs. Accordingly, they 

enabled the use of the state-of-the-art neural network 

technology to construct PINN. Other than the boundary 

and initial values of PDEs, the PINN does not need 

any extra data for neural network training. Substantial 

comparison of the results predicted by PINN and 

other methods clearly confirmed the effectiveness of 

PINN as an alternative solver for PDEs. Samaniego  

et al. [18] have recently developed a similar approach, 

namely deep energy method (DEM), that employs 

the potential energy of the system as the loss function 

to construct the neural network. They have successfully 

analysed various mechanical and electro-mechanical 

problems using the newly devised DEM neural 

network. Subsequently, Nguyen-Thanh et al. [19] have 

updated DEM by incorporating the concept of FEM 

domain-mapping. The original computational domain 

is mapped into a regulated parametric domain (e.g., 

square) to enable the general solution of problems 

defined in complicated domains. They have successfully 

applied their method to the strain gradient problems, 

which are not easily solved by the classical FEM. 

Recently, Almqvist [20] implemented the PINN method 

to tackle the 1D Reynolds equation. The pressure 

predicted by PINN corresponds well with that 

calculated by analytical expressions. According to 

Zubov et al. [8] and Almqvist [20], PINN has the merit 

of being a meshless method, which overcomes the 

“curse of dimension” [21] that the classical methods, 

such as FEM, face.  

Herein, we extend the work of Almqvist [20] to 

solve the 2D Reynolds equation using the PINN 

method for the hydrodynamic lubrication analysis of 



Friction 11(7): 1253–1264 (2023) 1255 

www.Springer.com/journal/40544 | Friction 
 

a slider bearing. The PINN method is applied to the 

iterative solution process for the pressure and film 

thickness distributions in the analysis. The influences 

of epoch, layer, and neuron numbers of PINN on the 

accuracy of the predicted pressure distribution are 

discussed.  

2 PINN architecture 

This work focuses on investigating the lubrication 

conditions in the hydrodynamic lubrication contacts, 

where the dimensionless form of Reynolds equation is 

 
2

3 3

2
Rey , , ; 6 0

P L P H
P X Y H H

X X Y Y XB

        
             

λ

(1) 

where P is the dimensionless pressure, H is the 

dimensionless film thickness, L and B are the length 

and width of a slider bearing, respectively, X and Y 

are the coordinates along and across the entrainment 

direction, and λ  is a vector containing relevant working 

conditions. The zero pressure boundary condition  

is implemented at all boundaries of the lubrication 

area. 

A PINN [8, 18] is herein constructed to obtain the 

solution of the Reynolds equation. Equation (1) is 

reformulated to TRey( ([ , ] , ); )N X Y w λ  by adopting a 

neural network ( T([ , ] )N X Y , with the weight w and 

relevant working conditions λ . The constructed PINN 

consists of several layers, such as an input layer, a 

hidden layer, and an output layer (as shown in Fig. 1). 

X and Y are taken as the inputs, and P is the output. 

Each layer of a PINN contains several neurons, and 

the output of each neuron is 

 z                   (2) 

where ( )   is the activation function, w z b   ' , w 

is the weight of neuron, z'  is the input of the neuron, 

and b is the bias of the neuron. Here, the sigmoid 

function is adopted as the activation function: 

1
( )

1 e  





               (3) 

The loss of PINN is evaluated through the difference 

between Eq. (1) and the reformulated Reynolds equation 

across the entire lubrication area: 

L

T( ) (Rey( ([ , ] ; ); )

Rey( , , ; ))d d

Ω
C N X Y

P X Y X Y





w w λ

λ       (4) 

where 
L

Ω  is the lubrication domain. The minimum 

value of Eq. (4) can be obtained by the desirable w. 

Equation (4) can be expressed as the sum of losses 

across the entire lubrication domain and on the 

boundaries as 

 

L

L

T

T

( ) ( ( ([ , ] , ); ))d d

( ( ([ , ] ; ); ))d d

Ω

Ω

C f N X Y X Y

b N X Y X Y













w w

w     (5) 

where T( ([ , ] , ); )f N X Y w  is the difference between 
TRey( ([ , ] ; ); )N X Y w  and Eq. (1), T( ([ , ] ; ); )b N X Y w  

is the boundary condition, and 
L

Ω  is the lubrication 

boundary (bearing side edges and inlet/outlet). Equation 

(5) is readily implemented in relevant PINN solvers, 

such as Ref. [8]. The PINN in this work is constructed 

by the Julia language as 

dim = 2        

“““ input dimension of PINN ””” 

neuron_number = 16   

“““ neuron number on each layer ””” 

chain = FastChain(FastDense(dim, neuron_number, 

Flux.σ), FastDense(dim, neuron_number, Flux.σ), 

FastDense(dim, 1))  

 
Fig. 1 Illustrative structure of a PINN with three layers. 
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“““ construct a 3-layer PINN, 16 neurons for each

layer, activation function for the layer is sigmoid,

output (pressure) has 1 dimension ””” 

init θ = Float64.(DiffEqFlux.initial_param(chain))  

“““ PINN initialization ””” 

Further detailed instructions on constructing the 

PINN can be found in Refs. [8, 16]. 

3 Solution of Reynolds equation by PINN 

The pressure distribution is approximated by solving 

the Reynolds equation (Eq. 1) using PINN. Figure 2  

illustrates the hydrodynamic lubrication contact, 

where the inclined upper surface is static, whilst the 

lower surface moves with constant velocity U along 

 

Fig. 2 Illustration of the hydrodynamic lubrication contact. 

the X direction. Thus, the entrainment of lubricant 

results in the hydrodynamic lubrication with the 

dimensionless film thickness as 

   
0

1 1
L

H X X
h


            (6) 

where   is the inclination of the slider, and 
0

h  is the 

outlet film thickness. We set 1 / 1,770  , 
0

3μmh  , 

4 mmL B  in the calculation, similar to the working 

conditions in Ref. [22]. 

3.1 Pressure evolution 

In contrast with classical methods, PINN trains    

the neural network by going through a number of 

epochs before finding the optimal results. Firstly, the 

evolution of the pressure distribution during the 

training process is investigated by controlling the 

maximum allowable epoch number, Ne. It is expected 

that the results of the PINN training will converge 

with an epoch number less than Ne. Otherwise, the 

training will be stopped.  

Figure 3 displays the pressure distributions for the 

first few epochs. Figure 3(a) depicts that the pressure 

totally deviates from the classical pressure distribution 

with the first few epochs (small Ne). The peak values 

of the pressure gradually reduce in Figs. 3(b) and 3(c) 

during the network training, and the peak pressure 

 

Fig. 3 Calculated pressure distributions for various Ne inside the lubrication domain: (a) Ne = 10, (b) Ne = 30, (c) Ne = 40 and at 
boundaries, (d) the inlet and outlet, and (e) side edges. 
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moves towards the central line, Y = 0.5. Furthermore, 

as depicted in Figs. 3(d) and 3(e), the magnitude of 

the pressure on the boundaries also approaches zero 

as the network further trains.  

Figure 4 indicates that increasing Ne induces the 

effective convergence of the pressure. Figures 4(a), 

4(b), and 4(c) display the pressure distributions for 

Ne = 100, 500, and 1,000, respectively. Figure 4(a) 

shows that the pressure distribution calculated with 

Ne = 100 approaches the conventional shape of the 

pressure distribution of the hydrodynamic lubrication 

contacts. However, the pressure on the boundaries 

greatly deviates from the zero pressure boundary 

condition. Not only does the pressure distribution 

further approach conventional results inside the 

lubrication domain, but also the pressure on the 

boundaries approaches zero with the further increase 

in Ne to 500 (Fig. 4(b)) and 1,000 (Fig. 4(c)). Figures 4(d) 

and 4(e) compare the pressure distributions on the 

inlet/outlet and side boundaries for Ne = 100, 500, and 

1,000 to examine the pressure distribution on the 

boundaries. The pressure approaches the zero pressure 

boundary condition best for Ne = 1,000, where the 

greatest deviation from 0 pressure is approximately 

6.8% of the peak pressure.  

The convergence of the PINN solution is described 

by the loss, ( )C w  (Eq. (5)). A typical loss variation 

during the PINN training process, as shown in   

Fig. 5(a), indicates that it takes approximately 800 

epochs when ( )C w  stabilizes (i.e., the PINN solution  

 

Fig. 4 Convergence of calculated pressures with the increment in Ne. Inside the lubrication domain: (a) Ne = 100, (b) Ne = 500, 
(c) Ne = 1,000 and at boundaries, (d) the inlet and outlet, and (e) side edges. 

 

Fig. 5 Training performance. (a) Loss variation during a typical training. (b) Epoch distribution and the epoch’s cumulative distribution
probability (CDP).  
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converges). The initial w is randomly generated by 

the initial_param() function in the DiffEqFlux package 

of the Julia language during the PINN training. The 

actual required number of epochs may vary due to 

different initial w values used in the training process. 

One hundred independent tests were conducted.  

The distribution of the required epoch numbers for 

convergence in these tests and their cumulative 

distribution probability (CDP) are plotted in Fig. 5(b). 

Apparently, the probability that the results of PINN 

training are converged with less than 1,000 epochs is 

greater than 90%. Thus, Ne = 1,000 is chosen for the 

following studies. If the results are not converged in 

1,000 epochs, they will be discarded and the PINN 

program will be run again. 

The pressure distributions are compared with those 

calculated by FEM to validate the results obtained by 

PINN. Figure 6 shows the pressure distributions at Y 

= 0 (side boundary), Y = 0.25 (1/4 of the total region), 

and Y = 0.5 (along the central line) obtained by PINN 

and FEM. The pressure distribution inside the bearing 

(Y = 0.25 and Y = 0.5) shows excellent correlation   

of the two methods, and not until near the side 

boundary does the PINN pressure slightly fluctuate 

around zero.  

3.2 Influence of layer numbers 

The effect of the number of hidden layers on the 

calculation accuracy is investigated. Similar to the 

neural network configuration provided by Nguyen- 

Thanh et al. [23], two (1 input and 1 output) to four  

(1 input, 2 hidden, and 1 output) layers are compared. 

The comparison of the pressure distributions obtained 

with two-layer, three-layer, and four-layer PINNs is  

 

Fig. 6 Comparison of the pressure obtained by PINN and FEM 
(Ne = 1,000). 

shown in Fig. 7. They all predict similar pressure 

distributions inside the lubrication domain. The 

comparisons of the pressure distributions at the 

boundary of the three cases and the corresponding 

peak pressures (0.1490, 0.1446, and 0.1440 for the three 

cases) show that the pressure results are stabilised 

with the three-layer PINN (Fig. 7(b)). The four-layer 

PINN (Fig. 7(c)) does not result in significant 

improvement on the pressure distributions. The 

pressure distributions on the side edge (Y = 0) and 

inlet/outlet boundaries (X = 0 and X = 1) obtained 

with different layer numbers are plotted in Fig. 8. The 

results from the two-layer PINN greatly fluctuate 

from the zero pressure boundary condition. Those 

from the three-layer and four-layers PINNs approach 

steady values, and their deviations from zero pressure 

are not significant. Therefore, the three-layer PINN 

configuration is adopted in the following studies. 

3.3 Influence of neuron number 

Sixteen neurons for each layer are used in the PINN 

solution of Eq. (1) in previous sections. However, 

Nguyen-Thanh et al. [23] used 30 neurons for the 

hidden layers. Thus, the influence of neuron numbers 

to the solution accuracy is studied.  Figure 9 depicts 

the pressure distributions obtained by a three-layer 

PINN with 4, 16, and 32 neurons in each layer (shown 

in Figs. 9(a), 9(b), and 9(c), respectively). The PINN 

with four neurons in each layer (Fig. 9(a)) predicts a 

slightly greater peak pressure. The other two, namely, 

16- and 32-neuron PINNs, output similar pressure 

distributions. The pressures at the bearing boundaries 

are plotted in Fig. 10. Figures 10(a) and 10(b) depict 

the pressure distributions at the side edge (Y = 0) and 

at the inlet/outlet (X = 0 and 1), respectively. The 

pressures on the boundaries of the four-neuron PINN 

largely deviate from the zero pressure boundary 

condition, and the magnitude of deviation is more 

significant than the other two. The pressure outputs 

of 16 and 32 neurons (Figs. 9(b) and 9(c)) show 

similar values. Therefore, the solutions with 16 neurons 

are converged, and further increment in Nn contributes 

little to the improvement of solution accuracy. 

Therefore, the Reynolds equation can be satisfactory 

solved by a PINN with 3 layers, 16 neurons for each 

layer and 1,000 maximum allowable epochs. 
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3.4 Accuracy of PINN 

The accuracy of PINN is evaluated in comparison 

with the conventional FEM. The Reynolds equation is 

solved based on a given film thickness (at the outlet 

edge of the slider) of 3 μm and other conditions listed 

in Table 1. 

Table 1 Conditions of the sliding contact.  
Static slider surface area 4 mm × 4 mm 

Inclination 1/1,770 

 

The PINN model adopts a 3-layer and 16 neurons 

for each layer structure. The FEM uses the “Weak 

 

Fig. 7 Pressure distributions with different layer numbers (NL). (a) NL = 2, (b) NL = 3, (c) NL = 4. 

 

Fig. 8 Pressure distributions at the boundaries. (a) At the side edge. (b) At the inlet and outlet. 

 

Fig. 9 Pressure distribution with different node numbers per layer. (a) Nn = 4, (b) Nn = 16, and (c) Nn = 32. 

 

Fig. 10 Pressure distributions at the boundaries. (a) At the side boundary. (b) At the inlet and outlet boundaries. 
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Form PDE” module with the shape function of 

Lagrange Quadratic in COMSOL 5.3 without any 

customized algorithm optimization. After obtaining 

the solutions of the Reynolds equation, i.e., pressure 

distributions, the load carrying capacity (LCC) can be 

obtained as 

2

, 1, , 1 1, 1
1 1

LCC Δ ( ) / 4
N N

i j i j i j
i j

x P P P   
 

    i jP   (7) 

where the FEM model contains N N  elements on a 

  ( 1) ( 1)N N  grid, 2Δx  is the area of each element. 

The FEM solutions are obtained with nine different grid 

sizes, i.e., 20 20 , 100 100 , 200 200 , 300 300 , 

400 400 , 500 500 , 1,000 1,000 , 1,500 1,500 , 

and 2,000 2,000 . With the increase in the number of 

elements, the FEM results are expected to approach 

to exact values. While the results of FEM are calculated 

based on different grid configurations, PINN outputs 

the pressure distributions of different grids based on 

only one trained neural network.  

The comparisons of PINN and FEM are investigated 

by the followings: 

(1) Relative difference in LCC: 

PINN FEM

FEM

LCC LCC

LCC


             (8) 

(2) Maximum pressure difference: 

 PINN FEMmax P P              (9) 

(3) Mean square of the pressure differences: 

 
 

1 1
2

PINN FEM

, ,2
1 1

1

1

N N

i j i j
i j

P P
N

 

 




         (10) 

(4) Normalized LCC: 

FEM

PINN

LCC

LCC
                 (11) 

Figure 11(a) shows the relative difference in LCC 

(Eq. (8)) and the maximum pressure difference (Eq. (9)) 

of PINN and FEM, which stabilize, respectively, at 

around 39.2 10  and 38 10 . Thus, the differences 

are less than 1%. Moreover, the mean square of    

the differences in pressure measured on each node 

(Eq. (10)) reduces with the increment of number of 

elements as shown in Fig. 11(b). As the FEM solutions 

approach to the exact solutions of Reynolds equation 

with denser grids, the reducing trend of the mean 

square of pressure differences of PINN and FEM 

validates the pressure prediction of PINN. Figure 11(c) 

illustrates that the normalized LCC (Eq. (11)) 

 

 

Fig. 11 Comparison between PINN and FEM. 
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approaches to the steady value of 0.9908525 owing to 

the reduction in the discretization error in the FEM 

results by the increase in the number of elements. 

The steady value represents the exact LCC solution. 

Thus, the accuracy of PINN is up to 99%, which shows 

that the developed PINN can accurately calculate 

both LCC and pressure distributions for hydrodynamic 

lubrication contacts.  

4 Application in the hydrodynamic 

lubrication contact 

The application of the PINN-based method is extended 

to the analysis of hydrodynamic lubrication. The 

Reynolds equation is solved by PINN. The converged 

pressure distribution and the lubricating film thickness, 

h0, are deduced through an iterative process (as 

illustrated in Fig. 12) on the basis of the load balance 

criterion: 

 
2

0

2
, d d

LΩ

Wh
P X Y X Y

UL B
         (12) 

where W is the applied load, U is the sliding velocity, 

and   is the lubricant viscosity.  

The developed program is verified by comparing 

the predicted film thickness with the experimental 

results [22] measured by optical interferometry [3] on 

 

Fig. 12 Flow chart for the hydrodynamic lubrication contact. 

a slider-on-disc test rig. The calculations are based on 

the operating conditions of the experiment tabulated 

in Table 2. The FEM calculations are also performed 

as reference.  

The comparisons of the outlet film thickness 

predicted by PINN and FEM and the experimental 

measurements are illustrated in Fig. 13. The good 

correlations amongst the three sets of data, as shown 

in Fig. 13, prove the effectiveness of the PINN in the 

calculation of film thickness in the hydrodynamic 

lubrication contacts. 

The pressure distributions obtained by PINN and 

FEM are compared in Figs. 14 and 15 to further 

illustrate the accuracy of PINN in the hydrodynamic 

Table 2 Experimental condition in Ref. [22]. 

Static slider surface area 4 mm × 4 mm 

Inclination 1/1,770 

Bearing load 4 N 

Sliding speed 3.7–27.2 mm/s 

Dynamic viscosity 0.56 Pa·s 

 

Fig. 13 Outlet film thickness comparison amongst the experimental 
measurement, FEM calculation, and PINN prediction.  

 

Fig. 14 Calculated pressure distributions (U = 27 mm/s). (a) PINN. 
(b) FEM. 



1262 Friction 11(7): 1253–1264 (2023) 

 | https://mc03.manuscriptcentral.com/friction 

 

lubrication prediction. The PINN and FEM 

methods output similar pressure distributions inside 

the hydrodynamic lubrication domain (Fig. 14). 

Quantitatively, the calculated relative error of PINN 

in Fig. 14, benchmarked by the FEM result, is only  

1.5%. Therefore, the effectiveness of PINN for 

hydrodynamic lubrication studies is confirmed by 

such tiny relative error. 

The pressure distributions along and across the 

entrainment direction are depicted in Fig. 15. Although 

the pressures predicted by PINN at the boundaries 

(X = 0 and Y = 0) do not strictly satisfy the zero 

pressure boundary conditions, an excellent correlation 

between pressure obtained by PINN and FEM 

prevails in the mid-planes (along X = 0.5 and Y = 0.5). 

The maximum deviations of pressure at the 

boundaries from 0 are only 3.4% and 1.7% of the 

peak pressure in Figs. 15(a) and 15(b), respectively. 

The film thickness and the pressure distribution 

comparisons in Figs. 13‒15 demonstrate that the PINN 

method works well in predicting the film thickness 

and pressure distribution in the hydrodynamic 

lubrication contact.  

The non-zero pressures at the boundaries, as shown 

in Figs. 14 and 15, can be traced back to the PINN 

optimization algorithm. When applying PINN to 

solve the Reynolds equation (Eq. (1)), the target is to 

find the optimal loss (Eq. (5)) from the pressures inside 

the computational domain and at the boundaries. 

Specifically, the network is initialized by the randomly 

generated weights at the beginning. An optimizer is 

then adopted to iteratively find the optimal solution 

until the loss stabilizes. The consideration is based on 

the governing equation (1st term in Eq. (5)) and the 

boundary condition (2nd term in Eq. (5)) in the 

optimization process. Hence, non-zero boundary 

pressure is allowed as long as the PINN obtains the 

optimal loss. Different from the PINN method, FEM 

utilizes a pre-defined grid for the discretization of  

Eq. (1) and transforms Eq. (1) into a linear algebra 

problem: 

 M P F                (13) 

where the matrix M represents the discretized 

governing equation, the variable vector P contains 

both unknown pressure inside the domain and the 

zero pressure boundary condition, and the vector F 

indicates the film thickness distribution. The zero 

pressure boundary condition is a priori prescribed in 

the P vector and in turn, the zero pressure boundary 

condition must be satisfied.   

The information above indicates that PINN could 

be adopted in lubrication studies for its success in 

solving the Reynolds equation. With appropriate 

training algorithm (e.g., QuadratureTraining [8]), one 

can adopt the meshless configuration to solve the 

Reynolds equation. Conventional numerical methods, 

such as FEM, rely on the discretization of the Reynolds 

equation on a pre-defined grid, whereas the PINN 

algorithm does not require any grid. Although a 

coarse grid usually works well for hydrodynamic 

lubrication problems, a dense grid is required in EHL 

simulations where the computational cost increases 

greatly. Thus, we envision that the further development 

of the PINN method could bring benefits in solving 

complicated lubrication problems.  

 

Fig. 15 Pressure comparison between PINN and FEM. (a) Along the entrainment direction. (b) Across the entrainment direction. 
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5 Conclusions 

The physics-informed neural network (PINN) has 

been successfully applied to the analysis of 2D 

hydrodynamic lubrication. The current work has 

demonstrated that PINN could achieve satisfactory 

accuracy in calculating the film thickness and pressure 

distributions with a structure of 3 layers, 16 neurons 

per layer, and 1,000 maximum allowable epochs for 

network training. The results calculated by PINN 

correlate well with the experimental data and FEM 

outputs, confirming the application feasibility   

of PINN in hydrodynamic lubrication studies. As 

the applicability and efficacy of PINN in solving 

hydrodynamic lubrication problems are confirmed, 

PINN has thus the potential to tackle more complicated 

lubrication problems, such as EHL. 
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