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Abstract. Five portable Bruker EM27/SUN FTIR (Fourier

transform infrared) spectrometers have been used for the

accurate and precise observation of column-averaged abun-

dances of CO2 and CH4 around the major city Berlin. In the

work by Frey et al. (2015), a calibration procedure is de-

veloped and applied to the set of spectrometers used for the

Berlin campaign. Here, we describe the observational setup

of the campaign and aspects of the data analysis, and we

present the recorded time series of XCH4 and XCO2. We

demonstrate that the CO2 emissions of Berlin can be clearly

identified in the observations. A simple dispersion model is

applied which indicates a total strength of the Berlin source

of about 0.8 t CO2 s−1. In the Supplement of this work, we

provide the measured data set and auxiliary data. We hope

that the model community will exploit this unique data set

for state-of-the art inversion studies of CO2 and CH4 sources

in the Berlin area.

1 Introduction

The application of portable FTIR (Fourier transform in-

frared) spectrometers for the observation of column-averaged

CO2 and CH4 abundances holds great promises with respect

to the quantification of sources and sinks of greenhouse gases

on regional and smaller scales. Although in situ measure-

ments at the ground can be performed with unrivaled preci-

sion and accuracy, these measurements suffer from the fact

that they detect local variations and so are heavily influ-

enced by local contributions and by details of the vertical

mixing. Use of in situ measurements at different altitude lev-

els (tall tower, aircraft) improves the representativeness con-

siderably, but is a rather expensive approach. Current space-

based remote-sensing observations are useful for the quan-

tification of sources and sinks on continental scales but still

suffer from limited precision, limited density of observations,

and biases related to details of atmospheric scattering proper-

ties. Ground-based observations using high-resolution labo-

ratory spectrometers as performed by TCCON (Total Carbon

Column Observing Network; Wunch et al., 2011) can pro-

vide column-averaged abundances with reference precision

and accuracy, but the number of sites is limited and the sta-

tions are not mobile. Portable FTIR spectrometers therefore

are a very promising complement to current techniques, be-

cause they can probe larger sample volumes than in situ and

smaller scales than current space-based sensors or globally

distributed ground-based remote-sensing networks. In this

work, we demonstrate the approach of using solar absorption

spectra recorded with small low-resolution FTIR spectrome-

ters at several sites distributed around a source region for an

estimation of the encircled source strength.

The demonstration is based on a campaign we performed

from 23 June to 11 July 2014 around Berlin using five spec-

trometers. We decided to target Berlin for several reasons.

Firstly, Berlin is a major city, so we expect to measure de-

tectable enhancements. Secondly, the city is relatively iso-
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Figure 1. Map showing the measurement stations around Berlin.

Table 1. Geographical coordinates and altitudes of the measurement

sites around Berlin. The coordinates were derived using GPS sen-

sors. The reported altitudes result from combining time-averaged

GPS measurements which were repeatedly performed at Mahlsdorf

and average differences between the time series of ground pressures

recorded at each site. Excellent agreement with topographic data

provided on the website http://www.wieweit.net is found.

Site Latitude (◦ N) Longitude (◦ E) Altitude (m)

Mahlsdorf 52.486 13.589 39.0

Charlottenburg 52.505 13.302 47.7

Heiligensee 52.622 13.228 34.5

Lindenberg 52.601 13.519 63.3

Lichtenrade 52.391 13.392 44.8

lated, so CO2 emissions really can be attributed to Berlin.

Thirdly, the flat topography is favourable, which supports

the interpretation of the recorded data. Measurements were

performed at five different stations around Berlin, four of

them roughly located along a circle with a radius of 12 km

around the city centre of Berlin. One instrument was posi-

tioned inside the Berlin motorway ring in Charlottenburg,

somewhat closer to the city centre than the other instruments.

A map with all sites is shown in Fig. 1. The coordinates and

altitudes of the different stations are displayed in Table 1.

Due to somewhat unfavourable weather conditions, we were

able to perform simultaneous measurements at all sites only

on 10 days during the demonstration campaign. However, it

should be noted that such spectrometers can be installed for

longer periods of operation in weather-resistant shelters and

operated automatically – in order to form a permanent com-

ponent of future monitoring systems.

Due to the long lifetimes of CO2 and CH4, each individ-

ual source contribution is a weak signal superimposed on the

average column-averaged background abundance. Therefore,

ensuring a common calibration of all involved spectrometers

and demonstrating their instrumental stability is of utmost

importance for the proposed method. In Frey et al. (2015), a

rigorous calibration procedure for the EM27/SUN spectrom-

eter is developed and is exemplified using the set of portable

spectrometers which we used for the Berlin campaign. This

calibration procedure involved pre- and post-campaign mea-

surements, thereby proving unambiguously the excellent in-

strumental stability of the devices.

2 Observational setup, weather, prevailing winds, and

auxiliary measurements

Each site was equipped with an EM27/SUN spectrometer in-

cluding a solar tracker, a GPS sensor used for accurate time-

keeping, and a MHB-382SD data logger for recording pres-

sure, temperature, and relative humidity. The measurement

procedures (scan speed, resolution, numerical apodisation,

etc.) applied during the campaign were chosen to be iden-

tical to those applied for the calibration measurements.

In Table 2, we collect the main characteristics of each

measurement day. We list the number of observations avail-

able at each site and deduce a daily quality flag accord-
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Table 2. Summary of all measurement days: number of observations at each site (Mahlsdorf, Charlottenburg, Heiligensee, Lindenberg,

Lichtenrade), overall quality ranking of each day according to number of available observations and temporal coverage, ground wind speed

and direction (classification from poor to excellent: o, +, ++, + ++, + +++).

Date No. of observations Quality Wind speed (m s−1) Wind direction

26 Jun 2014 (Th) 76 70 89 28 116 + 2–4 NNE

27 Jun 2014 (Fr) 273 233 237 186 182 + ++ 5 SSW–SSE

28 Jun 2014 (Sa) 0 37 0 0 0 o 7 SSW

1 Jul 2014 (Tu) 203 189 158 122 224 ++ 8 W

2 Jul 2014 (We) 106 128 92 76 129 + 9 W

3 Jul 2014 (Th) 316 358 320 354 357 + ++ 7 W

4 Jul 2014 (Fr) 545 509 545 652 511 + +++ 7 SW–S

5 Jul 2014 (Sa) 0 93 0 0 0 o 5 SSW–SSE

6 Jul 2014 (Su) 329 265 346 252 385 ++ 5 W–SW

7 Jul 2014 (Mo) 10 74 28 98 130 + 8 SE–NW

8 Jul 2014 (Tu) 0 21 0 0 0 o 6 NE–E

9 Jul 2014 (We) 35 29 40 0 10 o 6–10 E–SSW

10 Jul 2014 (Th) 248 306 411 188 245 ++ 6–12–6 NE–E

11 Jul 2014 (Fr) 257 248 212 243 253 + 8 NE

ing to the overall data availability. Furthermore, the wind

speeds and prevailing wind directions in the boundary layer

are provided. The best measurement days with measurements

throughout most of the day (solar elevation angle > 20◦) were

27 June, 3 July and 4 July. During these days, prevailing

winds were from the west (and south). Wind speeds were

moderate in the range of 5 to 8 knots. Note that, although not

very well covered, the set of observations includes a Sunday

(6 July), which is an interesting aspect as a different tempo-

ral pattern and overall strength of emissions are expected on

a Sunday than during a working day.

Very important auxiliary information required for the

proper estimation of a source strength is the development of

the boundary layer height during each day of observations.

IMK-IFU performed continuous ceilometer measurements of

the boundary layer height during the whole campaign pe-

riod. The measurements were performed in Berlin-Neukölln

(52.4895◦ N, 13.4309◦ E), 2.5 km to the southeast of the city

centre. The ceilometer CL51 from Vaisala GmbH, Ham-

burg, Germany, is an eye-safe commercial mini-lidar sys-

tem. Ceilometers detect initially the cloud height, but special

software provides routine retrievals of up to five lifted layers

from vertical profiles (vertical gradient) of laser backscatter

density data (Münkel, 2007). In the absence of low clouds

and precipitation and during scattered clouds, this measure-

ment method estimates boundary layer height fairly well.

The CL51 detects convective layer depths exceeding 2000 m

and nocturnal stable layers down to 50 m. The measurement

results agree well with those which are determined from pro-

files of relative humidity and virtual potential temperature

measured by radiosonde (location of strong height gradient

of aerosol backscatter density and relative humidity as well

as temperature inversion; see Emeis et al., 2012). But ra-

diosondes which are launched routinely twice per day only

do not provide sufficient information. Figure 2 shows the

ceilometer results for 27 June: the developing boundary layer

can be clearly seen, reaching an altitude of about 2200 m in

the late afternoon. In the case of airborne particles it has

been shown previously that boundary layer information as

detected continuously by ceilometers enables the determina-

tion of near-surface concentrations from column density data

(Schäfer et al., 2008).

3 The XH2O, XCO2, and XCH4 time series

The analysis of the trace gases from the measured spectra has

been performed as described by Gisi et al. (2012) and Frey et

al. (2015). Because the distances between the sites are about

25 km or less, a common pressure–temperature profile has

been used for the analysis at all sites. The pressure records of

the MHB-382SD devices have been used to set the ground

pressure values of the model atmosphere, and an intraday

variability of the ground pressure and the temperature pro-

file has been taken into account in the analysis of the spectra.

For the construction of the temperature profiles, we utilize

the NCEP model noon profiles provided by the Goddard au-

tomailer system and radiosonde data provided by the mete-

orological observatory Lindenberg. We take the NCEP data

as the starting values and overlap a linear ascent during the

day, which is the temperature difference between the 00:00

and 18:00 LT sonde data, for the lowermost height levels (be-

low 4 km altitude). For the height levels above 4 km we take

the original NCEP noon data, as the change during the day is

negligible.

Solar absorption spectral observations in the near infrared

offer the potential of measuring column-averaged dry-air

mole fractions with excellent precision and accuracy. This

is owed to the facts that (1) scattering of photons into the line
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Figure 2. The development of the boundary layer thickness on 27 June according to ceilometer measurements performed by IMK-IFU in

Berlin-Neukölln.

of sight is a negligible process and that (2) absorption bands

of molecular oxygen are covered, so the column amount of

oxygen can be derived from the same spectrum. Because the

dry-air mole fraction of molecular oxygen is nearly invari-

able, the column-averaged dry-air mole fraction of the target

gases can be derived from the ratio of the observed target

gas columns and the oxygen column. This approach signif-

icantly reduces the impact of various error sources on the

final results, because these typically affect both the target

gas columns and the oxygen reference column (Wunch et

al., 2011). Moreover, the amount of dry air deduced from

the spectral information can be compared with the ground

pressure measured with a barometer. Note that the barome-

ter records the total ground pressure, including the pressure

exerted by the water vapour column. However, this small

contribution to the pressure can be taken into account in the

comparison because the water vapour column can also be de-

rived from the observed spectrum. Figure 3 shows the time

series of the total ground pressure (derived from the aver-

age of the continuous barometer measurements performed

with the MHB-382SD devices at all five sites) in compari-

son to the total ground pressures calculated from the spectral

measurements (taking into account the water vapour contri-

bution). The pressure values from the spectral measurements

follow closely the variable ground pressure, and the agree-

ment between different stations is excellent. A least-squares

fit to the barometer data suggests a common calibration fac-

tor of 0.9713 for the spectroscopic measurements, which has

been applied in the figure. This result is in excellent agree-

ment with the calibration factor found by Frey et al. (2015;

0.9700) and Klappenbach et al. (2015; 0.9717).

Figure 4 (top panel) shows the observed time series of H2O

dry-air mole fractions. As expected, H2O varies considerably

– by about a factor of 3 – over the campaign period. On the

other hand, the agreement between the stations is surpris-

ingly good. This demonstrates the uniform character of the

selected area, especially the absence of localized dominating

sources of atmospheric humidity, which would induce larger

differences between the stations. Finally, as the main contri-

bution to the H2O total column originates from the boundary

layer, this finding supports the assumption that the boundary

layer across the whole probed area is well ventilated.

Figure 4 (middle and bottom panel) shows the XCO2 and

XCH4 values (respectively) as observed by all spectrome-

ters. The dominating synoptic variations which are common

to all sites occur on timescales of several days. These varia-

tions of the order of 1 % peak to peak are due to the changing

tropopause altitude and advection of air masses with differ-

ent trace gas concentrations. In addition, the time series re-

veal intraday variability of the order of 0.5 % or less, which

is variable from day to day, but also very similar in each in-

dividual data record. We assume that these variations result

from a superposition of real variability and artefacts of the

retrieval. During most of the observation days, a decrease

of XCO2 is found, which is what would be expected as a

result of photosynthetic activity during a sunny day (high
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Figure 3. Time series of ground pressure according to the barom-

eter measurements performed at each site (black line) and derived

from the infrared spectra (dots). All pressure values were reduced to

a common reference altitude of 30 m. For the spectroscopic results,

the dry-ground pressure has been derived from the 1.27 µm oxy-

gen band, and the contribution of water vapour to the total ground

pressure has been taken into account. In order to achieve the best

agreement with the barometer results, a calibration factor of 0.9713

has been applied to the spectroscopic results.

insulation being an obvious selection bias of solar absorp-

tion observations). On the other hand, variations symmet-

ric around noon are particularly striking during a couple of

days, mainly in the case of CH4. It is plausible to assume

an air-mass-dependent retrieval bias as a cause of these vari-

ations. We detailed in Frey et al. (2015) how we attempted

to remove this artefact by applying an a posteriori air-mass-

dependent correction. However, the observed bias is com-

prised of two contributions: one contribution resulting from

forward-model errors (e.g. wrong line broadening parame-

ters) – this tends to be a systematic feature and can be re-

moved by the global correction we applied – and a second

contribution due to the smoothing error of the retrieval. The

column sensitivity of the scaling retrieval is a function of air

mass, and so is the smoothing error. As described in Frey

et al. (2015), we used constant a priori profile shapes in

the retrievals, while the actual atmospheric profiles are vari-

able. This gives rise to air-mass-dependent artefacts which

are variable from day to day. Finally, on top of this variable

background, subtle differences between individual observa-

tions can be detected: these are typically of the order of 1–

2 ‰, and it is tempting to assume that these are caused by lo-

cal emission contributions. For illustration, Fig. 5 shows the

XCH4 and XCO2 values observed during 27 June. Southerly

winds prevailed during that day, and indeed the XCO2 values

observed in Heiligensee in the northwest of Berlin are ele-

vated. It is important to note that, although the emission sig-

nals tend to be smaller than the observed intraday variability,

Figure 4. Evolution of XH2O (top panel), CXO2 (middle panel),

and XCH4 (bottom panel) as measured at all sites during the cam-

paign.

enhancements as small as 0.5 ‰ are noticeable. This is pos-

sible because the detection of an enhancement can be based

on the differences between the column-averaged mole frac-

tions observed at different sites, if these are superimposed on

a smoothly varying background traced by the observations

of several upstream stations. This situation is realized if all

sites observe similar advected larger-scale variations. Note

that at a given time during the day all sites perform measure-

ments under nearly the same solar elevation angle and quite

similar atmospheric conditions (atmospheric vertical profile

shapes of trace gases). This reduces significantly retrieval bi-

ases between the stations, especially if the interpretation of

the collected data is mainly based on differences between

simultaneous observations of upstream and downstream sta-

tions. In detail, the observed XCH4 enhancements differ from

the XCO2 enhancements, which is expected due to differ-

ent sources. Moreover, the background of the XCH4 seems

less well defined and more variable. This meets the expecta-

tion: due to the likely presence of rural CH4 sources around

the conurbation area encircled with the stations and due to

the stronger contrast between tropospheric and stratospheric

mixing ratios of CH4, higher variability is expected in the

XCH4 background field than in case of XCO2. We feel that

a sensible investigation of our XCH4 observations would re-
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Figure 5. Observed variability of XCH4 and XCO2 during

27 June 2014.

quire a state-of-the-art high-resolution inversion model, and

we hope that the data sets made available in the Supplement

to this work will be exploited in depth by the inverse model

community. Using a simple dispersion model, we will in the

following focus on a more specific interpretation of the ob-

served XCO2 enhancements. In the next section, we describe

the main characteristics of the dispersion model. In Sect. 5

we compare observations and model predictions.

4 Setup of a simple dispersion model

For a prediction of the differences in XCO2 between sites

we have created a simple dispersion model. Within this

modelling scheme, the Berlin source is mapped into a

schematic area source spanned by five neighbouring rect-

angles, which contribute to the total source strength. The

central rectangle reflects the city centre; the four remain-

ing rectangles reflect Charlottenburg and Spandau areas

(western box), Reinickendorf and Pankow areas (north-

Table 3. The five emission regions used in the dispersion model.

The last row provides the percentage contribution to the total emis-

sion strength of the Berlin source as assumed in the model.

Box Area NW SE %

ID corner corner contribution

1 Charlottenburg 52.5677 52.5159 25

and Spandau 13.0753 13.2550

2 Tempelhof- 52.4657 52.3800 15

Schöneberg 13.2304 13.4275

3 Marzahn-Hellersdorf 52.5531 52.3927 10

and Treptow-Köpenick 13.4502 13.6316

4 Reinickendorf 52.6302 52.5472 10

and Pankow 13.3046 13.4721

5 City centre 52.5472 52.4657 40

13.2550 13.4502

ern box), Marzahn-Hellersdorf and Treptow-Köpenick areas

(eastern/south-eastern box), and the Tempelhof-Schöneberg

area (southern box). The geographical coordinates of each

box and the percentage contribution to the total emission are

listed in Table 3. The spatial extent and contribution of each

box have been adjusted according to information on popu-

lation and traffic density provided by the Statistical Office

of Berlin-Brandenburg (http://www.stadtentwicklung.berlin.

de).

The dispersion model uses analysed hourly horizontal

wind fields from COSMO-DE, the convective-scale regional

component of the numerical weather prediction system of the

German Weather Service (DWD; Baldauf et al., 2011). Due

to the fact that we assume a distributed source region, we do

not apply the COSMO wind field at full resolution, which

is of the order of 2.8 × 2.8 km, but use only five COSMO

hourly wind profiles distributed over the observation area (in

the centre and the NW, NE, SW, and SE corners of a square

centred on Berlin with an edge length of about 20 km) and

interpolate the winds between these reference wind profiles

linearly through time and – assuming a Shepard inverse dis-

tance weighting with a power of 2 (Shepard, 1968) – on a

horizontal plane.

The model is based on a strict Lagrangian perspective. It

does not use a model grid but instead transports emitted par-

ticles according to the interpolated winds at their current lo-

cations. The generation rate of the particles is proportional

to the source strength; they are created at the ground level

within one of the five emission regions described before. For

each creation act, the region is selected by a random gener-

ator in accordance with the assumed contribution of the re-

gion; the starting position within the selected area is again

chosen randomly. Within a selected region, the probability of

emission is equal for each area element; we do not attempt to

resolve sources on a scale smaller than the source region.

Concerning the vertical transport, a fast mixing on

timescales of ∼ 10 min across the whole boundary layer is

assumed. This is realized in the model by introducing a fast
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erratic diffusion of each particle along the vertical axis. The

altitude limit of the model boundary layer is for each day

chosen in accordance with ceilometer measurements. Fast

fluctuations of the boundary layer thickness detected by the

ceilometer are neglected; instead the individual overall de-

velopment of the boundary layer height during each day is

approximated using piecewise linear fits.

Finally, the detection of particles is emulated by checking

whether the particle is inside a cylinder which wraps the line

of sight of one of the observation sites. It should be noted

that due to the daily apparent motion of the sun in the sky,

the position of this cylinder is quite variable. If we assume

a boundary layer thickness of 1500 m and start and end of

observations at a solar elevation angle of 20◦, then the top

surface of the cylinder is shifted by 8 km westwards during

the day, which is not negligible in comparison to the extent of

the assumed source regions. Therefore, the line of sight used

for the detection condition is updated in the model according

to the astronomical conditions.

The simulation period starts at midnight. In each time step

(1 s), a particle is emitted and all existing particles are trans-

ported. During daytime, as long as the solar elevation ex-

ceeds 20◦, the number of detected particles at each obser-

vation site is determined in intervals of 450 s. Typically, de-

pending on wind speed, 20 000–40 000 particles are traced

at a given time (each emitted particle is followed for up to a

distance of 40 km from the Berlin centre). The simulation run

for each day is repeated 500 times and the results are aver-

aged to achieve a negligible statistical noise in the number of

detection counts. Note that the model does not take into ac-

count emissions from the previous day. Typically, these aged

emissions have left the region of interest before, but occa-

sionally – if the wind speed is very low – it might happen that

they reside for longer than 6 h in the observed area, or may

return from outside the modelled area if the wind direction

is changing. No attempt is made in the dispersion calculation

to include the variable advected XCO2 background; it only

predicts the enhancements at each observation site due to the

daily emissions of the local Berlin source.

5 Comparison of predicted and observed time series

In the following, we compare the XCO2 measurements

with results from the dispersion model for the three most

favourable observation days. For all days, the Berlin CO2

source strength was fixed to a plausible value of 800 kg

CO2 s−1. The source strength was kept constant during the

day, although one would certainly expect considerable intra-

day variability for different kinds of contributions, e.g. traffic

peaking at around 08:00 and 17:00 (local time). Figures 6–8

show the observational and model results for 27 June, 3 July,

and 4 July. For the first 2 days, the model enhancements are

shown superimposed on a smooth polynomial background,

which is reasonably well defined by the observations of the

Figure 6. Observed and modelled XCO2 for 27 June. The model

enhancements are shown superimposed on a smooth polynomial

background which has been derived from the observations of the

upstream stations.

upstream stations. During the 3rd day, 4 July, it is more dif-

ficult to estimate a smooth background level as all stations,

including the upstream stations, observe considerable vari-

ability. Therefore, for this day the predicted enhancements

are shown superimposed on a constant 390 ppm background

level.

The model prediction for 27 June is of acceptable qual-

ity. The enhancements before noon observed first in Char-

lottenburg and afterwards in Heiligensee are well captured.

The peak at 0.35 day fraction observed in Heiligensee is

much sharper than the model prediction and indicates a sig-

nificant contribution of a localized source smaller than the

assumed emission regions. Southerly winds prevailed dur-

ing the day, so this source is probably located in model re-

gion 1. Indeed, the heat- and power-generating coal-fired

plant Reuter West operated by Vattenfall AB with a peak

thermal power of 774 MW (http://kraftwerke.vattenfall.de/

powerplant/reuter-west) is located in this region and is the

likely source of the observed emissions. Afterwards, the

model predicts elevated values for Heiligensee until around

noon, which is in good agreement with the observations, but

it fails to predict the final enhancement observed in Heili-

gensee after noontime.

For 3 July, the enhancements are smaller than those ob-

served during 27 June. Still, the undulations predicted by the

model are detectable in the Lindenberg time series reason-

ably well, although the first two peaks are underestimated

and appear delayed in the model simulation by about half

an hour. The final increase towards the third peak observed

in the afternoon is nicely reproduced. The model predicts

slightly higher values for Mahlsdorf than for Heiligensee

and Lichtenrade, which is not supported by the observations,

which instead indicate repeated peaks in the Heiligensee and

www.atmos-meas-tech.net/8/3059/2015/ Atmos. Meas. Tech., 8, 3059–3068, 2015
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Figure 7. Observed and modelled XCO2 for 3 July. The model en-

hancements are shown superimposed on a smooth polynomial back-

ground which has been derived from the observations of the up-

stream stations.

Figure 8. Observed and modelled XCO2 for 4 July. Due to the high

variability of the upstream values observed during this day, no at-

tempt has been made to construct a common background value.

Lichtenrade time series. Westerly winds were prevailing dur-

ing that day, so for the station Lichtenrade emissions from

Potsdam (not included in the model) are likely to contribute.

For 4 July, the observed XCO2 values are quite variable.

An M-shaped disturbance extending over 5 h and observed

at all stations before noon is the most prominent feature.

Southerly winds prevailed near the ground and southwest-

erly winds in the free troposphere. While a similar shape is

observed at all stations, there is a clear time lag of about

45 min between the occurrence of this disturbance between

the upstream stations (Lichtenrade and Charlottenburg) and

the downstream stations (Heiligensee and Lindenberg). This

Figure 9. XCO2 distribution according to the MACC model across

central Europe for the morning of 4 July. North is up; orienta-

tion marks are superimposed along the continental coastlines (dark

lines). The open circle denotes the location of Berlin.

time lag agrees well with the delay expected for the advection

of a disturbance in the background XCO2 signal at a wind

speed of about 7 m s−1 across a distance of about 20 km be-

tween the sites. The variations between the stations are too

strong to allow a judgement concerning the model predic-

tion of a 0.5 ppm enhancement at Heiligensee and Charlot-

tenburg.

Figure 9 shows the MACC (Monitoring Atmospheric

Composition & Climate project) prediction for XCO2. A

closer examination of the previous development of the XCO2

field according to MACC indicates that the complex struc-

tures in the XCO2 field around Berlin during that day are

possibly the result of an entrainment of emissions from west-

ern Germany and further sources nearer to Berlin. The exam-

ple of 4 July demonstrates the limitations of a simple disper-

sion model which takes into account only the local sources.

A comprehensive exploitation of the information contained

in the kind of measurements presented here would require

state-of-the-art inverse modelling allowing for a resolved lo-

cal source distribution nested into a much wider model area.

Such a model configuration would include a reasonable de-

scription of variations due to advected XCO2 contributions

from outside the model area and associated larger-scale vari-

ations of column-averaged abundances.

6 Data set provided in the Supplement

In the Supplement to this work, we provide the complete set

of quality-filtered XCH4 and XCO2 observations collected

during the campaign at all stations. The quality filter is based

on the quality of the interferograms (average value and fluc-

tuation of the DC value). For each site, we provide the appar-

ent solar elevation angle of the measurement, the retrieved

total column amount of H2O, and the XCH4 and XCO2 cali-
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brated with respect to TCCON and corrected for the system-

atic spurious air mass dependence (column-averaged dry-air

mole fractions in ppm). In separate tables, we provide the a

priori profile shapes of CH4 and CO2 used for the scaling

retrieval on the 49 model levels of the retrieval code (dry-

air mole fractions in ppm) and the averaging kernel matrices

with dimensions of 49 × 49 for different solar zenith angles.

These auxiliary data enable the user to estimate the smooth-

ing error of the column-averaged abundances, especially the

impact of the actual profile shape on XCH4 and XCO2. If

the user wants to include the smoothing characteristics of the

remote-sensing observations in the comparison between ob-

servations and assimilation model, we suggest including the

kernel convolution directly in the model predictor. In addi-

tion to the FTIR data, the Supplement contains the results

derived from the ceilometer observations in both tabulated

and graphical form.

7 Summary and outlook

We presented measurements of column-averaged abun-

dances of CH4 and CO2 recorded with five portable FTIR

spectrometers during a measurement campaign of 3 weeks’

duration around Berlin in summer 2014. The results demon-

strate that an array of well-calibrated, ground-based FTIR

spectrometers allow the reliable detection of XCH4 and

XCO2 enhancements due to local emissions in the range

of 1 ‰. Application of a simple dispersion model indicates

that the observations are compatible with an assumed source

strength of the order of 800 kg CO2 s−1 for the major city

Berlin. We believe that arrays formed with such spectrome-

ters would be a very useful complement to existing in situ

and remote-sensing measurements for the quantification of

sources and sinks of CH4 and CO2 on regional scales. We

expect that a comprehensive inversion of local source con-

tributions to the observed column-averaged abundances will

require state-of-the art nested model approaches which in-

clude a proper description of the variable advected back-

ground contributions. Such model studies could also be of

great value for the design of monitoring networks (density

and locations of stations) based on portable FTIR spectrom-

eters.

The Supplement related to this article is available online

at doi:10.5194/amt-8-3059-2015-supplement.
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