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The application of nanomaterials as a strengthening agent in the fabrication of polymer nanocomposites has gained significant
attention due to distinctive properties which can be utilised in structural applications. In this study, reduced graphene
oxide (r-GO) and montmorillonite (MMT) nanoclay were used as filler materials to fabricate hybrid epoxy-based
nanocomposites. The synergistic effect of nanomaterials on flammability and mechanical behaviour of nanocomposites were
studied. Results revealed that the addition of nanofiller showcases 97% and 44.5% improvement in tensile and flexural
strength. However, an increment in the percentage of filler material over 0.3% exhibits a decremental mechanical property
trend. Likewise, the addition of nanofiller increases the nonignition timing of the glass-fibre-reinforced epoxy composites.
Fracture surface morphology displays the occurrence of the ductile fracture mechanism owing to the presence of hybrid fillers.

1. Introduction

In modern industries, epoxy-based resins are considered
one of the most promising thermosetting polymers with
outstanding merits, including low shrinkage, better adhe-
sion, admirable chemical stability, and corrosion resistance
[1–4]. These facts made them a candidate material to
employ widely as coating materials, laminates, microelec-
tronic materials, and aerospace materials [5–9]. Neverthe-
less, similar to other polymer resins, its extreme
flammable nature and lower mechanical strength act as
the potential barriers to limiting its prevalent applications.
Consequently, it is authoritative to form a high strength
and flame retarded epoxy resin to expand its future applica-

tions among the areas that demand outstanding mechanical
properties and flame retardancy. Composite fabrication is
considered one way to improve the basic and functional
properties of epoxy by adding suitable reinforcements and
filler material [10–14]. Herein, glass fibres are commonly
used as reinforcements to improvise polymer materials’
basic strength and performance. Glass-fibre-reinforced
polymers (GFP) have been practised in several industrial
applications that include transport and electrical appliances
with better mechanical properties [15–18].

Nevertheless, the inherent flammability of epoxy-based
matrix induces potential fire hazard for GFP products. It
brings large concern in enlightening the flame retardancy of
GFP. Flame retardancy of GFP can be improved by various
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techniques such as retardant coating and charring method
[19, 20]. Several researchers used inorganic and organic
retardants to decrease the flammability of epoxy. In recent
halogen and non-halogen-based flame retardant materials,
it is combined with epoxy resin to increase its flame retardant
properties. However, the usage of halogen-based retardants
results in the formation of harmful toxic gases that results
in environmental pollution. To overcome these effects,
halogen-free elements such as silicon and boron and some
nanocarbon materials, hydroxides, and clays are used. In
some research, hybrid fillers with different sizes and shapes
are used to enhance the thermal properties of epoxy-based
polymers by simplifying the development of compacted and
effective heat transfer network [21–24].

Montmorillonite (MMT), a form of clay with various
sodium and calcium ions, has more attraction in use as flame
retardant filler material in polymer matrix composite due to
its low cost. MMT can act dual role viz. shielding and insulat-
ing in the improvement of desirable properties of polymer
matrix material [25–28]. It further assists in decreasing the
smoke and formation of toxic gases during combustion.
However, MMT has only minimal ability to increase the
expected limiting oxygen index. Hence, there is a need to
use additional filler material to make the epoxy-based resin
pass in the flammability test. Nanomaterials such as
graphene and carbon nanotubes are considered better filler
materials to improve the flame retardancy of epoxy-based
resins. Usage of nanofiller needs suitable dispersion in load-
ing level to achieve the expected properties [29–34].
Graphene and its derives viz. graphene oxide, graphene
nanoplates, and graphene nanosheet consisting of a carbon
atom with lattice structure have been broadly applied in var-
ious multidisciplinary domains owing to its better electrical,
thermal, and mechanical properties. Graphene derivates
work as an inhibiting barrier over char residues in the con-
densed phase and restraining its volatiles. Graphene oxide
(GO) is broadly employed as a modified substrate due to its
carbon-layered structures [35–38]. Incorporating favourable
functional groups in a graphene oxide sheet is also consid-
ered an effective way to improve the desired properties of
polymer while using it as filler material. To improve polymer
composites’ thermal behaviour, synergistic effect strategies
are considered a feasible approach to resolve interface and
dispersion-based issues in developing polymer composite.
Herein, easily dispersed nanocarbon materials like graphene
and CNT are used in property enhancements [39–41]. There
are few kinds of research in which MMT and graphene deriv-
atives are used as filler material to increase the mechanical
and flame retardancy characteristics. He and coworkers used
MMT-based hybrid filler material to improve the flame retar-
dancy behaviour of epoxy matrix. Results reveal that hybrid
nanofiller usage increases the limiting oxygen index of epoxy
and attained V0 rating in the flammability test [42]. Kim
et al. used MMT to develop basalt fibre-reinforced composite
and observed that the addition of MMT improves the inter-
facial interaction between the matrix and reinforcement.

Further, it was observed that the saline treatment in com-
posite exhibits 33% decrement in fatigue strength [43]. Souza
and coworkers utilised MMT as filler material to improve the

thermomechanical behaviour of epoxy resin. The results
indicate that MMT’s addition influences the delamination
and uniformity of matrix, and addition of MMT up to
3wt.% showcases betterment in dynamic mechanical proper-
ties [44]. Kamar and coworkers investigated the effect of gra-
phene nanoplatelets over epoxy matrix. Their observation
depicts that incorporating 0.25wt.% of graphene nanoplate-
lets improves the flexural strength of matrix up to 29%, and
25% improvement in fracture toughness is also observed
[45]. Naeem and coworkers developed a graphene-based
composite and investigated its dynamic thermomechanical
properties. Results revealed that the addition of graphene
increases the fracture toughness and stiffness of matrix mate-
rial up to 78.41% and 16.29%. Usage of graphene up to
0.25 vol.% improves its glass transition temperature [46].
Based on a clear-cut literature survey, the addition of
graphene and MMT improvises the basic and functional
properties of the polymer. However, there is limited research
in the investigation on the effect of hybrid MMT-graphene
fillers in the epoxy composite. Hence, this research focuses
on developing MMT-graphene hybrid filler-based compos-
ites and examining their mechanical and flame retardancy
behaviours.

2. Materials and Methods

The polymer matrix used for developing the novel composite
is epoxy resin diglycidyl ether of bisphenol A grade LY 556
with the hardener of HY951 grade (C6H18N4), which has
the gel time of 2 to 3 h. Smaller viscosity array, fibre impreg-
nations, and outstanding dimensional steadiness are the key
factors that lead to the selection of the material above as
matrix. In improving the mechanical properties of the matrix
material, 200 GSM glass fibre is utilised as a reinforcement.
The percentage of glass fibre reinforcement is fixed as 30%
based on the literature where the composites with 30% glass
fibre addition yielded better properties. The nanofiller mate-
rials used in this research are reduced graphene oxide (r-GO)
and MMT nanoclay, where the amount of MMT is fixed as
1.5% and the graphene percentage is varied from 0.1 to 0.4
with an equal interval of 0.1%. Herein, r-GO is synthesised
through the modified Hummers method, and detailed r-GO
synthesis procedure was already reported in previous works
[45]. MMT is received from Ad-Nano Technologies Private
Limited with the average size of 50-100 nm with alumina sil-
icate layers of 1 nm thickness. XRD of as purchased MMT is
depicted in Figure 1, and the purchased MMT is used directly
without any modification.

2.1. Composite Fabrication. The fabrication methodology
followed to fabricate the nanofiller-added glass-fibre-
reinforced polymer matrix composite is the simple and
low-cost fabrication method process, namely, compression
moulding. The measured amount of nanofillers, namely, r-
GO and MNT, as per the research hypothesis, is mixed with
ethanol and ultrasonicated for an hour and mixed with the
matrix resin. The matrix material mixed with nanofillers is
stirred mechanically at 1200 rpm for two hours because of
attaining uniform distribution of fillers in the matrix.
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Subsequently, a hardener (HY951) is added in a 1 : 10 ratio,
and mixing is done for 5 minutes. The prepared mixture is
then coated over the glass fibre (both sides) initially through
the hand layup method. Process variables and their operating
range for composite fabrication are fixed based on the trial
and error method. Stacking is done in the flat mould of 270
× 270 × 30mm size, where the number of coated glass fibre
layer is ten followed by degassing. Then, the stackings were
hot-pressed under the pressure of 15MPa and allowed to
cure. Other nanofiller-added epoxy-glass fibre composites
were prepared with various r-GO filler percentage viz by
following the same procedure, 0.1, 0.2, 0.3, and 0.4.

2.2. Material Characterisation. X-ray diffractometer (BRU-
KER) was utilised to authorise the presence of graphene
oxide and MMT. Fourier transform infrared spectroscopy
(FTIR) was used to confirm functional groups’ presence in
the developed composite. ASTM D 638 standard was
adopted to understand the tensile behaviour of the developed
composite. ASTM D 790 standard is used to find the flexural
strength of the fabricated composite. In contrast, ASTM D
256 standard is adapted to understand the impact strength
behaviour by using a Charpy impact testing machine with a
sample dimension of 65 × 13 × 3mm. Experiments were
repeated four times, and the average value is noted for the
exactness of the attained results. Scanning electron micros-
copy (JEOL JSM6610LV) is used for fracture surface analysis.
The UL-94 vertical burning test is accompanied by adopting
ASTM D3801 standard to analyse the flammability nature,
and tests were conducted over five samples, and the average
values are noted. A limiting oxygen test was conducted on
developed samples based on ASTM D2863.

3. Results and Discussion

3.1. XRD and FTIR of the Developed Composite. XRD and
FTIR analysis results of the developed composites are
depicted in Figures 2(a) and 2(b), which confirm the presence
of r-GO and MMT in the epoxy matrix. The peak near 25.4°

is respective to 111 planes, and small peaks near 43.6° are
related to 002 planes of graphene, and other minor peaks

are respective peaks of MMT and base matrix (Figure 2(a)).
The diffraction peaks at 19.8° and 20.9° are the related peaks
of MMT with 100 planes, and the attained peaks are matched
with JCPDS no. 13-0135. Figure 2(b) depicts the presence of
functional groups and their state of vibration in the devel-
oped composite. The absorption peaks near 3395 cm-1 reveal
O–H stretching vibration, peaks near 1652 cm-1 associated
with C=N bonds, and peaks near 1387 cm-1 related to C=C
stretching vibration. Minor peak near 1738 cm-1 belongs to
the COOH group. Absorption peaks near 3618 cm-1 related
to Al-O-H stretching vibrations of MMT and smaller peaks
at the range of 1089–1035 cm-1 are correlated peaks of Si-
O-Si stretching vibrations. Likewise, a peak near 1625 cm-1

represents the bending vibration of the H–O–H group and
the absorption peak around 1030 cm-1 was associated with
stretching vibration of Si–O–Si [47–50].

3.2. Tensile Behaviour of Developed Composite. Stress-strain
curves and tensile behaviour of the developed nanofiller-
added composites are given in Figures 3(a) and 3(b). It is
evident from the figure that the added r-GO and MMT have
a greater influence on the epoxy-glass fibre composites’ ten-
sile behaviour. Tensile modulus and strength are increased
significantly with the addition of nanofillers.

The addition of r-GO resulted in increased tensile modu-
lus from 1.2GPa to 2.2GPa, where sudden improvement is
found while adding 0.1% r-GO. It increases gradually for fur-
ther addition of r-GO. On the other hand, the tensile strength
increased up to 150MPa for 0.3% r-GO addition, and it
decreased by 0.4% r-GO addition. This improvement in ten-
sile modulus and strength can be attributed to the nanofillers’
restriction for polymer chain mobility. Higher-strength,
modulus, and aspect ratio and healthier interfacial bond
among the nanofiller and matrix are also the key factors that
contributed to the enhancement of tensile properties. The
decrease in tensile strength for the 0.4% rGO-added compos-
ite might be attributed to the agglomeration and void forma-
tion tendency of nanoparticles when reinforced in higher
quantity [28].

3.3. Flexural Strength of Developed Composite. Stress-strain
curves and flexural strength of the developed composites
are depicted in Figures 4(a) and 4(b). It indicates that the
flexural properties of the epoxy-glass fibre composites
increase up to 0.3% r-GO addition, and further addition of
r-GO resulted in decreased properties. Flexural strength
and modulus of the composite increase gradually up to
0.3% of r-GO addition, and small decrement is observed for
further r-GO addition. This enhancement in flexural proper-
ties is due to two possible mechanisms, enhancement in the
strength of the matrix due to modification due to added r-
GO and better interfacial bonding.

To withstand higher loads, the load transmission from
the matrix to reinforcement should be as high as possible.
This increment in strength of the matrix mainly depends
on the interfacial area between the matrix and r-Go. As the
reinforced r-GO and MNT are in nanosize, they are having
a high surface area which resulted in a higher interfacial area
between the matric and nanofillers. This higher interfacial
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Figure 1: XRD of as received montmorillonite nanoclay.
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area enables more stress transfer among them which facili-
tates the polymer composites to bear more stress, i.e.,
strength increases. In addition to this, generally, the
nanofiller-added polymers possess better strength than the
raw polymers as a result of physical absorption of polymer
onto the surface of added nanofiller. When higher amount
of r-GO is added with the matrix, there are possibilities of
particle agglomeration owing to the higher surface area. This
particle agglomeration decreases the effective surface area of
the nanofillers which results in decreased load-bearing capa-
bility of the composites [51].

3.4. Impact Strength of Developed Composite. The impact
strength of the developed composites, i.e., the capability
of absorbing energy, is illustrated in Figure 5. It is evident
from the depiction that the addition of r-GO improves the
composites’ energy absorption capability up to 0.3% addi-
tion. The process where the energy is absorbed during sud-
den loading of polymer composites is matrix deformation,
interface debonding, and reinforcement fracture. Among
these phenomena, which absorbs lower energy is said to be
the key factor for fracture. However, the crack length during
fracture is high in the case of particulate-reinforced
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Figure 2: Epoxy-r-GO-MMT composite: (a) XRD; (b) FTIR.
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Figure 3: (a, b) Variation of tensile strength with respect to r-GO addition.
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polymers. Since the reinforcing fillers are nano in size, their
surface area is also high, leading to an increase in crack
length, i.e., more energy absorbed. These reinforced fillers
restrict the advancing cracks and branch the cracks that lead
to more energy absorption.

3.5. Fracture Surface Morphology of the Developed Composite.
The fractography of the developed composites subjected to
the tensile test is shown in Figures 6(a)–6(d) that aids to
analyse the mechanism of failure. The fracture surface
micrographs illustrated in Figures 6(a) and 6(b) belong
to the unfilled composite material, i.e., the composite with-
out hybrid nanofillers clearly shows the matrix and fibre
debonding. This debonding of fibre from the epoxy matrix
due to the lack of interfacial bonding leads to failure of

composite material when subjected to smaller loads, i.e., the
composite exhibits lesser strength. Huge fibre pull out, as
depicted in Figures 6(a) and 6(b), occurs due to inadequate
fibre matrix bonding and subsequently effortless fracture.
The fractured surface of 0.2wt.% of r-GO-added epoxy-
glass fibre-MMT composite is given in Figure 6(c), which
also has the composite EDS spectrum.

The EDS spectrum of the composite endorses the r-
GO and MMT nanofillers’ existence, and Figure 6(d)
depicts the fractured surface of the 0.3wt.% of r-GO added
epoxy-glass fibre-MMT composite. It is clearly evident
from Figures 6(c) and 6(d) that the addition of nanofillers
highly influences the adhesion of fibre with epoxy matrix.
Better adhesion among the epoxy matrix and glass fibre
can be easily visualised from Figures 6(c) and 6(d). It is
visible from Figures 6(c) and 6(d) that the matrix material
and fillers are sticking with fibres which are attributed to
the improvement in strength for the filler-added composite
when compared to composite without filler.

Conversely, only minimal matrix material is stick with
fibre for unfilled composite shown in Figure 6(b) and com-
plete debonding of fibre from the matrix is evident from
Figure 6(a). When the load is applied over the composite
material, a crack is formed initially and it has to propagate
across a huge number of nanofillers and fibre matrix interface
which act as a hindrance to the crack propagation. As a result
of these hindrances offered by the fillers and interface, the
crack propagation changes the direction several times,
increasing crack length, which results in improved strength.
The fillers that hinder the crack propagation have to be frac-
tured, which also required additional load, i.e., strength
increases. So the improvement in strength is achieved with
the addition of r-GO and MNT nanofillers with the epoxy-
glass fibre composites [30–33].
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3.6. Fire Retardancy Behaviour of Developed Composite. The
limiting oxygen index and UL 94 rating are depicted in
Figure 7. Herein, UL 94 ratings are given based on the self-
sustained burning duration. Based on the available literature,
burning time less than 10 seconds is termed as V0 rating and
the material is considered the best for flame retardant appli-
cations. V1 ratings are given to the sample with a burning
time of fewer than 30 seconds, and burning is not sustained.
V2 rating is given to the samples with burning seconds of 30,
and burning is not sustained, but flaming drips ignite the cot-
ton below the specimen. NR rating is given to the samples
which have more than 30 seconds of burning. The limiting
oxygen index value is an important pointer on polymer and

plastic materials’ flammability as in general, materials with
higher limiting oxygen index are considered the flame-
retardant material. The limiting oxygen index is defined as
the volume percentage of minimum oxygen consideration
that assists in material combustion. It can be notified from
Figure 7 that the addition of nanofillers showcases better
influence in the limiting oxygen index of epoxy polymer
matrix composite. In this, the addition of 0.4wt.% of r-GO
improves the limiting oxygen index values up to ~26.32%
and ~21.01% of improved limiting oxygen index values was
attained for 0.3wt.% of r-GO filler. It can also be noted that
matrix material has a low limiting oxygen index, indicating
the poor flammability resistance of the epoxy polymer. It
can also be observed that the addition of r-GO showcases
excellent performance on the developed composite’s flame
retardant behaviour. This might be due to the effect of inter-
molecular and intramolecular interaction among the matrix
and filler phase.

During testing conditions, the presence of r-GO fillers
helps in limiting the rapid burning of composite in ther-
mal condensation of functional groups present in compos-
ite structures. The presence of hybrid filler forms as a
passive barrier over the burning surfaces that hinders the
proclamation of noncombustible gases and further limits
the destruction of dripping properties of the composite.
It can be notified that the increase also of hybrid filler
reduces the burning timing of advanced composite. The
samples with higher r-GO wt.% have V1 rating in vertical
flammability testing, and it depicts that increasing in r-GO
improves the flame-retardant performance of the devel-
oped composite. V2 rating is attained for the composites
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made with 0.3, 0.2, and 0.1wt.% of r-GO; this might be due to
the insufficient supply of filler material that reduces the burn-
ing process. The matrix material has an NR rating that means
the samples have burned more than 30 seconds or burned
completely [52–55].

4. Conclusions

Reduced graphene oxide and MMT are used as filler material
in epoxy-based glass fibre composites to improve mechanical
and flame retardancy properties. The results observed from
the various characteristic studies conducted are as follows:

(i) Addition of 0.3wt.% of r-GO improves the tensile
strength up to ~97%

(ii) Addition of r-GO results in 44.5% improvement of
the flexural strength and 15.6% impact behaviour
of composite

(iii) V1 rating was attained for 0.4wt.% r-GO incorpo-
rated samples, and a decrease in r-GO reduces UL
95 rating

(iv) These composites may be suggested in potential
applications like roofing sheet and car dashboards
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