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Application of Random-Effects Pattern-Mixture Models for 
Missing Data in Longitudinal Studies 

Donald Hedeker and Robert D. Gibbons 
University of Illinois at Chicago 

Random-effects regression models have become increasingly popular for analysis 
of longitudinal data. A key advantage of the random-effects approach is that it can 
be applied when subjects are not measured at the same number of timepoints. In this 
article we describe use of random-effects pattern-mixture models to further handle 
and describe the influence of missing data in longitudinal studies. For this ap- 
proach, subjects are first divided into groups depending on their missing-data 
pattern and then variables based on these groups are used as model covariates. In 
this way, researchers are able to examine the effect of missing-data patterns on the 
outcome (or outcomes) of interest. Furthermore, overall estimates can be obtained 
by averaging over the missing-data patterns. A psychiatric clinical trials data set is 
used to illustrate the random-effects pattern-mixture approach to longitudinal data 
analysis with missing data. 

Longitudinal studies occupy an important role in 
psychological and psychiatric research. In these stud- 
ies the same individuals are repeatedly measured on a 
number of  important variables over a series of  time- 
points. As an example, a longitudinal design is often 
used to determine whether a particular therapeutic 
agent can produce changes in clinical status over the 
course of  an illness. Another application for the lon- 
gitudinal study is to assess potential indicators of  a 
change, in the subject's clinical status; for example, 
the assessment of whether drug plasma level measure- 
ments indicate clinical outcome. 

Even in well-controlled situations, missing data in- 
variably occur in longitudinal studies. Subjects can be 
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missed at a particular measurement wave, with the 
result that these subjects provide data at some, but not 
all, study timepoints. Alternatively, subjects who are 
assessed at a given study timepoint might only pro- 
vide responses to a subset of  the study variables, again 
resulting in incomplete data. Finally, subjects might 
drop out of  the study or be lost to follow-up, thus 
providing no data beyond a specific point in time. 

One approach to analysis of  incomplete longitudi- 
nal data is use of  random-effects regression models, 
variants of which have been developed under a variety 
of  names: random-effects models (Laird & Ware, 
1982), variance component models (Dempster, Rubin, 
& Tsutakawa, 1981), hierarchical linear models (Bryk 
& Raudenbush, 1987), multilevel models (Goldstein, 
1986), two-stage models (Bock, 1989), random coef- 
ficient models (de Leeuw & Kreft, 1986), mixed mod- 
els (Longford, 1987), unbalanced repeated measures 
models (Jennrich & Schluchter, 1986), and random 
regression models (RRM; Bock, 1983a, 1983b; Gib- 
bons et al., 1993). Generalizations of  RRM have been 
developed for the case of  dichotomous response data 
(Conaway, 1989; Gibbons & Bock, 1987; Gibbons, 
Hedeker, Charles, & Frisch, 1994; Goldstein, 1991; 
Stiratelli, Laird, & Ware, 1984) and for the case of  
ordinal response data (Ezzet & Whitehead, 1991; 
Hedeker & Gibbons, 1994; Jansen, 1990). In addition 
to these articles, several book-length texts (Bryk & 
Raudenbush, 1992; Diggle, Liang, & Zeger, 1994; 
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Goldstein, 1995; Longford, 1993) further describe and 
illustrate use of these statistical models. 

An attractive and important feature of random- 
effects models in longitudinal data analysis is treat- 
ment of missing data. Subjects are not assumed to be 
measured at the same number of timepoints and, in 
fact, can be measured at different timepoints. Since 
there are no restrictions on the number of observations 
per individual, subjects who are missing at a given 
interview wave are not excluded from the analysis. 
The model assumes that data that are available for a 
given subject are representative of that subject's de- 
viation from the average trend lines that are observed 
for the whole sample. The model estimates the sub- 
ject's trend across time on the basis of whatever data 
that subject has, augmented by the time trend that is 
estimated for the sample as a whole and effects of all 
covariates in the model. 

As Laird (1988) pointed out, random-effects mod- 
els for longitudinal data with maximum likelihood 
estimation provide valid inferences in the presence of 
ignorable nonresponse. By ignorable nonresponse, it 
is meant that the probability of nonresponse is depen- 
dent on observed covariates and previous values of 
the dependent variable from the subjects with missing 
data. The notion here is that if subject attrition is 
related to previous performance, in addition to other 
observable subject characteristics, then the model pro- 
vides valid statistical inferences for the model param- 
eters. Since many instances of missing data are related 
to previous performance or other subject characteris- 
tics, the random-effects approach provides a powerful 
method for dealing with longitudinal data sets in the 
presence of missing data. 

In longitudinal studies, ignorable nonresponse falls 
under Rubin's (1976) "missing at random" (MAR) 
assumption, in which the missingness depends only 
on observed data and has also been termed "random 
dropout" by Diggle and Kenward (1994). It is impor- 
tant to distinguish MAR data from what Little (1995) 
referred to as "covariate-dependent" dropout, in 
which the missing data can be explained by model 
covariates (the independent variables in a model) but 
does not depend on observed values of the dependent 
variable. Covariate-dependent dropout is sometimes 
viewed as a special case of Rubin's (1976) "missing 
completely at random" assumption and has also been 
called "completely random dropout" by Diggle and 
Kenward (1994). The essential distinction between 
MAR and covariate-dependent missing data is that in 
addition to allowing dependency between the missing 

data and the model covariates, MAR allows the 
missing data to be related to observed values of the 
dependent variable. This distinction is important be- 
cause longitudinal statistical procedures like gener- 
alized estimating equations (GEE; Liang & Zeger, 
1986) assume that the data are covariate-dependent, 
while full likelihood-based procedures such as the 
random-effects models allow for MAR data. Thus, if 
the missing levels of the dependent variable are 
thought to be related to observed previous levels of 
the dependent variable (e.g., subjects with very bad or 
very good scores drop out), then likelihood-based ran- 
dom-effects analysis may be valid; however, GEE 
analysis, in general, is not. 

Recently, Little (1993, 1994, 1995) has described a 
general class of models dealing with missing data 
under the rubric of "pattern-mixture models." In par- 
ticular, Little (1995) has presented a comprehensive 
and statistically rigorous treatment of random-effects 
pattern-mixture models for longitudinal data with 
dropouts in which the usual MAR assumption is too 
restrictive. In these models, subjects are divided into 
groups on the basis of their missing-data pattern. 
These groups then can be used, for example, to ex- 
amine the effect of the missing-data pattern on the 
outcome (or outcomes) of interest. With the pattern- 
mixture approach, a model can be specified that does 
not require the missing-data mechanism to be ignor- 
able. Also, this approach provides assessment of de- 
gree to which important model terms (i.e., Group and 
Group x Time interaction) depend on a subject's 
missing-data pattern. Overall estimates can also be 
obtained by averaging over the missing-data patterns. 

The idea of using the missing-data pattern as a 
grouping variable is not new and has been proposed in 
many different contexts. For cross-sectional data, Co- 
hen and Cohen (1983, chap. 7) described this ap- 
proach for missing predictor variables in multiple re- 
gression analysis. For longitudinal data, Muth6n, 
Kaplan, and Hollis (1987) and Allison (1987) pro- 
posed using the multiple group facilities of structural 
equation modeling software to estimate and contrast 
models for different missing-data pattern groups. 
Most recently, McArdle and Hamagami (1992) have 
demonstrated how to model latent growth structural 
equation models for groups on the basis of missing- 
data patterns. As these latter articles indicate, struc- 
tural equation modeling provides a useful method for 
comparing and estimating longitudinal models for 
groups defmed by missing-data patterns. 

In this article, we describe the use of random- 
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effects pattern-mixture models in behavioral research 
and, in particular, illustrate the application and results 
of  analysis with these techniques. In addition to illus- 
trating how the missing-data patterns can be used as 
grouping variables in the analysis, though, we also 
describe how overall estimates can be obtained by 
averaging over pattern ( "mix ing"  the pattems). It 
should be noted that application of  the pattern-mixture 
approach is not limited to random-effects modeling; it 
can also be used with other longitudinal models that 
allow for missing data across time (e.g., structural 
equation models or GEE-based models). However, we 
describe its use only in terms of random-effects mod- 
els. Our aim is to illustrate that this combined ap- 
proach provides a practical and powerful tool for 
analysis of longitudinal data with missing values. 

A R a n d o m - E f f e c t s  Regress ion  Mode l  for  
Longi tud ina l  Data  

Let i and k denote subjects and repeated observa- 
tions, respectively. Assume that there are i = 1 . . . . .  
N subjects and k = 1 . . . . .  ni repeated observations 
per subject. Let the variable tik denote the value of  
time (i.e., day, week, year) for the kth measurement of  
subject i. Further suppose that there is a between- 
subjects (dummy-coded) grouping factor x i that is 
constant across time for a given subject, for example, 
treatment condition with x; = 0 for the control and x i 

= 1 for the experimental group. Consider the follow- 
ing random-effects regression model for Yik, the re- 
sponse of  subject i at time k: 

Yik = [30 + [31tik + [32xi + [33(Xi X tik ) 

+ Voi -t- Vl i t ik  -t- Eik , (1) 

where [330 is the intercept that represents in this model 
the value of  the dependent measure at Time 0 (tik = 
0) for the control group (x i = 0), [3~ is the linear effect 
of  time for the control group, [32 is the condition dif- 
ference at Time 0, and [33 is the condition difference 
in terms of the linear effect of time. Additionally, this 
model has two subject-specific effects Voi and vi i ,  
which represent the deviation of  each subject from 
their group intercept and linear trend, respectively. 
Typically, the subjects in a study and thus their cor- 
responding (subject specific) effects are thought to be 
representative of  a larger population of subject ef- 
fects, and so they are considered to be random, and 
not fixed, effects. To be treated as random effects, a 
form for the population distribution is specified, and 

often, the normal or multivariate normal distribution 
is specified. In the above model, with two random 
effects, a bivariate normal distribution is specified for 
the population distribution. Finally, the model residu- 
als ~ik are assumed to be independently distributed 
from a univariate normal distribution. 

Some researchers have described the model given 
in Equation 1 in terms of  a multilevel (Goldstein, 
1995) or hierarchical (Bryk & Raudenbush, 1992) 
structure. For this, the model is partitioned into the 
within-subjects (or Level 1) model 

Yik = boi + b l i t i k  + ~ik, (2) 

and between-subjects (or Level 2) model 

boi = [30 + [32xi + Voi 

b l i  = [31 -t- [33xi -t- v i i .  (3) 

The between-subjects model is sometimes referred to 
as a s lopes  as  o u t c o m e s  model (Burstein, Linn, & 
Capell, 1978). The multilevel representation shows 
that just as within-subjects (Level 1) covariates are 
included in the model to explain variation in Level 1 
outcomes (Yik), between-subjects (Level 2) covariates 
are included to explain variation in Level 2 outcomes 
(the subject's intercept boi and slope bli ). Note that 
combining the between- and within-subjects models 
yields the model given in Equation 1. 

More generally, the model can be written in terms 
of the n i × 1 vector of  responses across time, Yi, of 
subject i: 

Yi = X i ~  + Zil~i "1" Ei ( 4 )  

with 

Yi = the n i x 1 vector of  responses for subject i, 
X i = a known rt i × p design matrix, 
I~ = a p x 1 vector of  unknown population 

parameters, 
Z; = a known r/i × r design matrix, 
v i = a r x 1 vector of unknown subject effects 

distributed N(0, ~v), and 
•i = a n i × 1 vector of  random residuals distributed 

independently as N(0, ~Ei). 

Then marginally, the Yi are distributed as indepen- 
dent normals with mean Xi[~ and variance--covariance 
matrix Z i X v Z  ~ + ~ , i .  With the above example, for a 
subject measured across four timepoints with succes- 
sive values of time equal to 0, 1, 2, and 3 (e.g., weeks 
of  treatment), the matrix representation of  the model 
is written as 
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yell [moxi x/xOl[  ] [1 i] vi r ill 
Yi21 = 1 1 X i X i × 2 1  1 [Vli] / ~ i 2 1  
Yi31 1 2 x, xi×21 + 1 + |¢ /2  l 
Yi4 d 1 3 X i X i X 3 d ~3 1 L ~'i4 d 

Yi Xi [~i Zi vi f-i 

Thus, the matrix X i contains a column of ones for the 
intercept, a column for the n i values of time, a column 
for the condition effect (which would either equal all 
zeros or ones since, in this example, the condition 
does not change over time), and a column for the 
product of the condition and time values. Also, as is 
specified in the example above, the matrix Zi would 
replicate the first two columns of the X i matrix, con- 
taining a column of ones and a column with the values 
of time for the subject-specific intercept and time 
trend deviations, respectively. 

Notice that since the subject subscript i is present 
for the X~ and Z~ matrices, not all measurements need 
be made in all subjects at the same timepoints. That is, 
the actual values of time can vary from subject to 
subject (e.g., the values of the time variable for a 
given subject could be instead 0.5, 1.3, 1.9, and 3.1 
for the four timepoints). Furthermore, since the yg vec- 
tor and the X i and Z i matrices also carry the i sub- 
script, no assumption of complete data (across time- 
points) on the response or covariate measurements is 
being made. Thus, some subjects, for example, may 
have data from more or less than the four timepoints 
depicted in the model above. It is assumed, however, 
that for a given timepoint a subject has complete data 
on the response variable and all model covariates. 
Also, regarding the model residuals, it is often as- 
sumed that, conditional on the random effects, these 
are uncorrelated and homogeneously distributed. In 
that case, the simplifying assumption that ~ i  = 

tTEI n, × ni is made. For continuous response data, 
some researchers (Chi & Reinsel, 1989; Hedeker & 
Gibbons, 1996) have extended this model to allow for 
various forms of autocorrelated residuals. 

With regard to parameter estimation, extensive de- 
tails of maximum likelihood (ML) estimation for both 
the continuous and dichotomous response models can 
be found in Longford (1993), while Hedeker and Gib- 
bons (1994) discussed ML estimation of the model for 
ordinal responses. To determine the significance of 
specific model parameters, one obtains large-sample 

variances and covariances of the ML estimates, which 
can be used to construct confidence intervals and tests 
of hypotheses for the model parameters (Wald, 1943). 
Standard errors for the ML estimates are used to de- 
termine asymptotically normal test statistics (estimate 
divided by its standard error) for each parameter. 
These test statistics can then be compared with a stan- 
dard normal frequency table to test the null hypothesis 
that a given parameter equals zero. To test for statis- 
tical difference between alternative models, one uses 
the likelihood-ratio X 2 test (Silvey, 1975) in certain 
cases. This test is appropriate when a model, Model B 
for example, includes all the parameters of another 
model, say Model A, plus some additional terms. The 
likelihood-ratio test compares the relative fit of the 
data provided by Models B and A and thus determines 
the significance of including these additional terms in 
the statistical model of the data. The significance of 
the additional terms in Model B is determined by 
comparing 2(log L n - log LA) to a table of the X 2 
distribution with degrees of freedom equal to the 
number of additional parameters in Model B. If this 
likelihood ratio statistic exceeds the critical value of 
the ×2 distribution, the additional terms significantly 
improve model fit. 

Pattern-Mixture Models  

In a series of recent articles, Little (1993, 1994, 
1995) has formulated a general class of models under 
the rubric "pattern-mixture models" for the analysis 
of missing, or incomplete, data. There have been other 
developments on this topic (Glynn, Laird, & Rubin, 
1986; Marini, Olsen, & Rubin, 1980), as well as simi- 
lar developments for specific statistical models: linear 
regression (Cohen & Cohen, 1983), structural equa- 
tion models (Allison, 1987; McArdle & Hamagami, 
1992; Muth6n et al., 1987), and random-effects mod- 
els (Hogan & Laird, 1997). The recent articles by 
Little, however, provide a statistically rigorous and 
thorough treatment of these models in a general way. 

The first step in applying the pattern-mixture ap- 
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proach to handling missing data is to divide the sub- 
jects into groups on the basis of their missing-data 
pattern. For example, suppose that subjects are mea- 
sured at three timepoints; then there are eight (23) 
possible missing-data patterns: 

Pattern group Time 1 Time 2 Time 3 
1 O O O 
2 M O O 
3 O M O 
4 M M O 
5 O O M 
6 M O M 
7 O M M 
8 M M M 

where O denotes being observed and M being miss- 
ing. By grouping the subjects this way, we have cre- 
ated a between-subjects variable, the missing-data 
pattern, which can then be used in subsequent longi- 
tudinal data analysis, just as one might include a sub- 
ject 's  gender as a variable in the data analysis. 

Next, to utilize the missing-data pattern as a group- 
ing variable in analysis of longitudinal data, there is 
one important criterion: The method of  analysis must 
allow subjects to have complete or incomplete data 
across time. Thus, this approach will not work with a 
method that requires complete data across time, since 
in this case, only subjects with the complete data pat- 
tern (i.e., OOO) would be included in the analysis. For 
example, software for a multivariate repeated mea- 
sures analysis of  variance usually only includes sub- 
jects with complete data across time (i.e., pattern 
OOO), and so using the missing-data pattern as a 
grouping variable is not possible. Also, since the last 
pattern (MMM) provides no data, for practical pur- 
poses, this pattern is often ignored in data analysis, 

though this is not a requirement of  the general pattern- 
mixture method (see Little, 1993). For simplicity, 
however, in what follows we exclude this last pattern. 

In terms of  including the missing-data pattern in- 
formation in a statistical model, like the random- 
effects regression model, these seven pattems (i.e., 
excluding MMM from the analysis) can be repre- 
sented by six dummy-coded variables, for example, 
the (general) codings D1 to D6 given in Table 1. As 
given, these six dummy-coded variables represent de- 
viations from the nonmissing pattem (OOO). Other 
coding schemes can be used to provide altemative 
comparisons among the seven pattern groups, for ex- 
ample, "e f fec t "  or "sequential"  coding (see Darling- 
ton, 1990, pp. 232-241, or Cohen & Cohen, 1983, 
chap. 5). The dummy, or effect or sequential, coded 
variables are then entered, for example, into a longi- 
tudinal random-effects model as a main effect and as 
interactions with other model variables. In this way, 
one can examine (a) the degree to which the groups 
defined by the missing-data patterns differ in terms of 
the outcome variable (i.e., a main effect of  the miss- 
ing-data pattern dummy-coded variables) and (b) the 
degree to which the missing-data pattern moderates 
the influence of  other model terms (i.e., interactions 
with missing-data pattern). Also, from the model with 
the main effect and interactions of  missing-data pat- 
tern, submodels can be obtained for each of  the miss- 
ing-dam pattern groups, and overall averaged esti- 
mates (i.e., averaging over the missing-data patterns) 
can be derived for the model parameters. 

Modeling differences between all potential miss- 
ing-data patterns may not always be possible. For ex- 
ample, some of  the patterns, either by design or by 
chance, may not be realized in the sample. In some 
longitudinal studies, once a subject is missing at a 

Table 1 
Examples of Dummy-Variable Codings for Missing-Data Patterns: A Three-Timepoint Study 

Dummy codes by patterns of missing data 

General Monotone Last wave 

Pattern D 1 D2 D3 D4 D5 D6 M 1 M2 L 1 L2 
Incomplete 

(Ii) 

Not at 
final 
(F1) 

OOO 0 0 0 0 0 0 0 0 0 0 
MOO 1 0 0 0 0 0 0 0 
OMO 0 1 0 0 0 0 0 0 
MMO 0 0 1 0 0 0 0 0 
OOM 0 0 0 1 0 0 0 1 0 1 
MOM 0 0 0 0 1 0 0 1 
OMM 0 0 0 0 0 1 1 0 1 0 

Note. D = dummy code; O = observed; M = missing. 
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given wave, they are missing at all later waves. In this 
case, the number of  patterns with available data 
equals the number of  measurement waves. For our 
example with three waves, the three missing-data pat- 
terns (OMM, OOM, and OOO) would then represent 
a monotone pattern of  dropout. In this case, the two 
dummy-coded variables M1 and M2 given in Table 1 
could be used to represent differences between each 
of  the two dropout groups and the group of  subjects 
observed at all t imepoints. Again,  other coding 
schemes are possible. 

Even when there are data at intermittent waves, one 
might want to combine some of  the patterns to in- 
crease interpretability. For example, one might com- 
bine the patterns into groups on the basis of  the last 
available measurement wave. For this, with three 
timepoints, Table 1 lists dummy codes L1 and L2 :L1  
is a dummy-coded variable that contrasts those indi- 
viduals who were not measured after the first time- 
point with those who were measured at the last time- 
point, and L2 contrasts those subjects not measured 
after the second timepoint with those who were mea- 
sured at the last timepoint. Other recordings that may 
be reasonable include a simple grouping of  complete 
data versus incomplete data, as given by contrast I1 in 
Table 1, or missing at the final timepoint versus avail- 
able at the final timepoint, as given by contrast F1 in 
Table 1. 

In deciding on an appropriate grouping of  the miss- 
ing-data patterns, a few things need to be considered. 
One is the sparseness of  the patterns. If  a pattern has 
very few observations, it may not make sense to treat 
it as a separate group in the analysis. In this case, 
recoding the patterns to obtain fewer groupings is 
reasonable. Another consideration is the potential in- 
fluence of  the missing-data pattern on the response 
variable. In longitudinal studies, it is often reasonable 
to assume that the intermittent missing observations 
are randomly missing. In this case, recoding the pat- 
terns into groups on the basis of  the last available 
measurement wave is a sensible option. If  a large 
percentage of  subjects complete the study, it may be 
reasonable to simply contrast completers versus drop- 
outs. Another consideration is whether one is inter- 
ested only in estimating the main effects of  the miss- 
ing-data patterns or also in interactions with the 
missing-data patterns. For example, if one is inter- 
ested in examining whether the trends across time 
differ by the missing-data pattern (a Missing-Data 
Pattern x Time interaction), it is important to realize 
that the patterns with only one available observation 

(OMM, MOM, and MMO) provide no information for 
the assessment of  this interaction. 

Example  

Psychiatric Clinical Trials 

To illustrate application of  the pattern-mixture ap- 
proach to longitudinal data, we examined data col- 
lected in the National Institute of  Mental Health 
Schizophrenia Collaborative Study on treatment- 
related changes in overall severity. Specifically, we 
examined Item 79 of  the Inpatient Multidimensional 
Psychiatric Scale (IMPS; Lorr & Klett, 1966). Item 
79, Severity of  Illness, was scored as 1 = normal, not 
at all ill; 2 = borderline mentally ill; 3 = mildly ill; 
4 = moderately ill; 5 = markedly ill; 6 = severely 
ill; and 7 = among the most extremely ill. Previously, 
we have analyzed these data (or subsets of  these data) 
assuming a continuous scale for these 7 ordered re- 
sponse categories with random-effects regression 
(Gibbons, Hedeker, Waternaux, & Davis, 1988), di- 
chotomizing responses with random-effects binary 
probit regression (Gibbons & Hedeker, 1994), and 
recoding the seven ordered categories into four re- 
sponses with a random-effects ordinal probit regres- 
sion (Hedeker & Gibbons, 1994). In this illustration of 
the pattern-mixture approach, we treat this response 
variable as a continuous response with a random- 
effects regression model. 

In this study, patients were randomly assigned to 
receive one of  four medications: placebo, chlorprom- 
azine, fluphenazine, or thioridazine. Since our previ- 
ous analyses revealed similar effects for the three an- 
tipsychotic drug groups, they were combined in the 
present analysis. The experimental design and corre- 
sponding sample sizes are listed in Table 2. 

As can be seen from Table 2, most of  the measure- 
ment occurred at Weeks 0, 1, 3, and 6. However, not 
all subjects were observed at even these four time- 
points; instead, there is evidence of appreciable drop- 
out in this study. If we define study completion as 
those who were measured at Week 6, then completion 

Table 2 
Experimental Design and Weekly Sample Sizes 

Sample size at week 

Group 0 1 2 3 4 5 6 

Placebo (n = 108) 107 105 5 87 2 2 70 
Drug(n = 329) 327 321 9 287 9 7 265 

Note. Drug = Chlorpromazine, Fluphenazine, or Thioridazine. 
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rates of  65% (70 of  108) and 81% (265 of  329) were 
observed for placebo and drug patients, respectively. 
This difference in study completion differs signifi- 
cantly between the two groups, X2(1) = 11.25, p < 
.001, indicating that dropout was much more pro- 
nounced for the placebo treatment group. In what fol- 
lows, we are interested in examining more than just 
this association between dropout status and treatment 
group: instead, we examine the potential influence of 
dropout on the dependent measure, the severity of 
illness. In doing so, we also examine the interactive 
effect of  dropout with time and treatment-related in- 
fluences on the dependent variable. 

Separate Analysis o f  Completers and All 
Available Cases 

First, let us consider a model of  the changes in 
IMPS79 scores across time as a function of  treatment 
group, time, and the interaction of  Group x Time: 

IMPS79ik = [3 o + [31(Timeik) + [32(Drug i) + 
[33(Drug i x Time/k) + Voi + 
Vli(Timeik) + ~ik. (5) 

In terms of  a multilevel representation, this model can 
be partitioned into the within-subjects model, 

IMPS79ik = boi + bli(Timeik) + ~ik, (6) 

and the between-subjects model, 

boi = [30 + [32(Drug i) + VOi 
bli = [~1 + [33(Drugi) + vii. (7) 

To characterize treatment group differences in this 
model,  we use the variable Drug to represent a 
dummy-coded effect (placebo = 0 and drug = 1). 
Also, on the basis of  previous analysis, to linearize the 
relationship of  the IMPS79 scores over time, we 
chose a square root transformation of  time; that is, the 
variable Time equals the square root of  week (where 
week has values 0 thru 6). This nonlinearity of  
IMPS79 scores across time was characterized by a 
more pronounced improvement in IMPS79 scores in 
the initial part of the study, with a declining effect 
toward the end of  the study. Using the square root 
transformation for week has the effect of  assuming an 
equal improvement rate (i.e., an equal slope) not be- 
tween weeks but, instead, between weeks 0 to 1, 1 to 
4, and 4 to 9. Figure 1, which plots the observed and 
estimated group means (at weeks 0, 1, 3, and 6) across 
the square root of  week, presents a reasonable linear 
relationship (the estimation of  the group trend lines is 
discussed later). An alternative approach to dealing 
with a curvilinear trend across time would be to model 
IMPS79 scores in terms of  both linear and quadratic 
time effects; however, using the square root transfor- 

obs. placebo In = 107, 105, 87, 70] 

obs. drug In = 327, 321, 287, 265) 

- -  pred. placebo 

--- pred. drug 

1 i i i i i i i I ~ i i i i i 

-0.6 -0.2 0.2 0.6 1.0 1.4 1.8 2.2 2.6 

Week [in square r o o t  unite) 

Figure 1. Mean Inpatient Multidimensional Psychiatric Scale, Item 79 (IMPS79), across time and treatment group; obs. = 
observed; pred. = predicted. 
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mation has the advantage of  using only one parameter  
for the effect of  time and one for the Group x Time 
interaction. 

With this characterization of  the drug and time ef- 
fects, one can interpret the regression parameters as 
follows: [30 represents the average IMPS79 score at 
Week  0 for the placebo (Drug = 0) group; [31 repre- 
sents the average trend across time (sq rt week) for the 
placebo group; [32 represents the average difference in 
IMPS79 scores at Week 0 between the drug and pla- 

cebo groups; and [33 represents the average difference 
in trend lines between the drug and placebo groups. 
Furthermore, this model  allows for each person to 
deviate from the group trend line in terms of the in- 

tercept (Voi) and trend across time (vii). 
This random-effects regression model  was first fit 

including only completers (i.e., only the 335 subjects 
who were measured at Week  6) and then re-estimated 
with all 437 subjects. Estimates from the latter analy- 
sis were used to construct the predicted regression 
lines in Figure 1, and as can be seen, the model  fits the 
observed means well. Parameter estimates are pre- 
sented in the first two sets of  columns in Table 3. 
Conclusions based on these two analyses agree in 
terms of  indicating that the treatment groups do not 
significantly differ at baseline, that the placebo group 
does improve over time, and that the drug group has 
greater improvement over time in relation to the pla- 
cebo group. However,  the estimates of  the regression 
parameters,  though similar, do suggest some differ- 

ences. A more thorough examination is now under- 
taken to characterize and assess the significance of  
these differences. 

A Comparison o f  Completers  Versus Dropouts  

For this, let us define a variable Dropout with two 
values: 0 if  the person was measured at Week  6 (com- 
pleters) and 1 if  the person was not measured at Week 
6 (dropouts). Dividing subjects into these two groups 
is a simple characterization of  the missing-data pat- 
terns; however,  it provides a direct way of  assessing 
whether subjects who completed the study were simi- 
lar to those who did not. Figures 2a and 2b, respec- 
tively, plot the observed and estimated group means at 
Weeks 0, 1, 3, and 6 (in sqrt week units) for the 
completers  and the dropouts (the est imated group 
trend lines are discussed below). The plots suggest 
that the improvement rate of  drug as compared with 
placebo is more pronounced among those subjects 
who dropped out then among the completers. A pos- 
sible interpretation of  this is that dropout occurred for 
different reasons for the two groups: For  the placebo 
subjects, dropouts were those exhibiting the least re- 
sponse to treatment, while for the drug group the 
dropouts had the quickest and most pronounced re- 
sponse to treatment. 

To examine this possibil i ty in a more formal man- 
ner, let us augment the model  given by Equation 5 in 
the following way: 

Table 3 
NIMH Schizophrenia Collaborative Study: Severity of lllness (IMPS79) Across Time (N = 437), RRM Parameter Estimates 
(Est.), Standard Error (SE), and p Values 

Completers (N = 335) All subjects (N = 437) Pattern mixture (N = 437) 

Parameter Est. SE p< Est. SE p< Est. SE p< 

Intercept 5.221 .109 .001 5.348 .088 .001 5.221 .108 .001 
Time (sqrt week) -.393 .073 .001 -.336 .068 .001 -.393 .076 .001 
Drug (0 = placebo; 1 = drug) .202 .123 .10 .046 .101 .65 .202 .121 .10 
Drug x Time -.539 .083 .001 -.641 .078 .001 -.539 .086 .001 
Dropout (0 = no; 1 = yes) .320 .186 .09 
Dropout x Time .252 .159 .12 
Dropout x Drug -.399 .227 .08 
Dropout x Drug x Time -.635 .196 .002 
Intercept variance .398 .068 .369 .060 .361 .060 
Intercept-Time covariance -.011 .035 .021 .034 .012 .033 
Time variance .205 .031 .242 .032 .230 .032 
- 2  log L 3782.1 4649.0 4623.3 

Note. p values are not given for variance and covariance estimates (see Bryk & Raudenbush, 1992 p. 55). NIMH = National Institute of 
Mental Health; RRM = random regression models; IMPS79 = Inpatient Multidimensional Psychiatric Scale, Item 79. 
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b ~  
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obs. drug (n = 263, 260, 253, 265)  
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Figure 2. 
completers and (b) time and treatment group for dropouts; obs. = observed; pred. = predicted. 

Mean Inpatient Multidimensional Psychiatric Scale, Item 79 (IMPS79), across (a) time and treatment group for 

IMPS79ik = 130 + 131(Timeik) + 132(Drugi) 
+ 133(Drugi X Time/k) + 84(Dropouti) 
+ 135(Dropouti x Time/k ) 
+ 136(Dropouti X Drug/) 
+ 137(Dropouti × Drug i × Tim%) 
-}- 1)Oi "~- Vli(Timeik) + ~'ik ( 8 )  

Note that for a multilevel representation, the within- 
subjects model is the same as that in equation 6; how- 
ever, the between-subjects model is now given as 

boi = 8o + 132(Drugi) + 134(Dropouti) 
+ 136(Dropouti x Drug/) + Voi 

bli = 81 -I" 83(Drugi) + 135(Dropouti) 
+ 137(Dropouti × Drug/) + vii. (9) 

Here, with the coding of the variables, Drug, Dropout, 
and Time as described, the regression coefficients 130 
and 131 represent the intercept and trend for the pla- 
cebo completers (both Drug and Dropout equal zero), 
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while parameters [32, [34, and [36 represent baseline 
differences relative to the placebo completers, and [33, 
[35, and [37 represent trend differences relative to the 
placebo completers. Specifically, the intercept [30 rep- 
resents the average IMPS79 score at Week 0 for pla- 
cebo completers, the Drug effect [32 represents the 
difference in average IMPS79 scores at Week 0 be- 
tween drug completers and placebo completers, the 
Dropout effect [34 represents the difference in average 
IMPS79 scores at Week 0 between placebo dropouts 
and placebo completers, and the Dropout × Drug in- 
teraction effect [36 represents the difference in average 
Week 0 IMPS79 score differences (drug vs. placebo) 
between dropouts and completers, or analogously, [36 
represents the difference in average Week 0 IMPS79 
score differences (dropout vs. completer) between 
drug and placebo. In other words, [36 assesses the 
degree to which the drug versus placebo difference at 
baseline varies depending on whether the subject sub- 
sequently completes the study. Thus, terms [32, [34, 
and [36 represent differences among the four groups 
(placebo completers, drug completers, placebo drop- 
outs, and drug dropouts) at baseline. 

Similarly, the time-related terms [31, [33, [35, and [37 
represent differences among the four groups in terms 
of trends across time. The time effect [31 represents 
the average IMPS79 (sqrt) weekly trend for placebo 
completers (both Drug and Dropout equal zero). The 
Drug × Time effect [33 represents the difference in 
average IMPS79 (sqrt) weekly trend lines between 
drug and placebo completers. The Dropout × Time 
effect [35 represents the difference in average IMPS79 
(sqrt) weekly trend lines between placebo dropouts 
and placebo completers. The three-way Dropout × 
Drug × Time interaction effect [37 represents the dif- 
ference in average IMPS79 (sqrt) weekly trend-line 
differences (drug vs. placebo) between dropouts and 
completers, or analogously, [37 represents the differ- 
ence in average IMPS79 (sqrt) weekly trend line dif- 
ferences (dropout vs. completer) between drug and 
placebo. As before, each person is allowed to deviate 
from the group trend line in terms of the intercept (Vo/) 
and trend across time (vii). 

In Model 5 the assessment of the two-way interac- 
tion of Drug × Time was crucial, since it represents 
the degree to which drug differences vary across time. 
Similarly, in Model 8 the assessment of the three-way 
interaction is of primary interest, since it represents 
the degree to which the Drug x Time interaction var- 
ies by study completion. For example, if as suggested, 
dropouts in the placebo group are those subjects who 

are the most unresponsive to (placebo) treatment, 
while dropouts in the drug group are those subjects 
who are the most responsive to (drug) treatment, then 
the Drug × Time interaction would be greater for 
dropouts than for completers, and presumably, the 
estimate of the three-way interaction term would de- 
viate from zero. The three-way interaction term thus 
indicates the degree to which a conclusion regarding 
the Drug × Time interaction depends on a subject's 
completion of the study. The results of this analysis 
are listed in the last set of columns in Table 3 (labeled 
pattern mixture). 

The likelihood ratio test for the joint significance of 
the Dropout-related model terms ([34 through [37) 
yields LRx 2 = 4649.0 - 4623.3 = 25.7, which on 4 
degrees of freedom is highly significant (p < .001). 
This test then confirms that study dropout and inter- 
actions with study dropout are significantly related to 
IMPS79 scores, over and above the influences of 
group, time, and Group × Time. In terms of the sig- 
nificance of the individual regression coefficients, 
from Table 3, we see that while the baseline differ- 
ences between groups are not statistically significant, 
some group interactions with time are statistically sig- 
nificant. Overall, the time effect is significant, indi- 
cating that there was significant improvement across 
time in IMPS79 scores for placebo completers. The 
significant Drug × Time interaction indicates that 
improvement across time is significantly more pro- 
nounced for drug completers than for placebo com- 
pleters. The nonsignificant Dropout × Time interac- 
tion indicates that for placebo subjects, improvement 
across time was not significantly different for drop- 
outs than for completers. This result does not support 
our earlier suggestion; however, the significant three- 
way interaction indicates that the Drug × Time inter- 
action (which indicates a more dramatic improvement 
over time for drug subjects than for placebo subjects) 
is significantly more pronounced for dropouts than for 
completers. On the basis of the model estimates, we 
can derive the estimated trend lines for the four 
groups that are depicted in Figures 2a and 2b: 

Placebo completers 

IMPSik = 5.221 -.393(Timeik) 

Drug completers 

I~"Sik = (5.221 + .202) - (.393 + .539)(Timeik ) 
= 5 . 4 2 3 -  .932(Timeik ) 
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Placebo dropouts 

IMPS,., = (5.221 + .320) - (.393 - .252)(Timeik) 
= 5.541 - .141(Timeik) 

Drug dropouts 

IMPSa = (5.221 + .202 + .320 - .399) 
- (.393 + .539 - .252 + .635)(Timeik) 

= 5 . 3 4 4 -  1.315(Timeik ) 

These estimated trend lines fit the observed means 
very well and illustrate that although all groups start 
the study, on average, between markedly and severely 
ill (i.e., between IMPS79 values of 5 and 6), the es- 
timated improvement rate over time depends on both 
the treatment and completion status. In particular, the 
estimated improvement rate is most pronounced for 
dropouts in the drug treatment and least pronounced 
for dropouts in the placebo treatment. 

Thus far, the analysis has indicated that the treat- 
ment effect across time varies by completion status. 
An additional step in the pattern-mixture approach is 
necessary to yield overall population estimates aver- 
aging over the missing-data patterns. Little (1993, and 
1995) and Hogan and Laird (1997) discussed this step 
of averaging over pattern to yield estimates for the 
whole population, and Dawson and Lagakos (1993) 
and Dawson (1994) described an approach for obtain- 
ing an overall statistical test comparing treatment 
groups that are stratified on missing-data pattern. In 
the present case, on the basis of the final model, we 
can obtain estimates for the four fixed effects (Inter- 
cept, Time, Drug, and Drug x Time) separately for 
completers, 

[~c) = [5 .221- .393 .202- .539] ' ,  (10) 

and for dropouts, 

~(a~ = 13(c) + [.320.252 -.399 -.635]'  
= [5 .541- .141- .197-1 .174] ' .  (11) 

Averaged estimates for these four parameters (de- 
noted ~g) are then equal to 

= "rr~)~¢c) + "rr(a)[3 (a), (12) 

where ~(¢) and ~r (d) represent the population weights 
for completers and dropouts, respectively. Although 
these weights are not usually known, they can be es- 
timated by the sample proportions (335/437 and 102/ 
437 for completers and dropouts, respectively). This 
yields 

= [5 .296- .335 .109- .687] '  (13) 

as the averaged overall estimates. To obtain corre- 
sponding estimates of the standard errors for these 
overall estimates, the delta method as described in 
Hogan and Laird (1997) can be used: 

,fr(C),fr (d) ^ 
+ N ([3(hc) - ~(ff))2' (14) 

where h = 1,2,3,4 denotes the four fixed effects, N = 
437 is the total number of subjects, and V(l~h) denotes 
the estimate of the variance of [3 h (i.e., the square of 
its estimated standard error). The last term in the sum 
is the contribution to the variance that is added be- 
cause the proportion of completers (and dropouts) is 
estimated in the sample. The estimated standard errors 
for these four overall terms are then .090, .067, .103, 
and .079. 

As a slightly more sophisticated approach, the es- 
timated proportions of completers and dropouts can 
be obtained when stratified by treatment group, yield- 
ing estimated proportions of, respectively, (70/108) 
and (30/108) for placebo and (265/329) and (64/329) 
for drug. Using these estimated proportions is akin to 
stating that study completion varies by, or depends on, 
treatment group. As it was shown earlier that comple- 
tion did vary by treatment group for this study, these 
stratified estimates for the missing-data pattern groups 
are probably more reasonable than are the overall 
marginal proportions. Using these as estimates yields 
overall estimates: 

= [5.334-.305 .124- .662] ' ,  (15) 

with estimated standard errors as .089, .071,. 105, and 
.078. 

Either of these sets of overall estimates and accom- 
panying standard errors, which are obtained by aver- 
aging over the missing-data patterns, is very similar to 
those obtained from the RRM analysis that ignores the 
missing-data patterns (i.e., from the RRM analysis of 
all 437 subjects presented in the second set of col- 
umns in Table 3). In particular, using any of these sets 
of estimates and standard errors yields nearly identical 
z statistics (i.e., estimate divided by its standard error) 
for these four model parameters and the same conclu- 
sions: significant differences from zero for all param- 
eters except the drug effect (i.e., the drug difference at 
baseline). Thus, for this example, the pattern-mixture 
model provides the same general conclusion in terms 
of the overall treatment group trends across time. 
However, it also reveals the mixture of trends that 
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exist on the basis of the missing-data patterns (i.e., 
dropouts and completers) within each treatment 
group. 

Discussion 

Since missing values in longitudinal studies are 
more often the norm than the exception, it is impor- 
tant for the data analyst to consider various alterna- 
tives for longitudinal data analysis with missing val- 
ues. A naive approach might be to ignore subjects 
with incomplete data and model only those subjects 
measured at all timepoints. Clearly, this approach can 
only be reasonable to the extent that these two groups 
of subjects (those with and without missing values) do 
not systematically differ. However, subjects with 
missing values are often quite different from those 
subjects with complete data, and so an analysis that 
focuses exclusively on the latter group suffers from a 
selection problem: The population that is being gen- 
eralized to is not the full population but rather the 
subpopulation with characteristics only of the com- 
plete-data subjects. Furthermore, even in the unlikely 
case that the two groups are not different, an analysis 
that ignores some of the available data is not an effi- 
cient analysis, yielding underpowered statistical tests. 

Analysis using random-effects models goes further 
in providing a realistic model for both subjects with 
complete and incomplete data. The assumption of ig- 
norable nonresponse (Laird, 1988)--that the missing 
data are missing at random, conditional on both model 
covariates and observed values of the dependent vari- 
a b l e - i s  often reasonable, and so the statistical tests 
provided by these models remain valid. In this article, 
we have illustrated how to augment these random- 
effects models by including variables defined by a 
subject's pattern of missing data. In so doing, a model 
can be specified that does not require the missing-data 
mechanism to be ignorable. Also, the pattern-mixture 
approach provides assessment of degree to which (the 
influence of) model terms vary by the missing-data 
patterns and provides a way of obtaining estimates, 
averaging over the missing-data patterns. In our ex- 
ample, we considered a very simple characterization 
of the pattern-mixture approach, focusing on only one 
aspect of the missing-data patterns: Was the subject 
measured at the last study timepoint or not? Though 
simple, it was clearly able to account for the differ- 
ential association between study dropout and symp- 
tom severity for the two condition groups (drug and 
placebo). By using a simple example of the pattern- 

mixture approach, we highlighted the accessibility of 
this approach. Clearly, a simple, yet sensible, ap- 
proach to handling the missing data is better than 
simply ignoring them and hoping for the best. 

The complexity of the approach taken may depend 
on the amount of missing data. For example, if a study 
has only a handful of subjects with missing data 
across time, it may not matter, in practical terms, 
whether the subjects with missing data are ignored or 
included as a group in the analysis. Clearly, the sta- 
tistical power for detecting effects (i.e., main effects 
and interactions) due to missing-data patterns are 
lower, all other things being equal, as the numbers of 
subjects in those patterns are reduced. In other words, 
an effect or interaction due to missing-data pattern 
group is more likely to be detected, all other things 
being equal, the more missing data there are. While it 
is difficult to give general guidelines for the treatment 
of missing-data patterns in a given analysis (i.e., num- 
ber of missing-data patterns or grouping together of 
missing-data patterns), the considerations are similar 
to those encountered when dealing with other be- 
tween-subjects grouping variables. 

Besides the pattern-mixture approach, other meth- 
ods have been proposed to handle missing data in 
longitudinal studies (Diggle & Kenward, 1994; Heck- 
man, 1976; Heyting, Tolboom, & Essers, 1992; 
Leigh, Ward, & Fries, 1993). Many of these alterna- 
tive approaches are termed selection models and in- 
volve two stages that are performed either separately 
or iteratively. The first stage is to develop a predictive 
model for whether or not a subject drops out with 
variables obtained prior to the dropout, often the vari- 
ables measured at baseline. This model of dropout 
provides a predicted dropout probability or propensity 
for each subject; these dropout propensity scores are 
then used in the (second stage) longitudinal data 
model as a covariate to adjust for the potential influ- 
ence of dropout. By modeling dropout, selection mod- 
els provide valuable information regarding the predic- 
tors of study dropout; however, an advantage of 
pattern-mixture models is that they can be used even 
when no such predictors are available. Further discus- 
sion on some of the differences between pattern- 
mixture and selection models can be found in Glynn 
et al. (1986), Little (1993, 1994, 1995), and the dis- 
cussion section of the Diggle and Kenward (1994) 
article. 

In this article, we have focused on the situation in 
which the dependent variable is missing across time. 
Alternatively, in some studies, some of the explana- 
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tory variables may be missing either at baseline or 
across time. The use of dummy variables has also 
been proposed for situations involving missing ex- 
planatory variables (Cohen & Cohen, 1983); however 
a recent article (Jones, 1996) has called this approach 
into question. Little (1992) describes more general 
methods for dealing with missing explanatory vari- 
ables. 

Methods for appropriately handling missing data 
are increasingly being developed, allowing research- 
ers the ability to more effectively deal with this po- 
tential threat to validity. With this in mind, it is im- 
portant  that researchers  consider  the reasons for 
missing data in their own data sets and to choose 
among statistical methods with these reasons in mind. 
In doing so, researchers can address the issue of  how 
well the statistical model  they are using represents 
both the observed and the unobserved data. 
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A p p e n d i x  

C o m p u t e r  I m p l e m e n t a t i o n  W i t h  S A S  P R O C  M I X E D  

A listing of the SAS PROC MIXED program that was 
used to obtain the random-effects regression estimates pre- 
sented in this article is included. Prior to the PROC MIXED 
analyses, subjects are classified as either completers or 
dropouts. For this, the maximum value of the WEEK vari- 
able for each subject is obtained using PROC MEANS. 
Then a subject is classified as a completer if their maximum 
WEEK value is equal to 6 (DROPOUT = 0) or as a dropout 
if it is less than 6 (DROPOUT = 1). Data sets are then 
merged to combine the DROPOUT subject-level variable 
with the other variables and also to create a data set for 
completers only. Three PROC MIXED analyses are run: (a) 
for all subjects ignoring the DROPOUT status, (b) for sub- 
jects who completed the study only, and (c) the pattern- 
mixture model including DROPOUT as a covariate, includ- 
ing interactions. In all three analyses, the intercepts and 
slopes due to time are treated as random (i.e., subject- 
varying) terms. This same analysis can also be performed 
with other software that performs random-effects analysis, 
for example, the BMDP 5V procedure, HLM (Bryk, 
Raudenbush, & Congdon, 1994), MIXREG (Hedeker & 
Gibbons, 1996), MLn (Rasbash, Wang, Woodhouse, & 
Goldstein, 1995) and VARCL (Longford, 1986). Additional 
work is necessary to obtain the pattern-mixture averaged 
results: the SAS IML program used to obtain the pattern- 
mixture averaged results and the data for this example can 
be obtained from World Wide Web site http://www.uic.edu/ 
-hedeker/mix.html. 

TITLE1 'Random-effects analysis of NIMH Schizophrenia 
longitudinal data'; 
DATA ONE; INFILE 'C:kDATAX,schizrep.dat'; 
INPUT ID IMPS79 WEEK DRUG SEX; 

/* The coding for the variables is as follows: 
ID = subject ID number 
IMPS79 = overall severity 
(1 = normal, 2 = borderline mentally ill, 3 = mildly ill, 4 
= moderately ill, 5 = markedly ill, 6 = severely ill, 7 = 
among the most extremely ill) 
WEEK = 0, I, 2, 3, 4, 5, 6 (most of the obs. are at weeks 
0,1,3, and 6) 
DRUG 0 = placebo 1 = drug (chlorpromazine, fluphen- 
azine, or thioridazine) 
S E X 0  = female 1 = ma le* /  

/* compute square root of WEEK to linearize relationship */ 
SWEEK = SQRT(WEEK); 

/* calculate the maximum value of WEEK for each subject 
(suppress the printing of the output for this procedure)*/ 

PROC MEANS NOPRINT; CLASS ID; VAR WEEK; 
OUTPUT OUT = TWO MAX = MAXWEEK; 
RUN; 

/* determine if a subject has data at WEEK 6 
DROPOUT = 0 (for completers) or = 1 (for dropouts) */ 
DATA THREE; SET TWO; 
DROPOUT = 0; 
IF MAXWEEK LT 6 THEN DROPOUT = 1; 

/* data set with all subjects (adding the DROPOUT vari- 
able) */ 
DATA FOUR; MERGE ONE THREE; BY ID; 
/*data set with completers only (present at WEEK 6) */ 
DATA FIVE; MERGE ONE THREE; BY ID; 
IF DROPOUT EQ 0; 

TITLE2 'Analysis on All Subjects'; 
PROC MIXED DATA = FOUR METHOD = ML; 
CLASS ID; 
MODEL IMPS79 = SWEEK DRUG DRUG*SWEEK / 
SOLUTION; 
RANDOM INTERCEPT SWEEK / SUB = ID 
TYPE = UN G; 
RUN; 

TITLE2 'Analysis on Completers Only'; 
PROC MIXED DATA = FIVE METHOD = ML; 
CLASS ID; 
MODEL IMPS79 = SWEEK DRUG DRUG*SWEEK / 
SOLUTION; 
RANDOM INTERCEPT SWEEK / SUB = ID 
TYPE = UN G; 
RUN; 

TITLE2 'Analysis on All Subjects - Pattern-Mixture 
Model';  
PROC MIXED DATA = FOUR METHOD = ML; 
CLASS ID; 
MODEL IMPS79 = SWEEK DRUG DRUG*SWEEK 

D R O P O U T  D R O P O U T * S W E E K  
DROPOUT*DRUG 
DROPOUT*DRUG*SWEEK / 
SOLUTION; 

RANDOM INTERCEPT SWEEK / SUB = ID 
TYPE = UN G; 
RUN; 
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