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Application of Random-Effects Probit Regression Models

Robert D. Gibbons and Donald Hedeker

A random-effects probit model is developed for the case in which the outcome of interest is a series
of correlated binary responses. These responses can be obtained as the product of a longitudinal
response process where an individual is repeatedly classified on a binary outcome variable (e.g., sick
or well on occasion ¢), or in “multilevel” or “clustered” problems in which individuals within groups
(e.g., firms, classes, families, or clinics) are considered to share characteristics that produce similar
responses. Both examples produce potentially correlated binary responses and modeling these per-
son- or cluster-specific effects is required. The general model permits analysis at both the level of the
individual and cluster and at the level at which experimental manipulations are applied (e.g., treat-
ment group). The model provides maximum likelihood estimates for time-varying and time-invari-
ant covariates in the longitudinal case and covariates which vary at the level of the individual and at
the cluster level for multilevel problems. A similar number of individuals within clusters or number
of measurement occasions within individuals is not required. Empirical Bayesian estimates of per-
son-specific trends or cluster-specific effects are provided. Models are illustrated with data from

mental health research.

There has been considerable interest in rar .om-effects
models for longitudinal and hierarchical, clustered, or
multilevel data in the statistical literatures for biology (Jennrich
& Schluchter, 1986; Laird & Ware, 1982; Ware, 1985; Wa-
ternaux, Laird, & Ware, 1989; Hedeker & Gibbons, 1994), ed-
ucation (Bock, 1989; Goldstein, 1987), psychology (Bryk &
Raudenbush, 1987; Willett, Ayoub, & Robinson, 1991), bio-
medicine (Gibbons, Hedeker, Waternaux, & Davis, 1988; Hed-
eker, Gibbons, Waternaux, & Davis, 1989; Gibbons et al.,
1993), and actuarial and risk assessment (Gibbons, Hedeker,
Charles, & Frisch, in press). Much of the work cited here has
been focused on continuous and normally distributed response
measures. In contrast, there has been less focus on random-
effects models for discrete data. Gibbons & Bock (1987) have
developed a random-effects probit model for assessing trend in
correlated proportions, and Stiratelli, Laird, and Ware (1984)
have developed a random-effects logit model for a similar appli-
cation. Using quasi-likelihood methods in which no distribu-
tional form is assumed for the outcome measure, Liang and
Zeger (1986; Zeger & Liang, 1986) have shown that consistent
estimates of regression parameters and their variance estimates
can be obtained regardless of the time dependence. Koch, Lan-
dis, Freeman, Freeman, and Lehnen (1977) and Goldstein
(1991) have illustrated how random effects can be incorporated
into log-linear models. Finally, generalizations of the logistic re-
gression model in which the values of all regression coefficients
vary randomly over individuals have also been proposed by
Wong and Mason (1985) and Conoway (1989).
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The purpose of this article is to describe the random-effects
probit model of Gibbons and Bock (1987) and further general-
ize it for application to a wider class of problems commonly
encountered in the behavioral sciences, including hierarchical
or clustered samples, estimation of time-varying and time-in-
variant covariates, marginal maximum likelihood estimation of
structural parameters, and empirical Bayesian estimation of
person-specific or cluster-specific effects and illustrate its appli-
cation. A detailed description of data giving rise to the need for
this type of statistical modeling is now presented.

Longitudinal Data

In general, we consider the case in which the same units are
repeatedly sampled at each level of an independent variable and
classified on a binary outcome. Specifically, we are interested in
repeated classification of individuals on a series of measure-
ment occasions over time. In a clinical trial, for example, pa-
tients may be randomly assigned to treatment and control con-
ditions and repeatedly classified in terms of presence or absence
of clinical improvement, side effects, or specific symptoms. We
also may be interested in comparing rate of improvement (e.g.,
proportion of patients displaying the symptom) between treat-
ment and control conditions (Gibbons & Bock, 1987), which
may be tested by assuming that each individual follows a
straight-line regression on time. Probability of a positive re-
sponse depends on that individual’s slope and a series of covari-
ates that may be related to the probability of response. Covari-
ates can take on fixed values for the length of the study (e.g.,
sex or type of treatment) or occasion-specific values (e.g., social
supports or plasma level of a drug). Table 1 illustrates the longi-
tudinal data case.

Table 1 describes a 4-week longitudinal clinical trial in which
patients who are randomly assigned to one of two treatment
groups (e.g., active treatment versus placebo control) are repeat-
edly classified on a binary outcome measure. Drug plasma lev-
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Table 1
Longitudinal Data
Time(k=0,...,n— 1)at week:

Subject(i=1,...,N) 0 1 2 3 4
Outcome; 0 0 1 1 0
Treatment group, 1 1 1 1 1
Plasma, 10 10 20 30 10
Outcome, 1 0 0 na 0
Treatment group, 0 ¢ 0 na 0
Plasma, 30 20 20 na 20
Outcome,.v. . ' O . 0 ' 0 . -1. ’ .1.
Treatment groupy 1 1 1 1 1
Plasmay 20 30 40 40 10
Note. i=1...Nsubjects; k= 1...n; observations on subject i; na =

not available.

els are included to determine if a relationship exists between
blood level and clinical response. Note that treatment group is
constant over time (time-invariant covariate), whereas plasma
level is measured in time-specific values (time-varying covari-
ate). There is no requirement that each individual must have
measurements on each occasion. Indeed, Subject 2 appears to
have been unavailable for the Week 3 assessment. The model
provides flexible treatment of missing data. It assumes that
available data accurately represent trend. For example, if a sub-
ject drops out because of nonresponse, we assume that absence
of positive trend will persist as if the patient had remained in
the study. More generally, we assume that available data charac-
terize the deviation of each subject from the group-level re-
sponse.

Clustered Data

An analogous situation to the longitudinal data problem
arises in the context of clustered data. Here, repeated classifi-
cations are made on individual members of the cluster. To the
extent that classifications between members of a cluster are sim-
ilar (i.e., intraclass correlation), responses are not independent
and the assumptions of typical models for analysis of binary
data (e.g., log-linear models, logistic regression, chi-square sta-
tistics) do not apply. These methods assume there are n inde-
pendent pieces of information, but to the extent that intraclass
correlation is greater than zero, this is not true.

As in the longitudinal data case, we can have covariates at
two levels. Person-specific and cluster-specific covariates can be
simultaneously estimated. In addition, there is no requirement
that clusters have the same number of members. As an example,
consider a family study in which presence or absence of depres-
sion in each member is evaluated in terms of overall level of
familial support, life events, sex, and age. The family represents
the cluster level variable and familial support is a cluster-level
covariate. Life events, sex, and age vary at the individual level
within a familial cluster. Because families vary in size, there is
no restriction that number of members in a familial cluster be

constant. We must be careful to include intrafamilial correla-
tion of these classifications in our computations (i.e., siblings
are more likely to exhibit comorbidity for depression than un-
related individuals). Treatment of these data as if they were in-
dependent (i.e., from unrelated individuals) would result in
overly optimistic (i.e., too small) estimates of precision (i.e.,
standard errors). Had we examined proportion of affected rela-
tives, we would have lost the ability to correlate outcome with
individual personal characteristics (i.¢., sex and life events of the
relative). Considerable statistical power is gained if the unique
portion of each individual’s response is included in the analysis.

An example of a clustered dataset is presented in Table 2.
The data presented in Table 2 may apply to the family study,
where clusters represent N families each with »; members. For
each family, there is a cluster-level covariate (i.e., family sup-
port) and an individual-level covariate (i.e., age of the relative).
These data may be collected to examine effects of age and family
support on incidence of depression {i.e., outcome) within fami-
lies.

A Random-Effects Probit Regression Model

Gibbons and Bock (1987) have presented a random-effects
probit regression model to estimate trend in a binary variable
measured repeatedly in the same subjects. In this article, we
provide an overview of a general method of parameter estima-
tion for both random and fixed effects. We also discuss empiri-
cal Bayes estimates of person-specific or cluster-specific effects
and corresponding standard errors, so that trend at group and
individual levels may be evaluated. In the first two sections, we
describe a model with one random effect, adaptable to either
clustered or longitudinal study designs. In the third section, we
describe a model with two random effects suited to longitudinal
data analysis.

A Model for Clustered Data

We begin with the following model for subject k (where k& =
1,2,...,n)inclusteri (i = 1, ..., Nclusters in the sample).

Table 2
Clustered Data

Subject(k=1,...,n):

Clusper(i=l,...,N) i 2 3.5
Outcome; 0 0 1...0
Family support, 1 1 ... 1
Age, 10 10 20...10
Outcome; 1 0 0...0
Family support, 0 0 0...0
Age, 30 20 20...20
Outcome;v. ' . 0 0 0...1
Family supporty i 1 1...1
Agey 20 30 40...10
Note. i=1...Nclusters;k=1...n;subjectsin cluster i.
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Vie = a; + Bixy, + Baxz, + €, ¢

where yi = the unobservable continuous “response strength”
for subject k in cluster i; a; = the random effect of cluster i; 8, =
the fixed effect of the cluster level covariate x;; 8> = the fixed
effect of the subject level covariate x,; and ¢; = an independent
residual distributed N(O, ¢%). Here, o; represents a coefficient
for the random cluster effect. The assumed distribution for the
a; is N(uo, o2). The coefficient a; represents the deviation of
cluster i from the overall population mean y,, conditional on the
covariate values for that person and cluster. Conditional on the
covariates, the »n; X | vector of subject response strengths for
cluster i, y; are multivariate normal with mean E(y;) = 1,u, +
X,8; and covariance matrix V(y;) = 621;1} + ¢*I;, where 1; is an
n; X 1 unity vector, I, is an n; X n; identity matrix, 8is the p X 1
vector of covariate coefficients, and X; is the n; X p covariate
matrix.

To relate the manifest dichotomous response with the un-
derlying continuous response strength y;, Gibbons and Bock
(1987) used a “threshold concept” (Bock, 1975, p. 513). They
assume the underlying variable is continuous, and that in the
binary response setting, one threshold value (v) exists on the
continuum of this variable. The presence or absence of a posi-
tive response for subject & in cluster i is determined by whether
underlying response strength exceeds the threshold value. When
response strength exceeds the threshold, a positive response is
given (coded vy = 1), otherwise a negative response is given
(coded vy = 0).

Using the threshold model we can express probability of a
positive response in terms of the value 1 — &(z;); that is, the area
under the standard normatl distribution function at the point z,
where z; is the normal deviate given by (a + 81x1 + 82Xz, — v)/
o. Additionally, origin and unit of z may be chosen arbitrarily, so
for convenience, let o = 1 and v = 0. Probability of a particular
pattern of responses for the n; subjects in cluster i, denoted v;, is
the product of probabilities for the z; binary responses, namely,

n

i

(vl o, 8) = T [#(za)]' {1 — Bz} @

k=1

Thus, marginal probability of this pattern is given by.
a(y;) = f ;| o, B)g(a)de,

where [(v;]| a, 8) is given above, and g(«) represents the distribu-
tion of a in the population, (normal distribution with mean p,
and variance o2).

Orthogonalization of the Model Parameters

In parameter estimation for the random-effects probit regres-
sion model, Gibbons & Bock (1987) orthogonally transform the
response model to use the marginal maximum likelihood esti-
mation procedure for the dichotomous factor analysis model
discussed by Bock and Aitken (1981). The orthogonalization
can be achieved by letting o = 0,6 + u,,, where o, is the standard
deviation of a in population. Then 8 = (« — u,)/o., and so, E(§)
= 0 and V(8) = o,'02¢,"' = 1. The reparameterized model is
then written as

Zk= o+ 0.0 + X8 (3)

and the marginal density becomes
o) = [ iwilo, pe@a, @

where g(f) represents the distribution of the § vector in the pop-
ulation; that is, the standard normal density. Further details of
the marginal maximum likelihood estimation procedure are
provided by Gibbons and Bock (1987).

Estimating Cluster-Specific Effects

It may be desirable to estimate level of response strength or
propensity for a positive response «;. A good choice for this pur-
pose (Bock & Aitkin, 1981; Gibbons & Bock, 1987) is the ex-
pected a posteriori (EAP) value (Bayes estimate) of §;, given the
binary response vector v; and covariate matrix X; of cluster /.

b, = E@:l v, X,) = ﬁ f " olol0, BB ()

Similarly, the standard error of 6,, which may be used to express
precision of the EAP estimator, is given by

o(Bilvi, X) = ﬁ [© e-bruwio. pe0m.  ©

These quantities can be evaluated using Gauss-Hermite quad-
rature as described in Gibbons and Bock (1987) or Bock and
Aitkin (1981). Estimates of a; can be recovered by o; = ¢,9;
+ 1, using the marginal maximum likelihood estimates of the
parameters. Because the prior distribution g(6) is normal, these
linear transformations of EAP estimates are also EAP esti-
mates.

A Model For Longitudinal Data

The model in the previous section can be adapted for longi-
tudinal data as follows. We begin with the model for response
ontimepoint k (wherek=1,2,...,n)forsubjecti(i=1,...,
N subjects in the sample):

Yie = o + Bo + Bili + Baxa, + B3x3, + €k, Q)]

where y; = the unobservable continuous “response strength”
or “propensity” on time point & for subject i; ¢ = is the time
(i.e., day, week, year, etc.) that corresponds to the kth measure-
ment for subject i; By = the overall population intercept or re-
sponse propensity at baseline ¢ = 0; 8; = the overall population
trend coefficient describing rate of change in response propen-
sity over time; «; = the random effect for subject i; 8, = the fixed
effect of the subject level covariate x,,; 83 = the fixed effect of
the time-specific covariate x3,; and ex = an independent resid-
ual distributed N(0, o°). Here, «; is a coefficient describing de-
viation of subject i from the overall group response conditional
on the covariate vector for that subject. The assumed distribu-
tion for a; is N(g,, o2). In practice, population level intercept S,
and trend B, are incorporated into the model as the first two
columns of X;, where the first column is a vector of ones and
the second column contains the #; measurement occasions for
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Figure 1. Fixed effects model: time versus response. Average response strength and four typical subjects
(SUBS).

subject i (i.e., tx). Therefore, the same set of likelihood
equations and solution derived for the clustered case directly
applies also to the longitudinal problem.

Had we ignored the person-specific component of variation
in the longitudinal response process and modeled these data
with probit or logistic regression analysis using time as the in-
dependent variable (i.e., assuming repeated classification were
independent), then we would have had to assume deviations in
response propensity from the overall group trend vary randomly
as well. This assumption, depicted in Figure 1, illustrates that
for the fixed-effects model, an individual’s deviation from the
overall group response propensity may be positive on one occa-
sion and negative on another, an implausible view of the longi-
tudinal response process. Particularly for short-term studies,
subjects deviate systematically from the overall group level
trend based on measured or unmeasured characteristics that

increase or decrease response probability. These characteristics
exhibit random variability in the subject population and, to a
lesser degree, within an individual over a fixed time.

The model in Equation 7 is termed “random intercept” be-
cause person-specific deviations must be parallel to the average
trend (see Figure 2). The model is analogous to a mixed-model
analysis of variance (ANOVA) for continuous response data.
Figure 2 shows that overall response propensity level varies
from individual to individual but that deviations from the over-
all group trend are constant within an individual over time. The
model is not plausible for two reasons. First, in many controlled
clinical trials, subjects are selected to be similar at baseline but
are quite heterogeneous in terms of their response to treatment
over time. In this example, it is the trend that is random and not
the intercept. Second, in naturalistic studies, for example, many
studies of mental health services, there is variability in both the
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Figure 2. Random intercept model. Average response strength and four typical subjects (SUBs).

intercept (i.e., the subjects are not screened on the basis of se-
verity of illness) and trend (i.e., the efficacy of the services varies
greatly in the population of potential recipients). In either case,
a model that only allows for person-specific deviations at base-
line (i.e., a random intercept model) seems poorly suited for
problems in mental health research.

Alternatively, a “random trend” model could be considered
as follows.

Vi = Bo + aitu + B1x1, + Baxz, + e, ®

Here, we assume a common intercept or starting point for all
subjects (plus or minus random error ¢;), and person-specific
deviations in the slope of each subject’s trend line from the av-
erage group trend line. This model is depicted in Figure 3,
which shows that deviations from average response rate increase
over time, as each subject has an individual rate parameter. Al-
though the solution is similar to the clustered case and random

intercept model, the underlying response process assumed by
the random trend model is quite different. Modifications to like-
lihood equations and their solution follow from the derivation
given by Gibbons and Bock (1987). In the following section, we
consider a model with two random effects, a random intercept
and a random trend.

A Model With Two Random Effects

In the previous section, we developed a model with a single
random effect. However, both the intercept (i.e., baseline level)
and slope (i.¢., the rate at which change occurs) can exhibit sys-
tematic person-specific deviations from overall population level
values (see Figure 4). In this case, the model must be further
generalized to the case of two random effects; that is,

Yie = aoi + et + 81Xy, + Baxy, + €. 9
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Figure 3. Random trend model. Average response strength and four typical subjects (SUBs).

Here ag; represents the deviation for subject i from the overall
group intercept and ay; represents the deviation for subject i
from the overall group trend. We assume that distribution of ap
and « in the population is bivariate normal N(u, Z), with

2
i Gh O
u=[%JandE=[ 0 ﬂo“x]
Hay Cogey 02y

The mode! implies that conditional on the covariates, the obser-
vations are multivariate normal with mean E(y) = Tu and co-
variance matrix V(y) = TET" + o°I, where, for example,

— —

0
1 1

and ¢ is a residual variance assumed constant over time. The
conditional probability for response pattern of subject i (i.e., v;)
is then

10l a0, e, 8) = T] [®(za)] 0u{1 — B(zi)lox. (10
k=1

where
Zie = (i + apily + Bixy + Baxz, — v)/e.

Thus, marginal probability of this pattern is given by
h(v;) = f 1(vi| ag, @y, B)g(n, Z)daday, (1)
g Ja

where g(-) is the bivariate normal probability density of «o and
a;. The method of estimation for the parameters of this model
was originally described by Gibbons and Bock (1987); this arti-
cle contains full details concerning the estimation procedure.
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Figure4. Random intercept and trend model. Average response strength and four typical subjects (SUBs).

Illustration

To illustrate application of the random-effects probit model
to clustered and longitudinal data, we examined data from the
National Institute of Mental Health Schizophrenia Collabora-
tive Study. Specifically, we examined Item 79 of the Inpatient
Multidimensional Psychiatric Scale (IMPS; Lorr & Klett,
1966). Item 79, “Severity of Illness,” was originally scored on a
7-point scale ranging from normal, not at all ill (1) to among
the most extremely ill (7). For the purpose of this analysis, we
dichotomized the measure between mildly ill (3) to moderately
ill (4). Gibbons, Hedeker, Waternaux, & Davis (1988) analyzed
these data in their original metric using a random-effects regres-
sion model for continuous response data. Experimental design
and corresponding sample sizes are displayed in Table 3.

Table 3 reveals that the longitudinal portion of the study is
highly unbalanced. There are large differences in the number of

measurements made in the 6 weeks of treatment. In the first
analysis, we treat these data as if subjects represent 440 clusters
which include one to seven repeated observations, ignoring the
longitudinal nature of the repeated observations. Both fixed-
effects and random-effects probit models were fitted to these
data, using sex and treatment group as covariates. The fixed-
effect model allows one to simply ignore the fact that there were
repeated measurements from each subject and incorrectly as-
sume that all observations (i.e., both within and across subjects)
were independent. Each treatment group was contrasted to the
placebo control group. Results are presented in Table 4. The
scale of the parameter estimates corresponds to the probit re-
sponse function (see Finney, 1971). For example, Table 4 re-
veals that for the random-effects model, the overall response
level in placebo patients (i.e., the intercept, because the placebo
group was dummy coded as 0 0 0 on the three treatment-related
effects) is —1.327 and the total variance is V1 + .555° (i.e., the
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Table 3
Experimental Design and Weekly Sample Sizes
Sample size at week:
Treatment

group 0 1 2 3 4 S 6
Placebo 110 108 5 89 2 2 72
Chlorpromazine 110 108 3 96 4 S 87
Fluphenazine 114 108 2 100 2 2 89
Thioridazine 106 107 4 93 3 0 90

residual variance which is fixed at 1 plus the random effect vari-
ance of 0.555%). The corresponding normal probability of ill-
ness in the placebo group is given by ®(—1.327/V1 + .555%) =
P(—1.160) = .877, or an overall estimated proportion of well
placebo patients of .123 (i.e., averaging over time). In contrast,
the estimated difference between fluphenazine and placebo was
0.834; hence the corresponding probability is given by
B[(—1.327 + .834)/V1 + .555%] = $(—0.431) = .666, or an over-
all estimated proportion of well placebo patients of .334 (i.e.,
averaging over time). Overall, the model indicates that flu-
phenazine produces a 21% increase in response relative to pla-
cebo (i.e., 33.4% versus 12.3%), when response is defined as
mildly ill or better. Of course, we would expect this difference to
be larger at the end of treatment as will be shown in the results
of the longitudinal analysis.

Table 4 also reveals that addition of the random cluster (i.¢.,
in this case, person) effect is highly significant in the ratio of
MLE to SE and in the improvement in fit likelihood ratio chi-
square statistic (x? = 35.02, p < .0001). As expected, the fixed-
effects model considerably underestimated standard errors of
parameter estimates. Additionally, and unanticipated, the fixed-
effects model also underestimated maximum likelihood param-
eter estimates. Simply ignoring the within-subject nature of
these data is clearly not a good idea. The effect of sex ap-
proached significance in the fixed-effects model but was not sig-
nificant in the random-effects model. All three active treatments

Table 4
Parameter Estimates, Standard Errors, and Probabilities for
NIMH Schizophrenia Collaborative Study Clustered Example

Fixed Random
Fixed and -
random effects MLE SE p< MLE SE p<
Fixed effects
Intercept -1.151 .105 .0001 —1.327 .168 .0001
Sex 095 .056 .0900 103 088 .2440
Chlor vs. Pla 445 085 .0001 521,135 .0001
Fluph vs. Pla 726 .083 .0001 834 136 .0001
Thior vs. Pla 521 .084 .0001 615 132 .0001
Random effects® '
Oug 555 .078 .000t

Note. NIMH = National Institute of Mental Health; MLE = maxi-
mum likelihood estimate. Chlor = chlorpromazine; Pla = placebo;
Fluph = fluphenazine; Thior = thioridazine.

2] og L = —944.65 for fixed effects and ~927.14 for the random effects
model. For change, x* = 35.02, p < .0001.

exhibited significant improvement relative to placebo controls
for both models.

The second analysis accounted for the longitudinal nature of
the study design. Here we fitted a fixed-effects model and one-
and two-random-effects models to these data. Results of this
analysis are presented in Table 5. Table 5 reveals different re-
sults depending on whether or not random effects are included.
As in the previous analysis, the fixed-effects model underesti-
mates standard errors since it assumes all measurements are
independent. Similarly, standard errors for the model with two
random effects were equal to or greater than those for the model
with one random effect (i.e., random intercept model). The
model with one random effect significantly improved fit over the
fixed-effects model (x? = 131.04, p < .0001), and the model
with two random effects significantly improved fit over the
model with one random effect (x? = 73.70, p < .0001). Person-
specific variability in intercepts o, = .860 and slopes 04, =.630
were both significant (p < .0001), but uncorrelated (0,p., =
.056, p < .48).

Sex, main effect of treatment, and a Treatment X Time in-
teraction were examined. Models with both one and two ran-
dom-effects revealed significant Treatment X Time interactions
for all three active treatments versus placebo control, although
magnitude was somewhat greater for the model with two ran-
dom effects indicating that differences between treatment
groups and the placebo control group were linearly increased
over the 6-week study. However, the fixed-effects model did not
identify significant treatment by time interactions. Only the
main effect (i.e., averaging over time points) corresponding to
difference between fluphenazine and placebo was significant. In
contrast, the fixed-effects modei identified a significant sex
effect not found in either random-effects model.

These results illustrate that ignoring systematic person-spe-
cific effects leads to poor model fit, and can bias the maximum
likelihood estimates, standard errors, and probability values as-
sociated with tests of treatment-related effects. Indeed, had we
naively applied a traditional probit or logistic regression model
to these data, we would have incorrectly concluded thioridazine
and chlorpromazine did not have any beneficial effects relative
to placebo control.

For a better understanding of these differences, predicted
probability of illness curves for men and women are displayed
in Figures 5 and 6, respectively. The predicted response proba-
bilities are a direct function of the estimated parameter values
in Table 5. Comparison of Figures 5 and 6 support the finding
of a nonsignificant difference between male and female subjects
in that the response curves are quite similar. Similarly, the treat-
ment versus control differences are clearly evident in these fig-
ures, with consistent differences emerging as early as 1 week.

Discussion

It should be clear from the material presented that much of
the same rich structure that can be extracted from continuous
data using random-effects regression models is also available for
studies involving binary outcomes. The random-effects probit
model with numerical integration presented here is one such
model. In contrast to other approaches (e.g., Stiratelli et al.,
1984; Wong & Mason, 1985), we restrict the random effects to
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Parameter Estimates, Standard Errors, and Probabilities for NIMH Schizophrenia

Collaborative Study Longitudinal Example

Fixed { Random effect 2 Random effects
Fixed and
random effects MLE SE ¥4 MLE SE p MLE SE r
Fixed effects
Intercept —-1.777 .158 <0001 —2.630 314 <0001 —2.507 457 <.0001
Slope 217 037 <.0001 309 042 <.0001 102 105 <33
Sex 126 056 <.02 178 140 <20 215 188 <25
Chlor vs. Pla 265 175 <13 395 285 <16 050 285 <.86
Fluph vs. Pla 516 (187 <.006 810 303 <008 209 339 <54
Thior vs. Pla 314 170 <07 357 284 <21 079 284 <78
Cvs.PlaxT 064 050 <20 11 055 <04 427 136 <.002
Fvs.PlaxXT 102 054 <06 164 061 <007 706 (155 <.0001
Tvs.PlaxT 078 050 <.12 165 061 <007 526 144 <.0002
Random effects®
Oop 1.180 .112 <.0001 860 220 <.0001
gy 056 093 <48
Oay 630 112 <.0001
Note. NIMH = National Institute of Mental Health, MLE = Maximum likelihood estimate; Chlor =

chlorpromazine; Pla = placebo; Fluph = fluphenazine; Thior = thioridazine.

*Log L = —780.81 for the fixed effects model; —715.29 for the model with one random effect, and —678.44
for the model with two random effects. Chi-square values for change are as follows: for the model with one
random effect, x? = 131.04, p < .0001; for the model with two random effects, x> = 73.70, p < .0001.

the intercept and slope of the trend line, treating covariates as
fixed. These other approaches typically would treat all esti-
mated coefficients as random. There are advantages and disad-
vantages to both approaches. With only one or two random
effects, the likelihood may be evaluated numerically as pre-
sented here. Furthermore, Bock and Aitkin (1981) have shown
how the assumption of multivariate normality of the underlying
random effect distribution can be relaxed and other distribu-
tions can be fitted or nonparametric estimates of the underlying
density can be obtained. This generalization is possible here as
well but would not be available where the integrals in Equation
4 are approximated by a multivariate normal distribution with
the same mode and curvature of the mode as the true posterior
(i.e., Bayes modal estimates) as in Stiratelli et al. (1984) and
Wong and Mason (1985). Alternatively, as the number of ran-
dom effects increase beyond three or four, the numerical inte-
gration becomes computationally intractable. Anderson and
Aitkin (1985) have developed a similar model for examining
interviewer variability that also uses numerical integration to
obtain maximum likelihood parameter estimates.

Some discussion of missing data is appropriate here. Laird
(1988) has described three categories of missing data: missing
completely at random; ignorable nonresponse; and nonignor-
able nonresponse. Although data missing completely at random
is easiest to cope with, it is probably not a plausible assumption
for longitudinal studies in which subjects often drop out during
the course of the study, never to return.

The second category of ignorable nonresponse states that missing
data are ignorable as long as they are explained by terms in the
model or the available outcome data for each subject. For example,
if in a clinical trial patients on placebo drop out more frequently
than patients on active treatment, the missing data are ignorable as
long as treatment is included as a covariate in the model. As another

example, if patients who do poorly during their participation in the
study drop out, we expect that they would have continued not to
benefit from treatment, hence the distribution of the unobserved
outcomes is known conditional on the distribution of the available
outcomes (i.e., the absence of trend observed while in the study is
indicative of the missing data). Both examples are consistent with
ignorable nonresponse.

If unmeasured characteristics of individuals or their treat-
ment experience lead to dropout that affects the distribution of
missing data, then nonresponse is nonignorable. For example,
if a patient drops out of a study because of a side effect of the
intervention, but side effects are not included as covariates in
the model, the missing data would be nonignorable and the in-
ferences drawn from these models would be invalid. This is not
a consequence of using more complex statistical models. Use of
sophisticated models helps explicate assumptions. On the other
hand, simple models can lead to questionable conclusions. For
example, the quasi-likelihood approach of Liang and Zeger
(1986; Zeger & Liang, 1986) assumes no distributional form for
the outcome measures and can therefore be applied to a wide
variety of data (i.e., binary, ordinal, and continuous). The dis-
advantage however is that missing data are ignorable only if they
are completely explained by the covariates in the model. Since
no distributional form is assumed for outcomes, distribution of
the missing data conditional on the observed outcomes is un-
known and therefore cannot be used to justify statistical infer-
ences in the presence of missing data. Indeed, in the presence of
missing data, the quasi- or partial-likelihood approaches be-
come even more restrictive than the full-likelihood procedure
described here, in that the consistency of the quasi-likelihood
estimates is now guaranteed only if the true correlation among
repeated outcomes is known for each subject. This information,
of course, is never available.
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Figure5. IMPS 79 Severity X Time interaction for men. IMPS 79 Severity = Item 79, “Severity of Illness,”

from the Inpatient Multidimensional Psychiatric Scale (Lorr & Klett, 1966). PR ILLNESS = probability
of illness; CONTR = control; CHLOR = chlorpromazine; THIOR = thioridazine; FLUPH = fluphenazine.

Unfortunately, very little computer software is commercially
available, and the models presented here are computationally
heavy. A prototype computer program is available (MIXOR)
from the National Institute of Mental Health Services Research
Branch.

There are a number of directions for future research in this
area. First, while the models presented here were developed for
binary data, analyses can be devised for ordinal response data
as well. The major difference is that the model now involves
estimates of K-1 thresholds describing the point of transition
from each response category to the next highest one in terms of
underlying response strength (see Hedeker & Gibbons, 1994).
Second, the model presented here assumes that conditional on
the fixed and random effects included in the model the residual
errors are independent and have constant variance. It is far
more plausible that some degree of serial correlation among re-

sidual errors will be present, perhaps first-order autocorrela-
tion. Stiratelli et al. (1984) suggest an approximate solution to
this problem by including the observed outcome on the previ-
ous occasion as a covariate in the model. It is unclear whether
this does yield independent residual errors or how these esti-
mates are influenced by missing data. Gibbons and Bock (1987)
suggest a direct approximation of the likelihood for the random-
effects probit model that permits residual correlation and how
the single parameter p of a first-order autoregressive error struc-
ture can be jointly estimated with the other fixed and random
effects in the model. Unfortunately, error bounds for their ap-
proximation are still unknown, so their solution cannot be fully
relied on at this time.

More recently, advances in Monte Carlo methods for numer-
ical integration, for example, Gibbs sampling (Gelfand &
Smith, 1990) have been developed with remarkable results.
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Figure 6. IMPS 79 Severity X Time interaction for women. IMPS 79 Severity = Item 79, “‘Severity of
Illness,” from the Inpatient Multidimensional Psychiatric Scale (Lorr & Klett, 1966). PR ILLNESS =
probability of illness; CONTR = control; CHLOR = chlorpromazine; THIOR = thioridazine; FLUPH =

fluphenazine.

These approaches can be readily adapted to the problem of
evaluating the likelihood of correlated probit models as well.

It is often the case that data are both clustered and longitudi-
nal. For example, in a multicenter clinical trial, subjects are
nested within research centers and repeatedly measured over
time. It may be reasonable to assume that the centers represent
a random sample from a population of possible research sites
and that observations within individuals and within centers will
not be independent. Combining the two models presented here
into a three-level model (i.e., center, subject, and measurement
occasion) would have widespread application.
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