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Introduction 
 

Artificial neural networks (ANN) are mainly used in 

these types of application where the realization of another 

methods would be very difficult, expensive or even 

unrealizable. In these applications there is possible to take 

the advantage of the main features of neural networks, 

namely: approximation ability of different nonlinear 

functions, possibility to set their parameters in virtue of the 

experimental or learning data set, the quickness of 

information processing and their robustness. There is no 

necessary mathematical or structure description, there is 

possible to solve the problem just like the black box task 

with their inputs and outputs [1–8]. 

The Radial Basis Functions (RBF) emerged as a 

variant of artificial neural network (ANN) in late 80`s by 

Broomhead and Love and their work opened another ANN 

frontier. RBF network is a type of ANN for applications to 

solve problems of supervised learning regression, 

classification and time series prediction. The radial basis 

functions have been applied in the area of neural networks 

where they may be used as a replacement for the sigmoid 

hidden layer transfer function in multilayer perceptrons. 

Radial basis functions are powerful techniques which are 

built into a distance criterion with a respect to the centre. 

Such networks have 3 layers, the input layer, the hidden 

layer with the RBF non-linearity and the linear output 

layer. RBF networks have the advantage of non suffering 

from local minima in the same way as multilayer 

perceptrons. The most popular choice for the non-linearity 

is the Gaussian. The output layer is in regression problems 

a linear combination of hidden layer values representing 

mean predicted output [5, 6]. 

In most cases, it presents higher training speed when 

compared with ANN based on back-propagation training 

methods, easier optimization of performance since the only 

parameter that can be used to modify its structure is the 

number of neurons in the hidden layer etc…  

Rotor time constant adaptation methods are used in 

the modern control of induction drive. The value of rotor 

resistor changes in dependence on drive load. To improve 

the motor power its necessary the identification of these 

parameters and adjusts them [1–3]. 

Intention of this paper is to introduce the way how 

new types of artificial neural networks can be chosen in the 

control of electrical drives. The procedure is demonstrated 

through the use of rotor time constant adaptation method in 

the vector control of an induction motor. 

 

Vector control of the induction motor 
 

The main problem of the vector control in the field 

coordinates of the induction motor is the separation of 

torque and flux control circuits not to be mutually 

influenced. The torque of the induction motor and 

consequently the active power are controlled by the torque 

control circuit while the rotor flux and consequently 

reactive power are controlled by the rotor flux control 

circuit. 

The whole control operates on the principle of stator 

current space vector decomposition into two perpendicular 

elements iSx and iSy which can be analyzed in the field 

coordinate system [x, y] with rotor flux space vector 

orientation to the x axis (Fig. 1) [2, 4]. 

Independent quantities - torque and magnetization 

can be analyzed by this separation. By maintaining the 

amplitude of the rotor flux (R=Kim) at a fixed value 

there is a linear relationship between torque t and the 

torque component iSy (t=Kt R iSy). 

  

 

Fig. 1. Structure of the current model 

 

Rotor time constant adaptation 

 
The induction motor with vector control has a very 

good dynamic behavior and as a consequence is well suited 

for high performance applications. But, the vector control 

 http://dx.doi.org/10.5755/j01.eee.113.7.606



22 

 

is very sensitive to variations in the rotor time constant. 

The decoupling between the flux and torque is lost in an 

indirect rotor field oriented control if there is a mismatch 

between the controllers set up rotor time constant and the 

actual time constant of the motor. Adaptation of this rotor 

time constant is thus required, and it is necessary to 

estimate this parameter in order to maintain it equal to its 

rated value programmed in the decoupling controller. 

 

Model reference adaptive system method 

 
The block structure of the model reference adaptive 

system (MRAS) with the adaptation method of rotor time 

constant is shown in Fig. 2. The method is based on the 

comparison of two estimators, where one of them includes 

rotor time constant, which is called the adaptive model. 

The other one does not include rotor time constant and is 

the so-called reference model. The error between them is 

used to derive an adaptation algorithm which produces the 

estimated value of a rotor time constant for the adaptive 

model. This value can be used for adaptation of a rotor 

time constant in the current model, which is used in the 

control structure of induction motor drive. 

The adaptive model is based on the application of a 

current model of rotor flux. We often use it for the 

determination of the value and position of the magnetizing 

current vector or rotor flux vector. The current model 

contains the rotor time constant which is a changing 

parameter. The adaptive model is described as follows 
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where TR = LR / RR is rotor time constant, RR is resistance 

of rotor winding, LR is rotor inductance, is rotor position 

angle, ωR  = d/dt  rotor angular speed. 

The reference model is based on application of 

voltage model of rotor flux and is described as follows 
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The quantities Sq are vectors in stator reference 

frame: rotor flux vector S

R R Rj     , stator voltage 

vector S

S S Su u j u   , stator current vector S

S S Si i j i   , 

RS is resistance of stator winding, LS and LR are the stator 

and rotor inductances, Lm is the magnetizing inductance. 

The adaptation algorithm it is described by the 

following equations: 
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where 1 20 , 0 K K . 

 The adaptation mechanism consists of evaluation of 

adaptation signal (3) and its sequential minimalization by 

the help PI-controller (5). Fig. 2 shows the structure of 

model adaptive reference system and also the substitution 

of the adaptation mechanism with the artificial neural 

network.  

 

 
Fig. 2. Structure of model reference adaptive system 

 

Radial basis function network 

 
The aim of this work was to compare the features of 

Radial Basis network with different architectures. In this 

paper the effort focused in different architectures of RBF, 

also there was added white noise, which is very useful in 

the application of feed-forward neural networks.  

There was realized comparative procedure. At first 

there was realized common RBF network with the 

appropriate architecture, it mean with one, two or without 

feedback, etc… Then there was changed the field of 

coverage from one RBF unit. In fact it means more 

sporadic or densely lay-out of the RBF units, which is 

expressed by lower or higher number of RBF units.   

The figure 3 depicts the data acquisition of training 

data set for the off-line neural network training. The start 

of the motor was set without load and in the time 0.5 

seconds with the load.  The model was always adjusted 

according to the actual architecture of tested RBF network. 
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Fig. 3. Block structure of the in-out data training acquisition 
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Different types of training algorithms were tested and 

evaluated as the most fitting. Three training algorithms 

were used to test the main features of RBF neural 

networks: 

 Forward subset selection; 

 Ridge regression;  

 Regression trees 1 & 2. 

From these training algorithms there were picked like 

a useful for ours purpose just the Forward subset selection 

algorithm. This algorithm was variously modified together 

with changes of the RBF network (e.g. activation function, 

radius…). The other methods should be useful for some 

other problems. 

 

 RBF network with one feedback 
 

The first type is the most used and common RBF 

network with one feedback without scaling and without the 

white noise.  
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Fig. 4. Architecture of RBF neural network 

 

 

Fig. 5. Input training data set 

 

The Fig. 4 depicts the RBF architecture with the 

appropriate input variables. There are always three layers: 

input, hidden layer with the non-linear activation function 

and the output linear layer. 

There are the input data for the adaptation 

mechanism, which were also used like an input training 

data set for the neural network, in the Fig. 5 (iSα, iSβ, ψRα, 

ψRβ, ˆ ˆ,R R   1/TRRBF-k = f(t) [~,s]). 

Output or we can say the desired output time 

behavior is always depicted in the Fig.s by the red dotted 

line.  

In the first RBF neural network there were used 97 

RBF units. The output time behavior is perfect as we can 

see in the Fig. 6, the difference between the adaptation 

mechanism (AM) and the RBF network (RBFN) is really 

neglect able (Fig. 7). 

 

 

Fig. 6. Output signal 1/TR = f(t) [s-1,s] from RBFN and AM 

 

 

Fig. 7. Difference between RBFN and AM output signal 

 

 

Fig. 8. Output signal 1/TR = f(t) [s-1,s] from RBFN and AM 

 

Next network was used with thinly lay-out of 33 RBF 

units and the response is also quite good (see Fig.8).  

Last one was used with denser lay-out of 365 RBF 

units and the output was almost the same like with the 96 

RBF units. Then is no reason to use this kind of structure 

because of higher memory demand and higher computation 

time. 
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RBF without feedback connection 

 

Next architecture of RBF network didn’t include the 

feedback. In the Fig. 10 there is possible to see that this 

output behavior is not the expected one. The network 

contains 81 RBF units. In the next Fig. there is obvious 

improvement of the output curve, but the price was higher 

number (261) of the RBF units. 
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Fig. 9. Architecture of RBF neural network 

 

 

Fig. 10. Output signal 1/TR = f(t) [s-1,s] from RBFN and AM 

 

 

Fig. 11. Output signal 1/TR = f(t) [s-1,s] from RBFN and AM 

 

RBF with two feedback connection 
 

There is described the RBF architecture with two 

feedbacks connections. As we can see the output time 

behaviour is also very good (Fig.12 & Fig. 13) like in the 

first case. There were used 120 RBF units and the next was 

used with thinly lay-out of 51 RBF units and the response 

is also quite good (Fig.14). Denser lay-out of RBF network 

disposes with 261 RBF units and this is the same problem 

like with network with one feedback. 
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Fig. 12. Architecture of RBF neural network 

 

 

Fig. 13. Output signal 1/TR = f(t) [s-1,s] from RBFN and AM 

 

 

Fig. 14. Output signal 1/TR = f(t) [s-1,s] from RBFN and AM 

 

RBF with the scaled input variables 
 

The next architecture comes from idea of feed-

forward architecture, where the input values must be scaled 

because of their activation function. In the Fig. 15 there are 

depicted input scaled training data set for RBF neural 

network (iSα, iSβ, ψRα, ψRβ, ˆ ˆ,R R   1/TRRBF-k = f(t) [~,s]). 
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Fig. 15. Input training data set 

 

 

Fig. 16. Output signal 1/TR = f(t) [s-1,s] from RBFN and AM 

 

 
Fig. 17. Output signal 1/TR = f(t) [s-1,s] from RBFN and AM 

 

 

Fig. 18. Output signal 1/TR = f(t) [s-1,s] from RBFN and AM 

 

Only the dense (436 units) RBF unit lay-out provide 

output curve (fig.18) like the unscaled networks. The 

classical one with 116 units we can also consider good 

enough (fig.16), but network with thin lay-out (32units) 

has low-quality output curve (fig.17). There were one 

important difference in lower values of the inner network 

parameters like radius, centers and weights. 

 

RBF with the white noise  
 

With an addition of the bounded white noise there 

were idea of reduce the weight and centers importance of 

the feedback connection. In the feed-forward neural 

networks it has the less neural hidden unit foundation. The 

input training data set is depicted in Fig. 19 (iSα, iSβ, ψRα, 

ψRβ, ˆ ˆ,R R   1/TRRBF-k = f(t) [~,s]). 

   

 

Fig. 19. Input training data set 

 

There was used just only one type of RBF 

architecture with the classic lay-out of RBF units. The 

RBF neural network contains 215 activation units and then 

was useless to go on with this type. It will be discussed in 

the conclusion. Anyway, in the Fig. 20 there are depicted 

almost perfect output curves. It shows us that the 

difference between the “reference” adaptive model and the 

RBF network could be neglected. 

 

 

Fig. 20. Output signal 1/TR = f(t) [s-1,s] from RBFN and AM 

 

Conclusions 
 

The paper deals with different architectures of Radial 

Basis Function neural network. At the end of this paper, 

there must be sad, that the most common architecture of 

RBF network with one feedback connection presents the 

best output time behavior in comparison with the others. 

RBF without feedback connection presents quite unstable 
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and inaccurate output. The RBF with two feedbacks has 

very good output curves, but if we realize higher number 

of RBF units and more complicated connections then the 

result is also against this type. The next architecture with 

scaled input neither had better time behavior. The only 

result was lower values of the hidden layer variables like 

radius, centers and weights. 

The last type with used white noise gives us lower 

number of hidden units in the feed-forward neural 

networks, but it does not work with RBF network. That is 

why there were not used other types with different layout. 

The result of this paper is, that there could be use 

other types of RBF architecture if is necessary for some 

reason, like scaled input variables or non-present feedback 

connection, but then must be considerate the mentioned 

disadvantages.  

Some of these more interesting theoretical 

assumptions were verified on real laboratory model with 

induction motor controlled by digital signal processor with 

the system for the training data acquisition. 
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