Application of Real-Time DEVS to Analysis of
Safety-Critical Embedded Control Systems:
Railroad Crossing Control Example

Hae Sang Song

Department of Computer Information & Communication

Seowon University, Cheongju, Korea

Tag Gon Kim

Department of Electrical Engineering & Computer Science

KAIST, Taejon, Korea
tkim@ee.kaist.ac.kr

This article presents an application of the Discrete Event System Specification (DEVS) framework to
the design and safety analysis of a real-time embedded control system, a railroad crossing control
system. The authors employ an extension of the DEVS formalism, real-time DEVS (RT-DEVS), which
has a sound semantics for the specification of real-time systems in a hierarchical modular fashion.
The notion of a clock matrix for communicating RT-DEVS models is proposed, which represents a
global time between the models. Based on the composition rules and the clock matrix, an algorithm
for the generation of a timed reachability tree is developed that can be used for safety analysis at
two phases: an untimed and timed analysis phase. A railroad crossing control example demonstrates
that the proposed analysis for RT-DEVS models would be effective to verify the safety property of
real-time control systems.
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1. Introduction

Control of discrete event dynamic systems has attracted
ever more attention for the past decades, especialy for
safety-critical real-time control systems. Such systems
must satisfy stringent real-time requirements in perform-
ing their intended functions. Recent computing technol-
ogy alows us to embed a microprocessor-based discrete
event control software (controller) in real-time control sys-
tems. Formal verification of such adiscrete event controller
against desired system properties is known to be difficult
and complex [1]. For the verification, specification of such
control systems should be based on a sound formalism
for discrete event systems modeling. One such formalism
is the real-time Discrete Event System Specification (RT-
DEVS) formalism, which provides a seamless framework
for the development of real-time control software that in-
cludes modeling, design, analysis, simulation, and imple-
mentation [2]. This article deals with an application of the
RT-DEV Sformalism to the design and safety analysisof a
safety-critical real-time embedded control system, arail-
road crossing control system.
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Much research on the control of discrete event dynamic
systems has relied on the supervisory control framework
based on automata theory [3, 4]. A plant automaton is re-
garded as a generator that generates a sequence of events,
and asupervisor (controller) acts as alanguage recognizer.
Whenever the supervisor recognizes the plant’s behavior
at a state, it permissively controls the plant by enabling
or disabling the plant’s events at the state. Strict synchro-
nization or an interlocking mechanism between intercon-
nected automata is assumed in the framework. To relieve
this constraint, automata with prioritized synchronization
[5] are applied to the supervisory control framework [6].
In the synchronization, a sender model has a set of priori-
tized events that can be fired by themselves, regardless of
whether receiver models are ready to receive the events. A
timed extension of the supervisory control framework em-
ploys an extended automatamodel, called atimed discrete
event system (TDES) [7], in which atimed transition graph
is generated from a TDES, and then the same supervisory
framework isapplied to the graph. Notethat theinteraction
from the control to the plant is permissive, and modeling
is done neither in amodular nor in a hierarchical manner.

Reachability analysis of multiple models has been aba-
sis for verifying real-time features such as safety of an
overal control system. Associated with the analysis are
two major factors: a synchronization mechanism between
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models and a method of timing analysis. Ostroff [8] pro-
posed atimed transition model (TTM) in which each tran-
sition of a model is associated with a lower time bound
and an upper time bound within which the transition can
take place. Interconnection between models is based on
the strict synchronization mechanism or interlocking. One
drawback of the formalism is the state explosion due to
the time dimension, as asingle tick generates a new state.
TDES [7] adopts a similar notion of time constraints of
TTM, which thereby has the same state explosion prob-
lem. TA (timed automata) [9] is an extension of automata
tothedensetimedomaininaninterval of real values. Most
reachability studiesfor the verification of timed automata
are based on strict synchronization [5] between communi-
cating models [10]. An extensive review of real-time soft-
ware verification based on TA, including thework of VER-
IMAG, can befound in Sifakis, Tripakis, and Yovine[11].
As explained earlier, analysis of discrete event control
systems based on TA and TTM assumes that the commu-
nication mechanism between a plant and a controller em-
ploys strict synchronization. Strict synchronization, also
called interlocking, is a model of message lossless (or
synchroni zation |0ssless) between communicating entities.
However, there is a possibility that communicating enti-
ties may lose a message for synchronization, especialy
in real-time systems. This is because a component of a
real-time system can send a message to another compo-
nent without knowing whether the receiving component is
ready. Such aweak synchronization mechanism for realis-
tic communication can be easily modeled inthe RT-DEVS
formalism, which is defined in section 5. Since weak syn-
chronization considers synchronization loss reachability,
analysis based on the synchronization is much more com-
plex than analyses using strict synchronization. Thus, the
state space of acomposed model with timeinformation us-
ing weak synchronization is much bigger than that using
strict synchronization, being the cause of the state space
explosion problem. To alleviate the state space explosion
problem due to the time dimension, we devise precise no-
tions of a vector time and a clock matrix to get a maximal
set of behaviors with minimal uncertainty. It should be
noted that the RT-DEV S formalism employs dense time
intervals, whereas TTM [1, 7] employsinteger time inter-
vals. Our safety analysis is based on the clock matrix of
an overall control system, which is derived from the weak
synchronization of communicating entities in the system.
This article is organized as follows. We overview the
DEVS-based system development methodology in sec-
tion 2. In the following section, we start with the prob-
lem statement of atarget control system, named arailroad
crossing control. In section 4, we review the RT-DEVS
formalism with which an RT-DEV'S model of a railroad
crossing control system is modeled. A weak synchroniza-
tion mechanism between component RT-DEVS modelsis
defined in section 5. Section 6 applies the DEV S-based
controller design framework to the railroad crossing con-
trol problem. Section 7 contributes to the timing analysis
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The DEVS

Formalism

Figure 1. DEVS framework for systems development

for RT-DEV S models with dense time intervals. Based on
the timing analysis, the safety of the control system under
designisanalyzed in section 8. We conclude the article in
section 9.

2. Overview of the DEVS Framework for Systems
Development

This section first describes a brief overview of a general
methodology for DEV S-based modeling, simulation, anal-
ysis, and implementation of discrete event systems. It then
explainsthe design and analysis of real-time discrete event
control systems using the RT-DEV'S formalism. Figure 1
shows aunified framework for the design and implementa-
tion of discrete event systems, which include communica-
tion networks, computer systems, traffic systems, and oth-
ers. Asshowninthefigure, the core of theframework isthe
DEV Sformalism. The framework provides abasis for the
modeling of discrete event systems on which logical anal-
ysis, performance evaluation, and implementation can be
performed based on only oneframework. Todo so,aDEV S
specification language is developed, which is a language
realization of the DEV Sformalism, with sojourn timesbe-
tween states unspecified. Now a DEVS model specified
by this language is used in the different phases for sys-
tems design and implementation by specifying additional
information. To support the methodology, a set of tools
has been developed, which include DEVSim++ [12] for
performance analysis, RT-DEV Sim++ [13] for real-time
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Figure 2. Railroad crossing system

simulation, DEV'S Executive [2] for virtual prototyping,
DEV Slog [14] for specification verification, HDEV Sim++
[15] for hybrid systemsanalysis, and others. Dueto the uni-
fied framework with such arich set of tools, it isworthy to
extend the framework to the modeling and analysis of an
embedded control system.

With the DEV S framework, we present the design and
analysis of a safety-critical embedded control system, a
railroad crossing control system. To do so requires modi-
fication of our previous work [15] to adapt modeling and
analysis of such control systems. For safety analysis of
RT-DEV S models, we propose a timed behavior analysis
(TBA) agorithm based on aweak synchronization mech-
anism of communicating atomic RT-DEVS models. The
mechanism is an extension of the prioritized synchroniza-
tion[5, 6] of untimed modelsto timed ones. Aswill be seen
later, TBA isageneral reachability analysis algorithm for
both the untimed and timed analysis of RT-DEV S models.

3. Problem Statement and Required Modeling
Power

Consider arailroad crossing system, as shown in Figure 2,
in which atrain and a car have to pass through the same
crossing area, annotated by INGATE. If they are at the
area at the same time, a disastrous accident might take
place. Thus, we say the control objectives of this system
aretwofold:

(8 Any accident should be prevented by sensing the
train’s position and manipulating the gate in aright
order at the right time (safeness).

(b) Furthermore, carseventually should passthroughthe
gate in afinite time (liveness).

A design problem for a real-time discrete event con-
troller can be formulated as follows: given a plant with
known dynamics and control objectives, design adiscrete
event controller that satisfies the control objectives. This
article considers a safety analysis problem that checks
whether the behavior of the overal control system falls
into some bad state.

To analyze the system explained above, the RT-DEVS
formalism should have additional expressive power that is
not in the original DEV S formalism. First, to reflect char-
acteristics of real-time systems, an event occurrence time
in the real-time specification may not be an exact value
but aninterval. Thus, time advancein RT-DEV S should be
given by aninterval of real numbers. Second, amechanism
for synchronization between two RT-DEV S model s should
be explicitly defined within the RT-DEV S formalism. In
practice, a real-time component that is trying to make an
internal transition does not block other components that
are not ready for synchronization. Finally, a rich set of
mathematical tools are required, such as modeling, simu-
lation, analysis, and implementation in the devel opment
framework of safety-critical control systems. The next
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section reviews the RT-DEVS formalism with which a
plant model of an exemplified control systemisdeveloped.

4. Real-Time DEVS Modeling
4.1 Real-Time DEVS (RT-DEVS) Formalism

The RT-DEV S formalism, proposed by Hong et al. [2], is
an extension of the DEV S formalism and has the univer-
sality for rea-time systems modeling, real-time simula
tion, and real-time execution in one framework. We briefly
review the formalism that consists of two classes of RT-
DEV S models: atomic models and coupled models, asin
the DEVS formalism. An atomic model in RT-DEV S for-
malism, RTAM, is defined as follows:

RTAM =< X, S, Y, 8eq, 8inrs Ny ta, ti, U, A >

where thefirst seven-tuples are the same as the DEV Sfor-
malism rewritten here:

X, S, Y: the same as the atomic model of DEVS (i.e,,
sets of input events, sequential states, and output events,
respectively);

dets O x X — S, externa transition function, where
Q isthetotal stateset of Q = {(s,e)|[s e Sand0 < e <
ta(s)}, and ra(s) isthe state sojourn time;

din: S — S, internal transition function;

Al S — Y, output function;

ta: § — N, time advance function, where %{ _ is
the nonnegative real numbers adjoining oco.

In addition,

ti: timeinterval function,

P activity mapping function,

A set of activities,
with constraints

Vi S — A

ti: § — N x RN, where 1i(s)|mn < t(a) <
10(8) |max, 10(8) |min < ta(s) < 1i(s)|mas € S, a = Y(s) €
A, and ¢ (a) isthe execution time of an activity a € A;

A = {a|t(a) € R ,a ¢ {X?,Y!,S =}}, where X?
is the action of receiving datafrom X, Y! is the action of
sending datathrough Y, and S = isthe action of modifying
astatein S.

Notice that RTAM is the same as the origina DEVS
atomic model, except for three additional elements re-
lated to the realization of models: time interval function
ti, activity mapping function {r, and set of activities A.
An activity associated with a state is a realization of an
abstract state transition to a concrete activity such as mes-
sage transmission, processing atask, or any valuable com-
putation. A time interval of real numbers (dense time)
associated at a state is to model an activity execution
time t(a), a = V¥(s) € A, which may not be speci-
fied by an exact value. For the purpose of timing anal-
ysis, we will use a reduced form of RTAM by assum-
ing that ta(s) = t(a), v"*(Y(s)) = s and also ignoring
implementation-dependent terms such as activity-mapping
function {r and the associated activity set. Thus, areduced
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form of RTAM is given with the following seven-tuple:
RTAM =< X, S, Y, 8eq, Simss N, 1 > . Q)

Itisinteresting to notethat RTAM' isthe sameasthe DEV S
formalism, except that the time advance function is re-
placed by the time interval function. It, however, keeps
enough information to analyze timed behavior of real-time
systems, which we are concerned with in this article. We
will use RTAM and RTAM' interchangeably hereafter.

M odels constructed from componentsareformalizedin
the RT-DEV S formalism as coupled models, RTDN:

RTDN =< X, Y, M, EIC, EOC, IC >, (2

where

X : input events set,

Y : output events set,

M : RT-DEV'S components set,

EIC € RTDN.IN x M.IN : external input coupling
relation,

EOC € M.OUT x RTDN.OUT : external output cou-
pling relation,

IC € M.OUT x M.IN : internal coupling relation.
Here, RTDN.IN, RTDN.OUT, M.IN, and M.OUT repre-
sent the input and output ports of the newly constructed
coupled model and component models, respectively. Three
elements—EIC, EOC, and |C—specify the connections
between the set of models M and input and output ports
of the coupled model RTDN. Note that RTDN is the same
asthe DEV Sformalism, except that the tie-breaking selec-
tor function in the DEV'S formalism is not specified. No
specification of the function intentionally represents an ex-
ecution order of simultaneous events to be random, which
reflects characteristics of real-time systems. Accordingly,
simulation of a RT-DEV'S model would execute such si-
multaneous events in a random order, which indeed is a
generalization of a fixed order. The generalization means
that analysisof RT-DEV Smodel swould consider al possi-
ble orders of simultaneous events, not just one order spec-
ified by a select function.

4.2 Graphical Notation

RT-DEV S models in equations (1) and (2) may be repre-
sented with agraphical notation[2, 16] for intuitive model -
ing and communication. A component model in a coupled
model consists of a surrounding box (Fig. 4). Along the
boundary of the box, small triangles are placed inward for
input ports and outward for output ports. A box can con-
tain other boxes to express closure under coupling defined
in the DEV'S formalism. A coupling scheme defined in a
coupled model specifies links between components. They
arerepresented in a hierarchical fashion by asolid line for
three couplings: I1C from an output port of one component
to an input port of another, EIC from an input port of the
coupled model to an input port of component(s), and EOC
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‘ @ti(s) ‘
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—> §|m(§) =Sj

Figure 3. Graphical notations of DEVS transitions: (a) external
transition and (b) internal transition

from an output port of a component to an output port of
the coupled model itself.

An atomic model is placed inside an innermost box (no
box inside the box). Figure 3 represents external and in-
ternal transitions in which an input event is represented
by “?" and an output event by “!.” For example, an input
event in?m means that a message m isinput at the input
port in, and an output event out!m meansthat amessagem
isoutput at theport out. A dotted linerepresentsaninternal
state transition specified by theinternal transition function,
8int- A solid line represents a state transition specified by
the externa transition function, 3.. This notation derives
from CSP (Communicating Sequentia Processes) [17], in
which areceiving processwaitsat a“?’ stepinitsprogram
until the sending process sends amatching “!” message. If
ports do not need to be explicit, wereplace x by x = p?m
andy by y = p!m. Finally, atimeinterval [¢,, t,] islocated
near state s, where ti(s) = [t,, t,] with the prefixed “ @”
sign. Usually, the time interval [oo,00] will be omitted in
the specification when it is obvious.

4.3 The Railroad Crossing Plant Model

Figure 4 shows a railroad crossing system model N with
two component models: a coupled model TG-PLANT (or
P) and an atomic model CONTROLLER (or C). The cou-
pled model P, inturn, consistsof two atomic models: train
TRAIN (or T') and gate GATE (or G). Themeaning and ab-
breviation of each state are shown in Table 1. Note that
the state name TRAV of the train can be represented by the
abbreviation T.T, or T, for short, if it causes no confu-
sion, where T.x means that the state x belongs to atomic
model 7. Thisconventionwill be used throughout thisarti-
cle. Following the terminology convention used in control
systems, we call a subsystem under control a plant (cou-
pled model P of the gate and train) and one controlling the
plant acontroller (model C). Then, the coupled RT-DEVS

Table 1. Description of states of the train and gate models

State

Name Abbreviation Description

TRAV TorTT Train is traveling the safe re-
gion. T.x emphasizes that state
x belongs to model T (train).

APPR AorTA Train is approaching near to the
gate.

INGA lorTl Train is now passing the gate.

UP UorG.U Gate is open. G.x means that

state x belongs to model G
(gate).

DOWN DorG.D Gate is closed.

model of the plant P inthefigureis

PX={C}, PY={M}, PM=I{T, G},

PIC={}, P.EIC={(P.C,G.0)},

P.EOC = {(T.M, P.M)}.
And the atomic RT-DEVS of thetrain T is

T.X ={}, T.Y ={M!lappr, M'exit, Mlenter},

T.S = {TRAV, APPR INGA},  8;x(TRAV) = APPR,

8t (APPR) = INGA,  §;(INGA) = TRAV,

MTRAV) = Mlappr, NAPPR) = Mlenter,

©MINGA) = Mlexir,

ti(TRAV) = [90, 95], ti(APPR) = [30, 35],

ti(INGA) = [20, 25].

Note that the train model has three interna (or
spontaneous) transitions—3;, (TRAV), 8;(APPR), and
it INGA)—which cannot be preempted since there is no
external transition defined at those states. In the mean-
time, the atomic RT-DEV S of the gate G has two external
transitions associated with two external events: C?up and
C?down. Note also that there is no direct communication
between the train and the gate (no interna coupling of P,
P.IC = {}). Thus, they run independently without the con-
troller’'s mediation. If we eliminate the time interval in an
atomic model on purpose, the resultant model is called an
untimed model.
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SYSTEM (N)
TG-PLANT (P)
RAIN(T) GATE(G)
Miappr- - TRV v,
el @[90,95] c
1
Miexit | C?down C?up
@[30,35]+ K
. /
Sl ! DOWN
Mlenter " -
@[20,25]
C
C CONTROLLER(C)
Controller to be designed

Figure 4. Railroad crossing system model with a controller model unspecified

5. Weak Synchronization: Communicating
RT-DEVS Models

The DEVS formalism does not explicitly define a com-
munication mechanism between components coupled to-
gether. Here, three assumptions for communication be-
tween RT-DEV S models are made: (a) a coupling imme-
diately converts an output event of one component model
to an input event of the other connected by coupling rela-
tions. (b) Every port hasabuffer with alength 1, and every
arrived message is processed and cleared instantly. (c) A
model sending an event does not wait for any acknowledg-
ment from amodel receiving the event.

Under the assumptions, RT-DEV S has an explicit def-
inition of a synchronization mechanism between coupled
components, called weak synchronization, with two char-
acteristics: nonblocking and synchronization loss. Basi-
cally, it is similar to prioritized synchronization [11] but
differsinthat it is based on RT-DEV S models, which have
an explicit notion of internal and external transitionsin the
time domain. It is different from the interlocking mecha-
nism in the strict synchronization adopted by CSP or CCS,
inwhich atransition takes place only if both communicat-
ing processesareready for communi cation; otherwise, they
are blocked. In the weak synchronization of RT-DEVS, a
machine performs an internal transition and produces an
output event if and only if theinternal transitioniseligible.
Wefirst defineeligibility of internal and external transitions
and then define weak synchronization.

Let Q € S x 9}, beaset of total states of an atomic
model M =< X, S, 7Y, 8, 8ines N, ti >. A total state is
apair of sequential states and an associated elapsed time
feasible at the state. Note that the total state is an infinite
Set.
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DEFINITION 1.  Eligibletransition. Aninternal transition
(g,y,9) € OxY x Q,whereq = (s,e) € Q,y € Y and
qg = (s',¢) € Q,iscdled digibleif and only if 8;,(s) =
sy = N(s), e = ta(s) With i (s)|min < ta(s) < 1i(s)|max
and ¢/ = 0. Similarly, an externa transition (¢, x, q") <
O xXxQ,whereq = (s,e) € 0,x € Xandgq' =
(s',¢) € Q,issaid to be eligible if and only if thereisan
input event x € X at an elapsed timee, 0 < e < ta(s)
and 3. (s, e, x) = s’. By définition, the elapsed time of
the resultant total state (s’, ¢’) should be always zero (i.e.,
e =0).

We denote ¢ LN q' as an dligible internal transition

(g,y,q9') € O xY x Q,andnotation g LN |q’ represents
anindigibletransition (¢, y,¢’) € Q@ x Y x Q. Thesame
notations could be used for an external transition in which
“?" isused instead of “!.”

Now we are ready to define weak synchroniza-
tion. Consider a coupled model RTDN = < X,7,
{M;, M;}, EIC, EOC, IC >, which has only two atomic
models, M; and M;,—that is, for k = i,j, M, =
< Xy Sis Yies Sextkes Sinrps iy tiy >. Lt Q; C §; x maw
and Q; C §; x N beaset of total states of M; and M,
respectively. A pair of output/input events (p;!m;, p;?m;)
for p;!m; € Y, and p;?m; € X; is said to be matched if
(pi'm;, p;?m;) € M;.OUT x M,.IN € N.IC. Assumethat
at atime instant, they are at their respective total states
g; € Q; andg; € Q;. Then, acomposite total state of the
coupled model N isgivenby O € Q; x Q.

DEFINITION 2. Weak Synchronization. Weak synchro-
nization is defined as the following composite transition
rules:

pilm; pi'lm;

om;
1LIf g ™% g/ and g, "5 ¢, then (g, q) “5

i



REAL-TIME DEVS IN ANALYZING SAFETY-CRITICAL EMBEDDED CONTROL SYSTEMS

(4;, q,), where (p;!m;, p;?m ;) does not match, or
2.1t g, ™™ g/ and g, " g, then (g;.q;) *%
(4}, 4}), where (p;!m;, p;?m ;) matches, or

3. Rulesabove holdif i and j are exchanged.
4. No other transition is defined.

In asuccessful communication by rule 2, M; performs an
internal transition, and concurrently, M; undergoes an ex-
ternal transition. However, rule 1 indicatesthat M; with an
eligibleinternal transition changesitsstate alone, causinga
synchronizationlossfor M;. Therulesdefined above could
be extended to a coupled model with an arbitrary number
of atomic models in a straightforward manner. Note that
the definition of weak synchronization between untimed
models can be easily obtained by just eliminating timing
information (ignoring elapsed time), that is, by replacing
g; by s; from the above definition.

Asanexample, recall therailroad crossing model inFig-
ure 4. At atotal system state ((TRAV, 5.5), (UP, 5.5)), no
internal/external transition iseligible. However, at another
total system state ((TRAV, 90.5), (UP, —)), an interna
transition of thetrain is eligible at the state (TRAV, 91.2),
whilenotransition of thegateiseligible. Thestate (UP, —)
of the gatewould transit to the state (DOWN, 0) as soon as
the controller performs its internal transition with an out-
put, whichis, inturn, converted to theinput event C?down.
Note that no synchronization can take place between the
train and the gate since there is no coupling between the
two.

6. Controller Design

6.1 Weak/Strong Path Controllability

This section briefly shows the result of a railroad cross-
ing controller design problem using the DEV S supervisory
control framework proposedin Song and Kim[18]. Aswill
be seen in the subsequent section, the design procedure es-
sentially isto deducethedesired statetrajectories(or paths)
from a composite plant model, which can be converted to
a controller model in a straightforward manner with the
concept of an inverse DEVS[15, 19]. To conclude ahead,
we see that the plant TG-PLANT is weakly controllable
with respect to the control objectives, as shown in the fol-
lowing. This means that the controller under design hasto
meet strict timing requirementsaswell asan event order to
guarantee safe system operation. To begin with, we need
to define the notion of DEV S controllability again. Given
adiscreteevent plant M =< X, S, Y, 8in, 8o N, 1 >, @
state path ST = so81...57-18;, s € S (or path) isase-
guence of statesof S that isin the order that is desirable to
be executed by plant M. The terms used in the following
definition are dlightly modified from the original onesin
Zeigler et a. [15] to be more definite.

DEFINITION 3. Weak path controllability. A path is
weakly controllable if either an internal or externa tran-
sition can transit each state to the next state on the path.
Formally, a path ST is weakly controllable if, for al s;,
s;+1 followss; in ST, either

(@) Bin(s;) = Si41, OF

(b) there is a par (e, x), where 0 < e < ta(s;),
di(s;)) = 8" # si, and x = p?m € X, such that
Bext(siy e, .X) = Sit1-

The states on aweakly controllable path never deviate
from those specified in the path with a proper input event
at an appropriate time.

DEFINITION 4. Strong path controllability. A weakly
controllable path ST is strongly controllable if, for al s;,
si41 followss; in ST, either

(@) Bdin(s;) = Si4a, OF

(b) there is an input x = p?n € X, such that
dext (i, €, x) =s; 1 foral 0 < e < ta(s;)) = oo.

Thismeansthat (1) the plant exploresthe desired states
on the path by a sequence of internal transitions until
it meets a state with an infinite time advance, or (2) at
the state, an externa transition is defined for the transi-
tion to the next desired state. Note in definition (b) that
ta(s;) = oo means that there is no internal transition el-
igible at the state (i.e., s’ € S diy(s;) = ') such that
ti(s;) = [00, o0]. Thus, in that state, the controller has
enough time to stimulate an input event, which changes a
plant’s state to the next desired state by an external transi-
tion. Otherwise, a path is called uncontrollable.

From the above definitions, we can derive path control-
lability for an overall system: a system model M is said
to be strongly (weakly) controllable with respect to a state
path ST = sos1...5;157, 5, € S if and only if the state
path is strongly (weakly) controllable. The framework for
the design and implementation of a discrete event con-
troller based on the above definitions can be found in Song
[20] and Hong et al. [2].

6.2 Result from the Railroad Crossing Controller
Design

Control of an untimed discrete event system model can
be done by applying a correct sequence of control input
events to the system that keeps the system in a desired
execution order. The term untimed means that an input
event or an output event could occur at an arbitrary time.
Thus, only the strong controllability in the above definition
can be considered in the untimed domain. In this section,
we confine our concern to the design of an untimed control
model.
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Figure 5. Untimed composite model of coupled model TG-PLANT. T.T = TTRAV; G.U = G is at state UP; etc.

In the following, we employ the controller design
method proposed in Song [20]. Given a given plant speci-
fication in Figure 4, we first obtain the untimed composite
model of theplant TG-PLANT, asshownin Figure5. Then,
the next step finds desired state paths. The formal control
objectivesfor safety and liveness, SPEC, in temporal logic
form must satisfy the following two [14]:

SPEC.10—(T.INGATE A G.UP)

SPEC.2.(T.TRAV A G.DOWN) —>

O(G.UP A (=(—=G.UPUT.APPR)))

The first logic claims that at any instance, the system
should not be at a state where the train and the gate are
at the crossing area (safeness). Second, if the gateis down
and thetrain passesthe gate, then the gate eventually opens
for acar to passit (liveness).

Following the procedure in Song [20], a set of desired
paths that satisfy the given control objectives is obtained

(Fig. 6):
STesivea = {[(T.T,G.U)T.A,G.U)(T.A, G.D)

(T.1,G.D)(T.T, G.D)I'}.
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Figure 6. Controllability analysis of untimed composite model

Unfortunately, as shown in Figure 6, the path is not
strongly controllable but weakly controllable. That is, a
dangerous state (7.1, G.U) would be reached from a de-
sired state (7.A, G.U) viaaninternal transition unlessthe
control input 1 is applied before the transition. Thus, we
conclude that the plant is not controllable in the untimed
domain and that the state (7.1, G.U) isabad state in the
sense of safety. Regardless of the result above, strong con-
trollability may be achieved by modifying the plant by
adding additional sensors and actuation points to the plant
in an appropriate manner.
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Figure 7. Modified plant system

Figure 7 showsamodified system model inwhich atraf- Figure 9 depicts a timed control system that consists
ficlight model isadded, and thetrain’ sbehavior ismodified of three atomic RT-DEVS models: TRAIN, GATE, and
S0 as to accept control input events from the traffic light CONTROLLER. For the safety analysis of such a system,

model. By the similar steps above, a controller model can we employ an inductive methodology for analyzing the
be obtained, as shown in Figure 8. timed behavior of aclosed coupled model under weak syn-

Notethat the controller obtained in the untimed domain chroni zation between components. We use term timed be-
is robust to time specification; that is, the desired state cause it provides timing information associated with each
path is guaranteed regardless of time specification. Thus, state of a composed model. The method proposed here is
the DEV S framework for the controller design in the un- called the TBA, which gives the maximal set of all timed
timed domain is adequate for the control of hard real-time behavior with minimal uncertainty from multiple models
systemsinwhich any synchronization loss can causeadis- [18]. TBA does not produce just a sample path, asin sim-
astrous effect. Asaside effect, by theinclusion property of ulation, but allows us to perform reachability analysis. In
theorem 1 in Song [20] and Song and Kim [18], any tim- other words, it produces all possible sequences of timed
ing constraint restricts the system’s behavior. Therefore, it events/statesthat acoupled model can generate. Two prob-
ispossible for the designed system not to meet the control lemsthat makethe analysiscomplicated areaninfinitetotal
objectivesin the sense of liveness, although it never affects state spaceinduced by densetimeintervalsowingto atime
the safeness property. This is because some desired path interval function and the inherent uncertainty augmented
may not be executed by the time constraints. Thus, design by interval operations. To cope with the problems, we in-
of aweak controller requires the verification of liveness, troduce a notion of vector time and a clock matrix in our
which can be done by using the timed behavior analysis analysis process. A notion of time representation that ef-
presented in the next section. fectively dealswith densetimeintervalsisgiven, followed

by the TBA procedure.

7.Timed Behavior Analysis

. . . o ) 7.1 Time System: Vector Time and Clock Matrix
The original railroad crossing plant in Figure 4 is not

strongly controllable in the untimed domain, meaning that This section introduces a clock mechanism and associated
no controller keeps the plant to the desired states without mathematical tools that allow us to predict the upper and
falling into some bad state. However, it is still a weakly lower bounds of the next transition time as precisely as
controllable plant with respect to the desired path S7 i ,eq- possible. To begin with, we introduce a notion of an ar-
Thus, we still have an opportunity to control the plant by a tificial clock of each machine (model). A clock of a ma-
timed controller, which generates control events at appro- chine is reset whenever an internal or an externa state
priate elapsed times. While excluding an automated algo- transition occurs. It then isincreased continuously until its
rithm to generate such times, this article focuses on safety next transition, thus being a representation of an elapsed
analysis: given atimed controller, whether acontrol system time at a state. In addition, every machine can observe
issafe. the other machines’ transitions only when their clocks are
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Figure 9. Timed control system for safety analysis

synchronized. Without synchronization, one machine
never guesses another machine's total state (state and as-
sociated elapsed time), which is necessary for the modular
modeling formalism.

To deal with real-valued interval time, we define arith-
metic interval operations. A real interval (or just interval) ¢
isdefined by acompact subset of the field of real numbers,
N, of theforms = [LLu]l = {¢t|]l <t < u,l,u € R}.
Theset of all closed real intervalsisdenoted by 7 (9t). Two
intervals, a = [ay, a,] and b = [b,, b,], are called equal,
a = b, if and only if a; = b, and a, = b,. Binary opera-
tionsaredefined by () addition, a+b := [a,+ b1, a,+b5],
and (b) subtraction, a — b := [a; — b,, a; — b;]. A single
valuer € Nisregarded as ¢, t] € I(N); thus, ¢ + a equals
[z, t] + [a1, az). Wesay a < b if a, < b,. The size of an
interval, |a| = a, —ay, iscaledtheuncertainty level. From
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now on, time is represented by a real-valued interval, and
the termstime and time interval are to be interchangeable.

The notion of interval vector time is an extension of
the system of vector time for monotonically increasing the
nonnegative integer [19] to real intervals. In the system,
each machine hasits own artificial local clock that is reset
whenever the machine encounters a state transition. For-
mally, aninterval vector timewv isan-dimensional vector of
rea intervas; that is, for aninterval vector timev[1...n],
1<i <n ] elI®.A n-dmensiona interval vec-
tor time domain isdenoted by VT" C I(R)". An element
v[i] € I(R) represents a dense set of possible times of
clock i. For example, consider a three-dimensional inter-
val vector timewv, = [0.3,0.5 0,0 2,4] € VT2, Thefirst
element [0.3, 0.5] isthe possible reading of clock 1, the
second [0, O] of clock 2 reset, and [2, 4] of clock 3. We can
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see that machine 2 has just reset, and then the uncertainty
level becomes zero. Thus, from machine 2's perspective,
machine 1 has spent [0.3, 0.5] after itslast transition, and
the elapsed time of machine 3 at the current state iswithin
[2, 4]. Recall that a vector time represents possible time
ranges of clock readings at a single physica moment of
time. Now we define the precedence rel ationship between
vector times.

DEFINITION 5. Precedence of vector times. For n-
dimensional vector times vy, v, € VT, vy is said to pre-
cede v,, denoted by v; < vy, if and only if

Im : vi[m] < vo[m] and Yk # m : = (v [k] < vi[m]),
k,mel.. n. (©)

The definition states the following: if there exists at least a
single clock that can determine the precedence relation of
the two vector times, and there is no contradictory judg-
ment from other clocks, we rely on the judgment of the
clock. The key idea is to choose the earliest one among
machines for the next interna transition. The precedence
v <> v, stands for vagueness to determine the time
precedence.

To deal with multiple times as agroup, it is convenient
to stack vector times in atime matrix form. Let us define
MT" asthe domain set of n x n time interval elements.
For atime matrix O[1...n, 1...n] € MT", each row
Oli, -] € VT" isdesignated to the vector time of machine
i. Thus, anelement O[i, j] representsthetime of machine
iintheview of clock j. Wewritejust MT instead of M T" if
no confusion arises; similarly, we use VT instead of V T".

DEFINITION 6. Consistency of the time matrix. A time
matrix O € MT iscaled consistent if and only if for al
pairsi, j = 1...n,i # j, suchthat v; := O[i, -], one of
thethree holds: (a) v; < v;, (b) v; K v;, or (C) v; K> v;.

We define a specia class of atime matrix, called a(rel-
ative) clock matrix, that maintains the time differencesin
theview of each clock inapeer-to-peer fashion. For aclock
matrix O € MT, an lement O[i, j] implies that time i
leadstime j by O[i, j] inthe view of clock j. Moreover,
its own time differenceis always zero, O[i, i] = [0, 0], as
the definition states.

DEFINITION 7. Validity of the clock matrix. A clock ma-
trix is said to be valid if and only if it holds the following
properties:

@ Oli,i]1=10,0]

(b) Oli, j1=—0lj,il

(c) There is a nonempty subset of clocks, Cj...(0) <
1...n,suchthat foral i,k € C...,(0): O[i, -] =

Ok, -]andthat for somei € C,..,(O) andforal k ¢
Creaa(0): OLk, jllmax < Oli, jllmin, j €1...n.

A clock i € C,..,(0) is caled the most leading clock
(MLC), and the vector time v, := O[i, -] is caled the
most leading time (MLT). Denote asubset CT € MT to
be a set of valid clock matrices, each element of which is
valid. For example, a clock matrix

0,0 15, 25 0,0
O=| —-25-15 0,0 -25-15
0,0 15,25 0,0

is valid since it satisfies (a), (b), and C,...(0) = {1, 3}
and v,,,(0)=[ 0,0 15,25 0,0]. Inparticular, with
0O[1, 2] = [15, 25], itiseasy to seethat time O[1, -] leads
time O[2, -] by [15,25] inthe view of clock 2. Conversely,
0[2, 1] = [—25, —15] indicates that time 2 isbehind time
1 by [-25,-15] (say, —20). It specifies only the boundary,
not an exact value. Clocks 1 and 3 are synchronized.

For each row i of aclock matrix, a vector time repre-
sents a relative time of the last transition of machinei in
the view of each clock. The column j of a clock matrix
indicates a set of the relative times of the last transitions
of al machinesrelative to clock j. Since all diagonal ele-
ments are zeroes and the clock is reset at each transition,
an element of a clock matrix shows the time difference
between the two last transitions of two machines. For ex-
ample, O[1, 2] = [15, 25] meansthat the last transition of
machine 1 takes place at time ¢ € [15, 25] after the last
transition of machine 2. Thus, it is an elapsed time for a
composite state in arelative form.

7.2 Computing Timed Transitions

This section deals with a timed transition. Consider an
externally closed coupled syssem N = < X, Y, M,
EIC,EOC, IC >, where M; € M is an atomic model
M, = < X;, A;, Y}, dextir Ointis Nin t; >. Let D =1...n
be a set of indices of modelsin M, wheren = |D|. The
following steps show the computation of timed transitions,
which can be used for safety analysis.

7.2.1 Step 1: Find the Next Transition Time and
Transition Machines

Thefirst step isto find the next transition time of eligible
candidate models at acomposite total stateg = (s, 0,) €
S x CT. Our analysis maintains the two kinds of atime
matrix: O, for thelast transition time and O, for the next
transition time. Theinitial last transition time O, of asys-
tem is a zero-clock matrix whose elements are all zero,
indicating that all clocks are synchronized. Let usstart at a
kth compositetotal state, ¢* := (s*, 0%) € 0. € S x CT,
where s* := (s5,s5,--+ .55 € S =[],., S;,ad CT is
the set of all n x n valid clock matrices. Since Of € CT,
there must be the most leading time v,..(O; ). Wecall ¢* a
timed stateinstead of atotal stateto emphasizethe elapsed
times in a clock matrix. From the timed state ¢*, we can
compute the (k + 1)th transition times of each machine
in D, denoted by O%™ € MT. A vector time O5™[i, -]
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represents the next transition time of machine i, which is
determined by the current vector time O*[i, -] plusthetime
tofireri; (sf) since then, given by

1<j<n:O0fYi, j1:= (O, j1+tii(s))

N [vlead(olli)[j“minv OO] (4)

Theintersection of two vector timesis a vector time, each
element of which is obtained by an intersection of cor-
responding elements. The clipping operation of the right
term, [V (O%)[j]1lmin, 001, is subject to causdlity in the
real world; that is, the next transition time should be greater
than or equal to thelast transition timein the system. Actu-
aly, thetime O%™[i, -] designates the time | ft to the next
transition of machine i in the view of each clock since the
last transition time Of[i, -] of state s*, if there is no input
event to the machine. For example, from the perspective of
clock j, aninternal statetransition of machinei will occur
at an instance of time within O%™[i, ;1.

LEMMA 1. If Of is consistent, then time matrix Oy
obtained by (4) is also consistent.

Proof. We can easily reach this result by the definition of
the addition operation of intervals.

An internal state transition should occur within 7i(s)
(i.e., ti(s)|min < ta(s) < ti(s)|ma), With no external input
event by then. Thus, thetimespan of thenext transitiontime
isgiven by the minimum of thenext transition timesin each
column, which gives avector timevf, [1..n] € VT:

N,max
1< j=n:v,, 0l = mnOii jD.  ©)

where min(vq, vy, ... ,v,) = [min(y,,...,[,), min
(ug, uz, ... ,u,)l, forv, := [, u;] € I(N). Timewy,,,..[/]
means the least time interval among the next transition
timesin the view of clock j.

LEMMA 2. Thetimespanin (5) isthe maximum interval
within which at least one internal transition occurs in the
system.

Proof. In the view of clock j € D, the earliest next
internal transition time is vty [jllmn. Thus, for al
i € D, O™ i, jllwin = V5 0ilillnin- At the other ex-
treme, there is at least one machine m € D such that
Oy m, jllmex = V% a1 Ima. Machine m has to per-
form aninternal transition until that time, or it violatesthe
system specification. Thesetwo factors support thelemma.

Lemma?2 statesthat at least amachine hasto performan
internal transition at a time within the maximum interval
Uy e+ 1T QiVES US@valid next vector time at which at least
one machinefires. For all i € D, wewrite

1 S -] E n: Olli’.max[i’ J] = Olli’[l’ -]] ﬂ vl;\/,max[-j]’ (6)

With this, we can determine the candidate machines that
have a possibility to perform an internal transition at ¢*.

CAND' := (i € D|O},,,.li, j1#%.Vj € D). (7)
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Therationaleisthat acandidate machine for the next inter-
nal transition is selected when all clocks agree that at |east
an internal transition would take place by the time.

ExaMpPLE 1. Consider the railroad crossing system
shown in Figure 9 and its final result from TBA analy-
sisin Figure 11. To show how TBA works, we assume in
the subsequent examples that the system is at a composite
state g4 = (a4, 01 4), Wherea, = (T, D, TD), and itsclock
matrix O 4 isgiven by

0,0 3550 0,0
Ora=| —-50,-35 0,0 -50,-35 |.
0,0 3550 0,0

For instance, the first column represents the last transition
times of thetrain, the gate, and the controller, respectively,
in the view of the train model. From ¢, and time intervals
at states T, D, and TD in Figure 11, we can obtain Oy 4 by
using equation (4):

90,95 125,145 90,95
Oyg4= |: oo} oo} 00 :|
9,12 44,62 9,12
Application of (5) to Oy 4 resultsinavector time vy 4 max =
[ 9.12 44,62 9,12 ]|. Combining vy.4ma aNd Oy
with equation (6), we can get

@ ? 0
0N.4.ma>< = |: @ @ ] :| .
9,12 44,62 9,12

Note that there is only one candidate model for the
next transition: the controller model C; that is, we have
CAND, = {C} by equation (7), with Oy 4malC, ] =
[9,12 44,62 9,12 ]

7.2.2 Step 2: Weak Synchronous Composition

The second step is to find machines, for each output
event from a candidate, that synchronously perform ex-
ternal transitions with the associated output events; how-
ever, if there is no such machine, the candidate fires
alone. A machine in the candidate set m € CAND* has
at least one internal transition defined at a timed state
g* = (s*, 0%) € O., where s* := (sf,s5,--- ,s5) € S.
In general, a set of feasible internal transitions of machine
M, =< Xi, A, Y:, 8exti» Bintis Nis t; > ONastates € S; is
defined as follows:

INT, (S[') = {(S;, yt,’ Si,) S S[ X Y, X Si |8;m‘[(S[, y[/)
— s/ isdefined). ®)
Application of equation (8) obtains INT,,(s*), a set of in-

ternal transitionson astate s* € S, of each machinem €
CAND*. Recall that aninternal transition (s , &, skt1) €
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INT, (s} ) generatesan output event y*** € Y,,, whichisim-
mediately transmitted to other machines connected by cou-
pling relations. Weak synchronization rules in definition 2
can provide us with a set of machines that synchronously
perform external transitions stimulated by the output event
yitt ey, at thetimed state ¢* as

SYNC; (vi™) :={j € D|3eq (s}, ¢;, x}) = s** and

(v, x}) matches}. 9)
We can ignore elapsed times of theinfluenced machines as
the following lemma states.

LEMMA 3. Every machine p € SYNC! (yf™), m €
CAND¥, can synchronously perform an external transition
due to the matching input of y“** € ¥,, within the valid

next transition time O}, , . [m, -].

Proof. The next transition time O%™[p, j] is greater than
or equal to the upper bound of the span vf, . [j1lma bY
equation (5); for al clocks j € D, it is obvious that an
external state transition is always defined within the next
transitiontime Oy, .. [p, -1. Thus, when thematching event
isreceived from a sending machine m, the elapsed time of
areceiving machine p islessthan or equal toitsupper time
bound at its current state.

By lemma 3, we can get a timed state ¢*** =
(s, 0;™) e Q. from ¢* = (s*, 0%) € Q. using the
weak synchronization mechanism as every internal transi-
tion of m € CAND* and associated external transitionsin
p € SYNC!, (yi') areéligibleuptotime Oy, , ,[m, -1. First,
the new composite state s*** = (si*t, 5t ... (551 €
S can be obtained as follows. For al m € D and
(sk, yErt skt € INT, (s}),

@ syt = SinCsps s

m?

() 5% = Beq(st, —, xk+), for al p € SYNCE, (y5)

r’

and (y**1, x**1) matches; and

m *7p
(¢) st =5 foralr € D — SYNC!, (y5) U {m).

By the definition of weak synchronization, we can see
that elapsed times of machinesin SYNC! (y%1) U {m} reset
to zeroes because they all undergo state transitions. Thus,
the new elapsed time O} will be adjusted for the new

state s*+*, as shown in the following step.

ExAamMPLE 2. Considering the result of example 1, the
candidate set has only one model, CAND, = {C}.
The feasible interna transition set of controller C at
state g4 = (as, Op4), as = (T, D, TD) can be eas
ily obtained from the controller model in Figure 9 as
INT(TD) = {(TD, !p2, TU)}. By the coupling relation,
we see that SYNC. ,(8) = {G, C} through event 2. That
is, the controller and the gate will synchronize together
through event 2, and the resultant composite state will
be gs = (as, O.5), Where as = (T,U,TU). That is,

#Pctup)

(T,D,TD) — (T, U, TU),where#p denotesthesyn-
chronized event. Clock matrix O; s of the state ¢s can be
computed by the following step.

7.2.3 Step 3: Computing the New Clock Matrix

Note that a clock matrix records a relative time, leads, or
lags in the view of each machine's eye. Thus, if one of
the elements is updated, then other related time elements
should be updated accordingly. This section defines the
update rulesto maintain consistency and correctnessinthe
clock matrix. We can find time O;** from Of and O},
in equation (4).

ProPOSITION 1. For m e CAND, let SYNC :=
SYNCH(y*) U {m} and SYNC* := D — SYNC be a set of
synchronous machines and its conjugate set, respectively.
Then, the (k + 1)th elapsed time O™, obtained by the
following four rules, is semantically consistent.

Vi € SINC, j € SYNC : O**[i, j]:= [0, 0]

(synchronization)  (10)

Vi € SYNC’, j € SYNC* O™, j] := OLli, j]

(unchanged) (1)

Vi € SINC, j € SINC* : OM[i, j1:= 0% [m, j]

N.,max

(advanced) (12

Vi € SINC', j € SINC : O, j]:= =05 [m,i]

N.,max

(normalization) (13)

Proof. Equation (10) comesfromthefact that after an activ-
ity transition occurs, the clocks of machinesin SYNC reset
to zeroes by either internal transitions (machine m) or ex-
ternal transitions (machinein SYNC — {m}). Equation (11)
holds because there has been no transition in machines
in SYNC¢, and neither does the reference time of clock
J € SYNC-. Thus, the transition times of the machinesin
the view of their local clocks are invariant. In the view of
clock j € SYNC-,itistruethat clocki € SYNC increments
upto Oy, ,..[m, j1in equation (4). Finally, recall that the
launching time of a machine i € SYNC‘ is unchanged,
whereas clock j € SYNC is newly updated to [0,0], even
though it really advances by Oy, ,...[m, j1. Therefore, the
last transition time of machinei € SYNC* should lag rela
tively behind by thetime advance 0%, [m, jlintheview

N.,max

of clock j, which gives equation (13).

LEMMA 4. A clock matrix Of** obtained by proposi-
tion 1isvalid.

Sketch of proof. The vaidity conditions (a) and (b) in
definition 7 can be easily proved by four equations in the
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proposition. Furthermore, we have C,..,(0;) = SYNC
and v, (0K = 0% m, -] = OFj, ], foral j e
Creaa(0,). It can easily be deduced that O} ™[k, j]1|ma <
O™ [m, j1|min from the four cases in the proposition and
the causality constraint in equation (4), which proves (c).
It completes the proof.

Now consider elements of aclock matrix, O™[i, j]. It
is certain that an element (i, j) of a clock matrix records
not only the clock differences between clocksi and j but
also the last transition time of machine i in the view of
clock j. Now that we have obtained anew starting time, we
have finished calculating a transition from ¢* = (s*, Of)
to ¢t = (s¥1, Of*) with an event y**! and the next

m

transition time O}, from the timed state ¢*. The timed
behavior algorithm is arepetition of the above three steps:
(2) find the next transition time and candidates, (2) do the
state composition, and (3) calculate the elapsed time at the

time of the transition.

ExampPLE3. Recallingexample2, wehavethestategs =
(as, O 5), Whereas = (T, U, TU), and the clock matrix
0, 5 of the state ¢gs can be computed by proposition 1.
From example 1, we obtained vector time Oy 4 mx[C, -] =
[ 9.12 44,62 9,12 ], which meanstheinternal tran-
sitiontimeof thecontroller at thecurrent stateq,. By propo-
sition 1, with SYNC_ ,(B) = {G, C} and Oy 4mx[C, -], We
can get

0,0 -12,-9 —-12,-9
O,s=| 912 0,0 0,0 |.
9,12 0,0 0,0

Note that the diagonal elements are aways [0, 0] by the
definition of the clock matrix. The rest are obtained as
follows. By the synchronization rule (10), we have clock
matrix O, s[i, j]1 = [0, 0], where i, j € SYNC.4(B) =
{T, G}.Fori € SINC.4(B) = {G, C}, j € SYNCE ,(B)
{T} (first column), and O, s[i, j1 = OwnamalC, j1 =
[9, 12] using the advanced rule (12). Findly, for j €
SYNCc.4(B) = {G, C},i € SYNCE,(B) = {T} (first row),
and O, sli, j1 = —OyamxlC, jl = [-12, —9] using the
normalization rule (13).

7.3 Timed Behavior Analysis

This section sums up parts of the previous sections and
composes a procedure to analyze the maximal timed be-
havior of a closed component model with minimal uncer-
tainty. The ideais relatively simple: full state exploration
based on the spontaneous internal transitions as long as
time constraints permit. The timed behavior analysis a-
gorithm gives us a timed reachability graph from a closed
RT-DEVS model. Let N =< X, Y, M, EIC,EOC, IC >
be a closed system where each machine M; € M is an
atomic model M; =< X;, A;, Yi, Bexti» Ointis Mi» ti; >. The
timed behavior of a closed coupled model N is a set of
timed event-state sequences, T(N) € Q. x (X x Q,)%,
where X € U,.pY; x VT is a set of timed events, and

132 SIMULATION Volume 81, Number 2

Q. C § x CT isaset of timed states.

Algorithm TBA. Timed behavior T'(N) of aclosed system
N is obtained by induction on the length n = |o|, ® €
T(N):

1. n = 0: Obviously, §° := (s° 0?) € T(N), where
§% = (s, 82, .-+, s9) € §,andaclock matrix O} :=

0 is zero matrix whose elements are dll [0, O]s.

2. n = k: Assumethat @ := ¢%"'q*---5°¢* € T(N)
isatimed behavior where g* := (s*, O%).
3. Determine Oy}, and CAND* from g* := (s*, 0%),

N.,max

ski=(sf, 5, -+, sh).

4. n = k+ 1:vm € CAND*: for each y**' € v,,
(sk, yert sk € INT, (sh):

® = o (g™ e T(N),
Gl . (O,k+l’ vk+1) c i],
gt = (M 0 e 0.,
[m, -], s"*t =

k+1 k+1 k+1 . k

where o' =y 0"t = Oy
k1 k41 k1 .
(577, 857 -, 8,7) €St

@ sy = BinCsy, yu™;
(b) si = Bealsh, — x;*), for @l p €

SYNC! (yE1) and (yk+t xl‘;“) matches;

m

(¢) st = sk, foralr € D—SYNC! (yE) U {m};

and O™ can be obtained by proposition 1 from
SYNC! (o*t1), O, and Of\,’m“.

This analysis method consists of essentially two parts:
untimed behavior analysis and timing analysis. Only the
candidate machines restrict the state transitions of ma-
chines that have not reached their firing times. Thus, it
istrue that TBA restricts an untimed behavior by the time
constraints. Although this general agorithm gives us the
maximal behavior with the minimum uncertainty, it cannot
avoid the state explosion problem that is common in the
general composite reachability analysis of state machines.
Another limitation comes from the assumption that a sys-
tem is closed in which no input events to the system are
defined. However, we can extend the closed system to an
open one by adding an artificial environment model, but
that is beyond the scope of this article.

8. Safety Analysis

Safety analysis of a safety-critical real-time system model
in RT-DEV S is one of application of the TBA in the pre-
vious section. Safety analysis is necessary to guarantee
that the time constraints on a designed untimed controller,
which may deviate from acorrect to abad state path in the
case of an incorrect timing specification, are safe.
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Due to the untimed behavior analysis agorithm pro-
posed in Song [20], we can easily get areachability graph
of an untimed model of a system. As atimed behavior is
usualy a subset of untimed behavior [18], once a system
is proved to be safe in untimed safety analysis, it is auto-
matically safein thetimed safety analysis. Timed behavior
analysis, however, requires more time and space compl ex-
ity than the untimed one. We first show an untimed safety
analysisand then present the application result to thetimed
safety analysis.

8.1 Safety Definition

We define safety as a system that does not go into any bad
state. For example, state (7.1, G.U) isabad state because
of the possibility of it having a disastrous accident (due
to SPEC.1). Thus, safety analysis of RT-DEVS modelsin-
volves atimed behavior analysis based on weak synchro-
nization, which exploresall thetimed statesthat the system
undergoes. In areachability analysis, onceit reaches abad
(or unsafe) state such as B = {(T.1, G.U)}, the system
turns out to be unsafe, and the exploration stops.

8.2 Untimed Safety Analysis

Consider again a controller shown in Figure 9, where
time constraints are specified manually. By applying un-
timed behavior analysis based on the weak synchroniza-
tion mechanism to the model, we can get apartial untimed
reachability graph of the whole system, as shown in Fig-
ure 10. A node represents a composite state of the train,
the gate, and the controller, in that order, and an edge des-
ignates atransition with afiring event annotated. From the
initial state (T, U, TU), wherethe train is at state T', the
gate U, and the controller T U, only the train has a sponta-
neous (or internal) transition by which an output event o,
isproduced. Then, dueto the coupling relation, theevent is
translated to an input event of the controller, which causes
a simultaneous external transition, thus leading to a new
composite state (A, U, AU). At this new state, both the
train and the controller have internal transitions that pro-
duce respective outputs o, and B,. If the controller fires
first, the output event B, iswired to the gate waiting for the
event, which entails a ssmultaneous transition to the state
(A, D, AD); meanwhile, if a, firesearlier, the system will
be at the state (1, U, AU), a bad state in B. This proves
that the system is not safe anymore, and the exploration
may stop also. As a consequence, in the untimed safety
analysis, the system specified in Figure 9 is proved to be
unsafe. Nevertheless, an assignment of appropriate timing
constraints could prevent the state (A, U, AU) from mov-
ing to the bad state (1, U, AU).

8.3 Timed Safety Analysis

Consider asampletiming specification on the states shown
in Figure 9. The train approaches after traveling for about
[90,95] time units; then, around [30,35] time units later,

. %(T U,TU)

loy state =(T,G,C)

(A,U,AU)

3
g (A,D,AD)
3o

.3 (1.0, TD)

Figure 10. Untimed reachability graph of N in Figure 9

the train stays at the crossing area and finally leaves the
areain[20,25] time units. The gate always awaits and per-
forms a transition upon receiving control inputs from the
controller. When the controller receives an event M 2appr
from the train, it commands the gate to close after about
t; = [10, 15] time units; then, it observesthetrain until the
train leaves. After that, it demands the gate to open around
t, = [9, 12] time units later. Could this timing specifica-
tion prevent the system from falling into bad states? By
the TBA, we can verify whether this is a correct timing
specification. If it is not correct, we must choose another
value of 1, and 7,.

Figure 11 depicts the resultant reachability graph, an-
other illustration of the timed behavior obtained by apply-
ing TBA totherailroad control system showninFigure9.A
nodein the graph represents atimed state ¢; := (a;, O..,),
and atimed transition is represented by a dotted arc with a
timed event annotated, a pair of events, and the next tran-
sitiontime o; := (¥, On.max (M, +)), Where the machine
m € D is one with an initiative internal transition trans-
mitting an output event y,,.

Fortunately, we can see in the figure that the system
never fals into a bad state (1, U, —), owing to a correct
timing of controller inputs, which was not in the untimed
case. For example, the controller sends the output event
C!down around [10,15] at the timed state ¢,, to which the
controller transmits with a synchronous event M#appr
generated from thetrain at theinitial state ¢,. It isinterest-
ing to see the same thing in the gate's view; for transition
q1 —> g2, thegatereceivesinput C?down around[100,110]
time unitsafter the gate’ slast transition (no transition since
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Figure 11. Timed reachability graph by TBA: T(N)

the start), while the controller thinks it is around [10,15]

time units after the train and controller’s last transition.
Regarding the control objectives, recall that in Figure 6,

the desired state path is weskly controllable since there

are externa transitions, (T.A, G.U) ﬂ (T.A, G.D)and

(T.T,G.D) ﬂ (T.T,G.U). The plant's execution
would be kept in the desired state path if the input events
1 and 782 occur before output events !a2 and lal, re-
spectively. It isatypical example that control depends on
both the events' sequence and the times associated with the
events for safety and liveness.

For an intuitive understanding of TBA, aprojection op-
erationisemployed. The operation extractsonly the behav-
ior of theplant (TG-PLANT) from thewholebehavior. This
can be done in an easy and straightforward way, which is
not described in thisarticle (see[18]). Figure 12 showsthe
resultant projected behavior T(N) | {T, G} to the train
and the gate model, T and G.

Consequently, we can see that the timing specification
has been chosen so successfully that the controller can con-
trol the plant asdesired. In particular, at timed states ¢, and
gs, the control input 28, proceeds !a,, and 2B, happens be-
fore la, at g4, which prohibits the system from executing
undesired activities. Therefore, we find that an uncontrol-
lable state path in the untimed domain can be controlled in
the time domain by choosing appropriate control timing.
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8.4 Remarks

Thetime assignment problem that allocates an appropriate
timing for each state of a controller in RT-DEVS is an
open question, especialy for weakly controllable paths.
Although it is out of the scope of this study, it could be
solved by methods such as linear programming [21]. With
thisassumption, we can briefly summarize thedesign steps
in the time domain based on TBA asfollows. Let N be a
control system with a plant P specified and a controller
unspecified.

1. Use TBA to get T(P) and U (P) of the plant, the
untimed behavior.

2. Apply the untimed design steps to get a set of the
desired state path, ST € U (P).

3. Get anuntimed controller by theinversetransforma-
tionfor ST.

4. Assign time variables to active activities of the un-
timed controller and find a solution.

5. Confirm safety and liveness by applying TBA again
to the controlled system with time specified.

The design steps in the time domain will be completed
when we find away of solving the time assignment prob-
lem; otherwise, one can solve it by an ad hoc method. The
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Figure 12. Projection of system N to plant: T(N)|{T,G}

final step, checking safety and liveness, isalso required for
the untimed design steps when time is specified. Note that
if one needs a robust controller against time, the untimed
design steps can be used.

Finally, we briefly remark on the correctness of TBA,
which can be dictated by the projection operation to indi-
vidual machines [20, 21]. If the behavior obtained by the
projection operation to a machine is a subset of the whole
behavior of the machine, we shall say that TBA is correct.

Figure 13 shows the resultant behaviors of machines—
T, G, and C, respectively. First consider the gate behavior
T(N) | G, shown on the left-hand side of the figure.
Compared to the gate model in Figure 9, the behavior is
a subset of the original since the trajectory (state-event
sequence) is the same as the original, and the transition
timesareasubset of theoriginal time[0,00]. Itisinteresting
to note that the train’s behavior in the center figure is the
same as the original one, that is, T(N) | T = T(T).
Likewise, the output times of the controller’s behavior on
theright-hand side of thefigure arethe same asthe original
one. Note that the system shows cyclic behavior when it
reaches steady states after some transient behavior. This
comes from the artificial assumption that, initially, all the
machines start at the sametime. From thesefacts, weclaim
that the proposed TBA produces correct results.

9. Conclusion

Thisarticlehasdealt withanapplication of rea-timeDEVS
to the analysis of areal-time discrete event control system
in two aspects. a controller design with an untimed model
and the safety analysis of the designed controller with a
given timing specification. For theanalysis, asynchroniza-
tion mechanism for communicating RT-DEV S models has
been defined as aweak synchronization. We reviewed the
untimed controller design framework using aweakly con-
trollable path for the railroad crossing control, which was
then extended to the timed design framework. To confirm
the safety of atimed controller, we proposed precise no-
tions of avector time and a clock matrix for areachability
analysis agorithm TBA based on weak synchronization.
TBA has been effectively applied to the railroad crossing
control problem. The notion is to overcome the inherently
increasing uncertainty induced by the dense time interval
operations in the analysis. We have shown that TBA can
generate a de facto finite state space of RT-DEVS mod-
els using the vector time and the clock matrix, although
the total state space is inherently infinite. However, the
space complexity israther high dueto the size of the clock
matrices in its representation. Indeed, being based on the
DEVS framework, the control analysis approach in this
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Figure 13. Projection of timed behavior. Left: projected to gate; middle: projected to train; right: projected to controller.

article is different from other approaches in that the same
model can be used for all phases of controller design and
implementation: modeling, analysis, performance evalua-
tion, and virtual prototyping. Under preparation is further
work that dealswith details of TBA [18]. Finally, the auto-
mati ¢ timing assignment problem for an untimed controller
with aweakly controllable path is still open for study.
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