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This article presents an application of the Discrete Event System Specification (DEVS) framework to
the design and safety analysis of a real-time embedded control system, a railroad crossing control
system.The authors employ an extension of the DEVS formalism, real-time DEVS (RT-DEVS), which
has a sound semantics for the specification of real-time systems in a hierarchical modular fashion.
The notion of a clock matrix for communicating RT-DEVS models is proposed, which represents a
global time between the models. Based on the composition rules and the clock matrix, an algorithm
for the generation of a timed reachability tree is developed that can be used for safety analysis at
two phases: an untimed and timed analysis phase. A railroad crossing control example demonstrates
that the proposed analysis for RT-DEVS models would be effective to verify the safety property of
real-time control systems.
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1. Introduction

Control of discrete event dynamic systems has attracted
ever more attention for the past decades, especially for
safety-critical real-time control systems. Such systems
must satisfy stringent real-time requirements in perform-
ing their intended functions. Recent computing technol-
ogy allows us to embed a microprocessor-based discrete
event control software (controller) in real-time control sys-
tems. Formal verification of such a discrete event controller
against desired system properties is known to be difficult
and complex [1]. For the verification, specification of such
control systems should be based on a sound formalism
for discrete event systems modeling. One such formalism
is the real-time Discrete Event System Specification (RT-
DEVS) formalism, which provides a seamless framework
for the development of real-time control software that in-
cludes modeling, design, analysis, simulation, and imple-
mentation [2]. This article deals with an application of the
RT-DEVS formalism to the design and safety analysis of a
safety-critical real-time embedded control system, a rail-
road crossing control system.
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Much research on the control of discrete event dynamic
systems has relied on the supervisory control framework
based on automata theory [3, 4]. A plant automaton is re-
garded as a generator that generates a sequence of events,
and a supervisor (controller) acts as a language recognizer.
Whenever the supervisor recognizes the plant’s behavior
at a state, it permissively controls the plant by enabling
or disabling the plant’s events at the state. Strict synchro-
nization or an interlocking mechanism between intercon-
nected automata is assumed in the framework. To relieve
this constraint, automata with prioritized synchronization
[5] are applied to the supervisory control framework [6].
In the synchronization, a sender model has a set of priori-
tized events that can be fired by themselves, regardless of
whether receiver models are ready to receive the events. A
timed extension of the supervisory control framework em-
ploys an extended automata model, called a timed discrete
event system (TDES) [7], in which a timed transition graph
is generated from a TDES, and then the same supervisory
framework is applied to the graph. Note that the interaction
from the control to the plant is permissive, and modeling
is done neither in a modular nor in a hierarchical manner.

Reachability analysis of multiple models has been a ba-
sis for verifying real-time features such as safety of an
overall control system. Associated with the analysis are
two major factors: a synchronization mechanism between
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models and a method of timing analysis. Ostroff [8] pro-
posed a timed transition model (TTM) in which each tran-
sition of a model is associated with a lower time bound
and an upper time bound within which the transition can
take place. Interconnection between models is based on
the strict synchronization mechanism or interlocking. One
drawback of the formalism is the state explosion due to
the time dimension, as a single tick generates a new state.
TDES [7] adopts a similar notion of time constraints of
TTM, which thereby has the same state explosion prob-
lem. TA (timed automata) [9] is an extension of automata
to the dense time domain in an interval of real values. Most
reachability studies for the verification of timed automata
are based on strict synchronization [5] between communi-
cating models [10]. An extensive review of real-time soft-
ware verification based on TA, including the work of VER-
IMAG, can be found in Sifakis, Tripakis, and Yovine [11].

As explained earlier, analysis of discrete event control
systems based on TA and TTM assumes that the commu-
nication mechanism between a plant and a controller em-
ploys strict synchronization. Strict synchronization, also
called interlocking, is a model of message lossless (or
synchronization lossless) between communicating entities.
However, there is a possibility that communicating enti-
ties may lose a message for synchronization, especially
in real-time systems. This is because a component of a
real-time system can send a message to another compo-
nent without knowing whether the receiving component is
ready. Such a weak synchronization mechanism for realis-
tic communication can be easily modeled in the RT-DEVS
formalism, which is defined in section 5. Since weak syn-
chronization considers synchronization loss reachability,
analysis based on the synchronization is much more com-
plex than analyses using strict synchronization. Thus, the
state space of a composed model with time information us-
ing weak synchronization is much bigger than that using
strict synchronization, being the cause of the state space
explosion problem. To alleviate the state space explosion
problem due to the time dimension, we devise precise no-
tions of a vector time and a clock matrix to get a maximal
set of behaviors with minimal uncertainty. It should be
noted that the RT-DEVS formalism employs dense time
intervals, whereas TTM [1, 7] employs integer time inter-
vals. Our safety analysis is based on the clock matrix of
an overall control system, which is derived from the weak
synchronization of communicating entities in the system.

This article is organized as follows. We overview the
DEVS-based system development methodology in sec-
tion 2. In the following section, we start with the prob-
lem statement of a target control system, named a railroad
crossing control. In section 4, we review the RT-DEVS
formalism with which an RT-DEVS model of a railroad
crossing control system is modeled. A weak synchroniza-
tion mechanism between component RT-DEVS models is
defined in section 5. Section 6 applies the DEVS-based
controller design framework to the railroad crossing con-
trol problem. Section 7 contributes to the timing analysis
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Figure 1. DEVS framework for systems development

for RT-DEVS models with dense time intervals. Based on
the timing analysis, the safety of the control system under
design is analyzed in section 8. We conclude the article in
section 9.

2. Overview of the DEVS Framework for Systems
Development

This section first describes a brief overview of a general
methodology for DEVS-based modeling, simulation, anal-
ysis, and implementation of discrete event systems. It then
explains the design and analysis of real-time discrete event
control systems using the RT-DEVS formalism. Figure 1
shows a unified framework for the design and implementa-
tion of discrete event systems, which include communica-
tion networks, computer systems, traffic systems, and oth-
ers. As shown in the figure, the core of the framework is the
DEVS formalism. The framework provides a basis for the
modeling of discrete event systems on which logical anal-
ysis, performance evaluation, and implementation can be
performed based on only one framework. To do so, a DEVS
specification language is developed, which is a language
realization of the DEVS formalism, with sojourn times be-
tween states unspecified. Now a DEVS model specified
by this language is used in the different phases for sys-
tems design and implementation by specifying additional
information. To support the methodology, a set of tools
has been developed, which include DEVSim++ [12] for
performance analysis, RT-DEVSim++ [13] for real-time
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Figure 2. Railroad crossing system

simulation, DEVS Executive [2] for virtual prototyping,
DEVSlog [14] for specification verification, HDEVSim++
[15] for hybrid systems analysis, and others. Due to the uni-
fied framework with such a rich set of tools, it is worthy to
extend the framework to the modeling and analysis of an
embedded control system.

With the DEVS framework, we present the design and
analysis of a safety-critical embedded control system, a
railroad crossing control system. To do so requires modi-
fication of our previous work [15] to adapt modeling and
analysis of such control systems. For safety analysis of
RT-DEVS models, we propose a timed behavior analysis
(TBA) algorithm based on a weak synchronization mech-
anism of communicating atomic RT-DEVS models. The
mechanism is an extension of the prioritized synchroniza-
tion [5, 6] of untimed models to timed ones.As will be seen
later, TBA is a general reachability analysis algorithm for
both the untimed and timed analysis of RT-DEVS models.

3. Problem Statement and Required Modeling
Power

Consider a railroad crossing system, as shown in Figure 2,
in which a train and a car have to pass through the same
crossing area, annotated by INGATE. If they are at the
area at the same time, a disastrous accident might take
place. Thus, we say the control objectives of this system
are twofold:

(a) Any accident should be prevented by sensing the
train’s position and manipulating the gate in a right
order at the right time (safeness).

(b) Furthermore, cars eventually should pass through the
gate in a finite time (liveness).

A design problem for a real-time discrete event con-
troller can be formulated as follows: given a plant with
known dynamics and control objectives, design a discrete
event controller that satisfies the control objectives. This
article considers a safety analysis problem that checks
whether the behavior of the overall control system falls
into some bad state.

To analyze the system explained above, the RT-DEVS
formalism should have additional expressive power that is
not in the original DEVS formalism. First, to reflect char-
acteristics of real-time systems, an event occurrence time
in the real-time specification may not be an exact value
but an interval. Thus, time advance in RT-DEVS should be
given by an interval of real numbers. Second, a mechanism
for synchronization between two RT-DEVS models should
be explicitly defined within the RT-DEVS formalism. In
practice, a real-time component that is trying to make an
internal transition does not block other components that
are not ready for synchronization. Finally, a rich set of
mathematical tools are required, such as modeling, simu-
lation, analysis, and implementation in the development
framework of safety-critical control systems. The next
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section reviews the RT-DEVS formalism with which a
plant model of an exemplified control system is developed.

4. Real-Time DEVS Modeling

4.1 Real-Time DEVS (RT-DEVS) Formalism

The RT-DEVS formalism, proposed by Hong et al. [2], is
an extension of the DEVS formalism and has the univer-
sality for real-time systems modeling, real-time simula-
tion, and real-time execution in one framework. We briefly
review the formalism that consists of two classes of RT-
DEVS models: atomic models and coupled models, as in
the DEVS formalism. An atomic model in RT-DEVS for-
malism, RTAM, is defined as follows:

RTAM =< X, S, Y, δext, δint , λ, ta, ti, ψ, A >

where the first seven-tuples are the same as the DEVS for-
malism rewritten here:

X, S, Y : the same as the atomic model of DEVS (i.e.,
sets of input events, sequential states, and output events,
respectively);

δext: Q × X → S, external transition function, where
Q is the total state set of Q = {(s, e)|s ∈ S and 0 ≤ e ≤
ta(s)}, and ta(s) is the state sojourn time;

δint: S → S, internal transition function;
λ: S → Y, output function;
ta: S → �+

0,∞, time advance function, where �+
0,∞ is

the nonnegative real numbers adjoining ∞.
In addition,

t i: time interval function,
ψ: activity mapping function,
A: set of activities,

with constraints
ψ: S → A;
t i: S → �+

0,∞ × �+
0,∞, where t i(s)|min ≤ t (a) ≤

t i(s)|max, t i(s)|min ≤ ta(s) ≤ t i(s)|maxs ∈ S, a = ψ(s) ∈
A, and t (a) is the execution time of an activity a ∈ A;

A = {a|t (a) ∈ �+
0,∞, a /∈ {X?, Y !, S =}}, where X?

is the action of receiving data from X, Y ! is the action of
sending data through Y , and S = is the action of modifying
a state in S.

Notice that RTAM is the same as the original DEVS
atomic model, except for three additional elements re-
lated to the realization of models: time interval function
t i, activity mapping function ψ, and set of activities A.
An activity associated with a state is a realization of an
abstract state transition to a concrete activity such as mes-
sage transmission, processing a task, or any valuable com-
putation. A time interval of real numbers (dense time)
associated at a state is to model an activity execution
time t (a), a = ψ(s) ∈ A, which may not be speci-
fied by an exact value. For the purpose of timing anal-
ysis, we will use a reduced form of RTAM by assum-
ing that ta(s) = t (a), ψ−1(ψ(s)) = s and also ignoring
implementation-dependent terms such as activity-mapping
function ψ and the associated activity set. Thus, a reduced

form of RTAM is given with the following seven-tuple:

RTAM′ =< X, S, Y, δext, δint , λ, ti > . (1)

It is interesting to note that RTAM′ is the same as the DEVS
formalism, except that the time advance function is re-
placed by the time interval function. It, however, keeps
enough information to analyze timed behavior of real-time
systems, which we are concerned with in this article. We
will use RTAM and RTAM ′ interchangeably hereafter.

Models constructed from components are formalized in
the RT-DEVS formalism as coupled models, RTDN:

RTDN =< X, Y, M, EIC, EOC, IC >, (2)

where
X : input events set,
Y : output events set,
M : RT-DEVS components set,
EIC ⊆ RTDN.IN × M.IN : external input coupling

relation,
EOC ⊆ M.OUT × RTDN.OUT : external output cou-

pling relation,
IC ⊆ M.OUT × M.IN : internal coupling relation.

Here, RTDN.IN, RTDN.OUT, M.IN, and M.OUT repre-
sent the input and output ports of the newly constructed
coupled model and component models, respectively. Three
elements—EIC, EOC, and IC—specify the connections
between the set of models M and input and output ports
of the coupled model RTDN. Note that RTDN is the same
as the DEVS formalism, except that the tie-breaking selec-
tor function in the DEVS formalism is not specified. No
specification of the function intentionally represents an ex-
ecution order of simultaneous events to be random, which
reflects characteristics of real-time systems. Accordingly,
simulation of a RT-DEVS model would execute such si-
multaneous events in a random order, which indeed is a
generalization of a fixed order. The generalization means
that analysis of RT-DEVS models would consider all possi-
ble orders of simultaneous events, not just one order spec-
ified by a select function.

4.2 Graphical Notation

RT-DEVS models in equations (1) and (2) may be repre-
sented with a graphical notation [2, 16] for intuitive model-
ing and communication. A component model in a coupled
model consists of a surrounding box (Fig. 4). Along the
boundary of the box, small triangles are placed inward for
input ports and outward for output ports. A box can con-
tain other boxes to express closure under coupling defined
in the DEVS formalism. A coupling scheme defined in a
coupled model specifies links between components. They
are represented in a hierarchical fashion by a solid line for
three couplings: IC from an output port of one component
to an input port of another, EIC from an input port of the
coupled model to an input port of component(s), and EOC
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Figure 3. Graphical notations of DEVS transitions: (a) external
transition and (b) internal transition

from an output port of a component to an output port of
the coupled model itself.

An atomic model is placed inside an innermost box (no
box inside the box). Figure 3 represents external and in-
ternal transitions in which an input event is represented
by “?” and an output event by “!.” For example, an input
event in?m means that a message m is input at the input
port in, and an output event out !m means that a message m
is output at the port out .A dotted line represents an internal
state transition specified by the internal transition function,
δint . A solid line represents a state transition specified by
the external transition function, δext. This notation derives
from CSP (Communicating Sequential Processes) [17], in
which a receiving process waits at a “?” step in its program
until the sending process sends a matching “!” message. If
ports do not need to be explicit, we replace x by x = p?m
and y by y = p!m. Finally, a time interval [ta, tb] is located
near state s, where t i(s) = [ta, tb] with the prefixed “@”
sign. Usually, the time interval [∞,∞] will be omitted in
the specification when it is obvious.

4.3 The Railroad Crossing Plant Model

Figure 4 shows a railroad crossing system model N with
two component models: a coupled model TG-PLANT (or
P ) and an atomic model CONTROLLER (or C). The cou-
pled model P , in turn, consists of two atomic models: train
TRAIN (or T ) and gate GATE (or G). The meaning and ab-
breviation of each state are shown in Table 1. Note that
the state name TRAV of the train can be represented by the
abbreviation T .T , or T , for short, if it causes no confu-
sion, where T .x means that the state x belongs to atomic
model T . This convention will be used throughout this arti-
cle. Following the terminology convention used in control
systems, we call a subsystem under control a plant (cou-
pled model P of the gate and train) and one controlling the
plant a controller (model C). Then, the coupled RT-DEVS

Table 1. Description of states of the train and gate models

State
Name Abbreviation Description

TRAV T or T.T Train is traveling the safe re-
gion. T.x emphasizes that state
x belongs to model T (train).

APPR A or T.A Train is approaching near to the
gate.

INGA I or T.I Train is now passing the gate.
UP U or G.U Gate is open. G.x means that

state x belongs to model G
(gate).

DOWN D or G.D Gate is closed.

model of the plant P in the figure is

P.X = {C}, P .Y = {M}, P .M = {T , G},

P .IC = {}, P .EIC = {(P .C, G.C)},

P .EOC = {(T .M, P.M)}.
And the atomic RT-DEVS of the train T is

T .X = {}, T .Y = {M!appr, M!exit, M!enter},

T .S = {TRAV, APPR, INGA}, δint(TRAV) = APPR,

δint(APPR) = INGA, δint(INGA) = TRAV,

λ(TRAV) = M!appr, λ(APPR) = M!enter,

λ(INGA) = M!exit,

ti(TRAV) = [90, 95], ti(APPR) = [30, 35],
ti(INGA) = [20, 25].

Note that the train model has three internal (or
spontaneous) transitions—δint(TRAV), δint(APPR), and
δint(INGA)—which cannot be preempted since there is no
external transition defined at those states. In the mean-
time, the atomic RT-DEVS of the gate G has two external
transitions associated with two external events: C?up and
C?down. Note also that there is no direct communication
between the train and the gate (no internal coupling of P ,
P.IC = {}). Thus, they run independently without the con-
troller’s mediation. If we eliminate the time interval in an
atomic model on purpose, the resultant model is called an
untimed model.
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Figure 4. Railroad crossing system model with a controller model unspecified

5. Weak Synchronization: Communicating
RT-DEVS Models

The DEVS formalism does not explicitly define a com-
munication mechanism between components coupled to-
gether. Here, three assumptions for communication be-
tween RT-DEVS models are made: (a) a coupling imme-
diately converts an output event of one component model
to an input event of the other connected by coupling rela-
tions. (b) Every port has a buffer with a length 1, and every
arrived message is processed and cleared instantly. (c) A
model sending an event does not wait for any acknowledg-
ment from a model receiving the event.

Under the assumptions, RT-DEVS has an explicit def-
inition of a synchronization mechanism between coupled
components, called weak synchronization, with two char-
acteristics: nonblocking and synchronization loss. Basi-
cally, it is similar to prioritized synchronization [11] but
differs in that it is based on RT-DEVS models, which have
an explicit notion of internal and external transitions in the
time domain. It is different from the interlocking mecha-
nism in the strict synchronization adopted by CSP or CCS,
in which a transition takes place only if both communicat-
ing processes are ready for communication; otherwise, they
are blocked. In the weak synchronization of RT-DEVS, a
machine performs an internal transition and produces an
output event if and only if the internal transition is eligible.
We first define eligibility of internal and external transitions
and then define weak synchronization.

Let Q ⊆ S × �+
0,∞ be a set of total states of an atomic

model M =< X, S, Y, δext, δint , λ, ti >. A total state is
a pair of sequential states and an associated elapsed time
feasible at the state. Note that the total state is an infinite
set.

DEFINITION 1. Eligible transition. An internal transition
(q, y, q ′) ∈ Q×Y ×Q, where q = (s, e) ⊆ Q, y ∈ Y and
q ′ = (s ′, e′) ∈ Q, is called eligible if and only if δint(s) =
s ′, y = λ(s), e = ta(s) with t i(s)|min ≤ ta(s) ≤ t i(s)|max

and e′ = 0. Similarly, an external transition (q, x, q ′) ⊆
Q × X × Q, where q = (s, e) ⊆ Q, x ∈ X and q ′ =
(s ′, e′) ∈ Q, is said to be eligible if and only if there is an
input event x ∈ X at an elapsed time e, 0 ≤ e ≤ ta(s)
and δext(s, e, x) = s ′. By definition, the elapsed time of
the resultant total state (s ′, e′) should be always zero (i.e.,
e′ = 0).

We denote q
!y−→ q ′ as an eligible internal transition

(q, y, q ′) ∈ Q×Y ×Q, and notation q
!y−→ |q ′ represents

an ineligible transition (q, y, q ′) ∈ Q × Y × Q. The same
notations could be used for an external transition in which
“?” is used instead of “!.”

Now we are ready to define weak synchroniza-
tion. Consider a coupled model RTDN = < X, Y,
{Mi, Mj }, EIC, EOC, IC >, which has only two atomic
models, Mi and Mj —that is, for k = i, j , Mk =
< Xk, Sk, Yk, δext,k, δint,k, λk, t ik >. Let Qi ⊆ Si × �+

0,∞
and Qj ⊆ Sj × �+

0,∞ be a set of total states of Mi and Mj ,
respectively. A pair of output/input events (pi !mi, pj ?mj)
for pi !mi ∈ Yi and pj ?mj ∈ Xj is said to be matched if
(pi !mi, pj ?mj) ∈ Mi.OUT×Mj.IN ⊆ N.IC. Assume that
at a time instant, they are at their respective total states
qi ∈ Qi and qj ∈ Qj . Then, a composite total state of the
coupled model N is given by Q ⊆ Qi × Qj .

DEFINITION 2. Weak Synchronization. Weak synchro-
nization is defined as the following composite transition
rules:

1. If qi

pi !mi−→ q ′
i

and qj

pj ?mj−→ q ′
j
, then (qi, qj )

pi !mi−→
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(q ′
i
, qj ), where (pi !mi, pj ?mj) does not match, or

2. If qi

pi !mi−→ q ′
i

and qj

pj ?mj−→ q ′
j
, then (qi, qj )

pi !mi−→
(q ′

i
, q ′

j
), where (pi !mi, pj ?mj) matches, or

3. Rules above hold if i and j are exchanged.

4. No other transition is defined.

In a successful communication by rule 2, Mi performs an
internal transition, and concurrently, Mj undergoes an ex-
ternal transition. However, rule 1 indicates that Mi with an
eligible internal transition changes its state alone, causing a
synchronization loss for Mj . The rules defined above could
be extended to a coupled model with an arbitrary number
of atomic models in a straightforward manner. Note that
the definition of weak synchronization between untimed
models can be easily obtained by just eliminating timing
information (ignoring elapsed time), that is, by replacing
qi by si from the above definition.

As an example, recall the railroad crossing model in Fig-
ure 4. At a total system state ((TRAV, 5.5), (UP, 5.5)), no
internal/external transition is eligible. However, at another
total system state ((TRAV, 90.5), (UP, −)), an internal
transition of the train is eligible at the state (TRAV, 91.2),
while no transition of the gate is eligible. The state (UP, −)
of the gate would transit to the state (DOWN, 0) as soon as
the controller performs its internal transition with an out-
put, which is, in turn, converted to the input event C?down.
Note that no synchronization can take place between the
train and the gate since there is no coupling between the
two.

6. Controller Design

6.1 Weak/Strong Path Controllability

This section briefly shows the result of a railroad cross-
ing controller design problem using the DEVS supervisory
control framework proposed in Song and Kim [18].As will
be seen in the subsequent section, the design procedure es-
sentially is to deduce the desired state trajectories (or paths)
from a composite plant model, which can be converted to
a controller model in a straightforward manner with the
concept of an inverse DEVS [15, 19]. To conclude ahead,
we see that the plant TG-PLANT is weakly controllable
with respect to the control objectives, as shown in the fol-
lowing. This means that the controller under design has to
meet strict timing requirements as well as an event order to
guarantee safe system operation. To begin with, we need
to define the notion of DEVS controllability again. Given
a discrete event plant M =< X, S, Y, δint, δext, λ, ti >, a
state path ST = s0s1 . . . sf −1sf , si ∈ S (or path) is a se-
quence of states of S that is in the order that is desirable to
be executed by plant M . The terms used in the following
definition are slightly modified from the original ones in
Zeigler et al. [15] to be more definite.

DEFINITION 3. Weak path controllability. A path is
weakly controllable if either an internal or external tran-
sition can transit each state to the next state on the path.
Formally, a path ST is weakly controllable if, for all si ,
si+1 follows si in ST , either

(a) δint(si) = si+1, or

(b) there is a pair (e, x), where 0 < e < ta(si),
δint(si) = s ′ �= si+1, and x = p?m ∈ X, such that
δext(si, e, x) = si+1.

The states on a weakly controllable path never deviate
from those specified in the path with a proper input event
at an appropriate time.

DEFINITION 4. Strong path controllability. A weakly
controllable path ST is strongly controllable if, for all si ,
si+1 follows si in ST , either

(a) δint(si) = si+1, or

(b) there is an input x = p?m ∈ X, such that
δext(si, e, x) = si+1 for all 0 < e < ta(si) = ∞.

This means that (1) the plant explores the desired states
on the path by a sequence of internal transitions until
it meets a state with an infinite time advance, or (2) at
the state, an external transition is defined for the transi-
tion to the next desired state. Note in definition (b) that
ta(si) = ∞ means that there is no internal transition el-
igible at the state (i.e., ∃s ′ ∈ S δint(si) = s ′) such that
t i(si) = [∞, ∞]. Thus, in that state, the controller has
enough time to stimulate an input event, which changes a
plant’s state to the next desired state by an external transi-
tion. Otherwise, a path is called uncontrollable.

From the above definitions, we can derive path control-
lability for an overall system: a system model M is said
to be strongly (weakly) controllable with respect to a state
path ST = s0s1 . . . sf −1sf , si ∈ S if and only if the state
path is strongly (weakly) controllable. The framework for
the design and implementation of a discrete event con-
troller based on the above definitions can be found in Song
[20] and Hong et al. [2].

6.2 Result from the Railroad Crossing Controller
Design

Control of an untimed discrete event system model can
be done by applying a correct sequence of control input
events to the system that keeps the system in a desired
execution order. The term untimed means that an input
event or an output event could occur at an arbitrary time.
Thus, only the strong controllability in the above definition
can be considered in the untimed domain. In this section,
we confine our concern to the design of an untimed control
model.
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Figure 5. Untimed composite model of coupled model TG-PLANT. T.T = T.TRAV; G.U = G is at state UP; etc.

In the following, we employ the controller design
method proposed in Song [20]. Given a given plant speci-
fication in Figure 4, we first obtain the untimed composite
model of the plant TG-PLANT, as shown in Figure 5. Then,
the next step finds desired state paths. The formal control
objectives for safety and liveness, SPEC, in temporal logic
form must satisfy the following two [14]:

SPEC.1�¬(T .INGATE ∧ G.UP)

SPEC.2.(T .TRAV ∧ G.DOWN) →
♦(G.UP ∧ (¬(¬G.UPUT.APPR)))

The first logic claims that at any instance, the system
should not be at a state where the train and the gate are
at the crossing area (safeness). Second, if the gate is down
and the train passes the gate, then the gate eventually opens
for a car to pass it (liveness).

Following the procedure in Song [20], a set of desired
paths that satisfy the given control objectives is obtained
(Fig. 6):

STdesired := {[(T .T , G.U)(T .A, G.U)(T .A, G.D)

(T .I, G.D)(T .T , G.D)]∗}.

(T.I,G.U)

(T.T,G.U) (T.A,G.U)
? 1

! 2

(T.A,G.D)
! 1

? 2
(T.I,G.D)(T.T,G.D)

! 3

! 1 ! 2

! 1:M!appr ! 1: C?down ? 2: C?up2:M!enter ! 3:M!exit ?

Figure 6. Controllability analysis of untimed composite model

Unfortunately, as shown in Figure 6, the path is not
strongly controllable but weakly controllable. That is, a
dangerous state (T .I, G.U) would be reached from a de-
sired state (T .A, G.U) via an internal transition unless the
control input β1 is applied before the transition. Thus, we
conclude that the plant is not controllable in the untimed
domain and that the state (T .I, G.U) is a bad state in the
sense of safety. Regardless of the result above, strong con-
trollability may be achieved by modifying the plant by
adding additional sensors and actuation points to the plant
in an appropriate manner.
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Figure 7. Modified plant system

Figure 7 shows a modified system model in which a traf-
fic light model is added, and the train’s behavior is modified
so as to accept control input events from the traffic light
model. By the similar steps above, a controller model can
be obtained, as shown in Figure 8.

Note that the controller obtained in the untimed domain
is robust to time specification; that is, the desired state
path is guaranteed regardless of time specification. Thus,
the DEVS framework for the controller design in the un-
timed domain is adequate for the control of hard real-time
systems in which any synchronization loss can cause a dis-
astrous effect. As a side effect, by the inclusion property of
theorem 1 in Song [20] and Song and Kim [18], any tim-
ing constraint restricts the system’s behavior. Therefore, it
is possible for the designed system not to meet the control
objectives in the sense of liveness, although it never affects
the safeness property. This is because some desired path
may not be executed by the time constraints. Thus, design
of a weak controller requires the verification of liveness,
which can be done by using the timed behavior analysis
presented in the next section.

7. Timed Behavior Analysis

The original railroad crossing plant in Figure 4 is not
strongly controllable in the untimed domain, meaning that
no controller keeps the plant to the desired states without
falling into some bad state. However, it is still a weakly
controllable plant with respect to the desired path STdesired .
Thus, we still have an opportunity to control the plant by a
timed controller, which generates control events at appro-
priate elapsed times. While excluding an automated algo-
rithm to generate such times, this article focuses on safety
analysis: given a timed controller, whether a control system
is safe.

Figure 9 depicts a timed control system that consists
of three atomic RT-DEVS models: TRAIN, GATE, and
CONTROLLER. For the safety analysis of such a system,
we employ an inductive methodology for analyzing the
timed behavior of a closed coupled model under weak syn-
chronization between components. We use term timed be-
cause it provides timing information associated with each
state of a composed model. The method proposed here is
called the TBA, which gives the maximal set of all timed
behavior with minimal uncertainty from multiple models
[18]. TBA does not produce just a sample path, as in sim-
ulation, but allows us to perform reachability analysis. In
other words, it produces all possible sequences of timed
events/states that a coupled model can generate. Two prob-
lems that make the analysis complicated are an infinite total
state space induced by dense time intervals owing to a time
interval function and the inherent uncertainty augmented
by interval operations. To cope with the problems, we in-
troduce a notion of vector time and a clock matrix in our
analysis process. A notion of time representation that ef-
fectively deals with dense time intervals is given, followed
by the TBA procedure.

7.1 Time System: Vector Time and Clock Matrix

This section introduces a clock mechanism and associated
mathematical tools that allow us to predict the upper and
lower bounds of the next transition time as precisely as
possible. To begin with, we introduce a notion of an ar-
tificial clock of each machine (model). A clock of a ma-
chine is reset whenever an internal or an external state
transition occurs. It then is increased continuously until its
next transition, thus being a representation of an elapsed
time at a state. In addition, every machine can observe
the other machines’ transitions only when their clocks are
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Figure 8. Controller for the modified plant

TRAIN(T)

M

M!appr

APPR

TRAV

PASSM!enter

M!exit

M

GATE(G)

C
UP

DOWN

C?down C?up

C

TG-PLANT (P)

M C CONTROLLER(C)

TU

C!up

AU
M?appr

AD

C!down

ID M?enterTD
M?exit

@[90,95]

@[30,35]

@[20,25]

t2:=@[9,12]

t1:=@[10,15]

! 1

! 2

! 3

? 1 ? 2

? 1

? 2? 3

! 1

! 2

SYSTEM (N)

TRAIN(T)

M

M!appr

APPR

TRAV

PASSM!enter

M!exit

M

GATE(G)

C
UP

DOWN

C?down C?up

C

TG-PLANT (P)

M C CONTROLLER(C)

TU

C!up

AU
M?appr

AD

C!down

ID M?enterTD
M?exit

@[90,95]

@[30,35]

@[20,25]

t2:=@[9,12]

t1:=@[10,15]

! 1

! 2

! 3

? 1 ? 2

? 1

? 2? 3

! 1

! 2

SYSTEM (N)

Figure 9. Timed control system for safety analysis

synchronized. Without synchronization, one machine
never guesses another machine’s total state (state and as-
sociated elapsed time), which is necessary for the modular
modeling formalism.

To deal with real-valued interval time, we define arith-
metic interval operations. A real interval (or just interval) t̄
is defined by a compact subset of the field of real numbers,
�, of the form t̄ := [l, u] = {t |l ≤ t ≤ u, l, u ∈ �}.
The set of all closed real intervals is denoted by I (�). Two
intervals, a = [a1, a2] and b = [b1, b2], are called equal,
a = b, if and only if a1 = b1 and a2 = b2. Binary opera-
tions are defined by (a) addition, a+b := [a1+b1, a2 +b2],
and (b) subtraction, a − b := [a1 − b2, a2 − b1]. A single
value t ∈ � is regarded as [t, t] ∈ I (�); thus, t + a equals
[t, t] + [a1, a2]. We say a < b if a2 < b1. The size of an
interval, |a| = a2 −a1, is called the uncertainty level. From

now on, time is represented by a real-valued interval, and
the terms time and time interval are to be interchangeable.

The notion of interval vector time is an extension of
the system of vector time for monotonically increasing the
nonnegative integer [19] to real intervals. In the system,
each machine has its own artificial local clock that is reset
whenever the machine encounters a state transition. For-
mally, an interval vector time v is a n-dimensional vector of
real intervals; that is, for an interval vector time v[1 . . . n],
1 ≤ i ≤ n: v[i] ∈ I (�). A n-dimensional interval vec-
tor time domain is denoted by V T n ⊆ I (�)n. An element
v[i] ∈ I (�) represents a dense set of possible times of
clock i. For example, consider a three-dimensional inter-
val vector time v2 = [0.3, 0.5 0, 0 2, 4] ∈ V T 3. The first
element [0.3, 0.5] is the possible reading of clock 1, the
second [0, 0] of clock 2 reset, and [2, 4] of clock 3. We can
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see that machine 2 has just reset, and then the uncertainty
level becomes zero. Thus, from machine 2’s perspective,
machine 1 has spent [0.3, 0.5] after its last transition, and
the elapsed time of machine 3 at the current state is within
[2, 4]. Recall that a vector time represents possible time
ranges of clock readings at a single physical moment of
time. Now we define the precedence relationship between
vector times.

DEFINITION 5. Precedence of vector times. For n-
dimensional vector times v1, v2 ∈ V T n, v1 is said to pre-
cede v2, denoted by v1  v2, if and only if

∃m : v1[m] < v2[m] and ∀ k �= m : ¬(v2[k] < v1[m] ),

k, m ∈ 1 . . . n. (3)

The definition states the following: if there exists at least a
single clock that can determine the precedence relation of
the two vector times, and there is no contradictory judg-
ment from other clocks, we rely on the judgment of the
clock. The key idea is to choose the earliest one among
machines for the next internal transition. The precedence
v1 � v2 stands for vagueness to determine the time
precedence.

To deal with multiple times as a group, it is convenient
to stack vector times in a time matrix form. Let us define
MT n as the domain set of n × n time interval elements.
For a time matrix O[1 . . . n, 1 . . . n] ∈ MT n, each row
O[i, ·] ∈ V T n is designated to the vector time of machine
i. Thus, an element O[i, j ] represents the time of machine
iin the view of clock j . We write just MT instead of MT n if
no confusion arises; similarly, we use VT instead of V T n.

DEFINITION 6. Consistency of the time matrix. A time
matrix O ∈ MT is called consistent if and only if for all
pairs i, j = 1 . . . n, i �= j , such that vi := O[i, ·], one of
the three holds: (a) vi  vj , (b) vj  vi , or (c) vi � vj .

We define a special class of a time matrix, called a (rel-
ative) clock matrix, that maintains the time differences in
the view of each clock in a peer-to-peer fashion. For a clock
matrix O ∈ MT , an element O[i, j ] implies that time i
leads time j by O[i, j ] in the view of clock j . Moreover,
its own time difference is always zero, O[i, i] = [0, 0], as
the definition states.

DEFINITION 7. Validity of the clock matrix. A clock ma-
trix is said to be valid if and only if it holds the following
properties:

(a) O[i, i] = [0, 0]
(b) O[i, j ] = −O[j, i]
(c) There is a nonempty subset of clocks, Clead(O) ⊆

1 . . . n, such that for all i, k ∈ Clead(O): O[i, ·] =
O[k, ·] and that for some i ∈ Clead(O) and for all k /∈
Clead(O): O[k, j ]|max ≤ O[i, j ]|min, j ∈ 1 . . . n.

A clock i ∈ Clead(O) is called the most leading clock
(MLC), and the vector time vlead := O[i, ·] is called the
most leading time (MLT). Denote a subset CT ⊆ MT to
be a set of valid clock matrices, each element of which is
valid. For example, a clock matrix

O =
[

0, 0 15, 25 0, 0
−25, −15 0, 0 −25, −15

0, 0 15, 25 0, 0

]

is valid since it satisfies (a), (b), and Clead(O) = {1, 3}
and vlead(O) = [ 0, 0 15, 25 0, 0]. In particular, with
O[1, 2] = [15, 25], it is easy to see that time O[1, ·] leads
time O[2, ·] by [15,25] in the view of clock 2. Conversely,
O[2, 1] = [−25, −15] indicates that time 2 is behind time
1 by [-25,-15] (say, –20). It specifies only the boundary,
not an exact value. Clocks 1 and 3 are synchronized.

For each row i of a clock matrix, a vector time repre-
sents a relative time of the last transition of machine i in
the view of each clock. The column j of a clock matrix
indicates a set of the relative times of the last transitions
of all machines relative to clock j. Since all diagonal ele-
ments are zeroes and the clock is reset at each transition,
an element of a clock matrix shows the time difference
between the two last transitions of two machines. For ex-
ample, O[1, 2] = [15, 25] means that the last transition of
machine 1 takes place at time t ∈ [15, 25] after the last
transition of machine 2. Thus, it is an elapsed time for a
composite state in a relative form.

7.2 Computing Timed Transitions

This section deals with a timed transition. Consider an
externally closed coupled system N = < X, Y, M,
EIC, EOC, IC >, where Mi ∈ M is an atomic model
Mi = < Xi, Ai, Yi, δext,i , δint,i , λi , t ii >. Let D = 1 . . . n
be a set of indices of models in M , where n = |D|. The
following steps show the computation of timed transitions,
which can be used for safety analysis.

7.2.1 Step 1: Find the Next Transition Time and
Transition Machines

The first step is to find the next transition time of eligible
candidate models at a composite total state q = (s, OL) ∈
S × CT . Our analysis maintains the two kinds of a time
matrix: OL for the last transition time and ON for the next
transition time. The initial last transition time OL of a sys-
tem is a zero-clock matrix whose elements are all zero,
indicating that all clocks are synchronized. Let us start at a
kth composite total state, qk := (sk, Ok

L
) ∈ Qz ⊆ S ×CT ,

where sk := (sk
1 , s

k
2 , · · · , sk

n
) ∈ S = ∏

i∈D
Si , and CT is

the set of all n × n valid clock matrices. Since Ok
L

∈ CT ,
there must be the most leading time vlead(O

k
L
). We call qk a

timed state instead of a total state to emphasize the elapsed
times in a clock matrix. From the timed state qk, we can
compute the (k + 1)th transition times of each machine
in D, denoted by Ok+1

N ∈ MT . A vector time Ok+1
N [i, ·]
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represents the next transition time of machine i, which is
determined by the current vector time Ok

L
[i, ·] plus the time

to fire t ii(s
k
i
) since then, given by

1 ≤ j ≤ n : Ok+1
N

[i, j ] := (Ok

L
[i, j ] + t ii(s

k

i
))

∩ [vlead(O
k

L
)[j ]|min, ∞]. (4)

The intersection of two vector times is a vector time, each
element of which is obtained by an intersection of cor-
responding elements. The clipping operation of the right
term, [vlead(O

k
L
)[j ]|min, ∞], is subject to causality in the

real world; that is, the next transition time should be greater
than or equal to the last transition time in the system. Actu-
ally, the time Ok+1

N [i, ·] designates the time left to the next
transition of machine i in the view of each clock since the
last transition time Ok

L
[i, ·] of state sk

i
, if there is no input

event to the machine. For example, from the perspective of
clock j , an internal state transition of machine i will occur
at an instance of time within Ok+1

N [i, j ].
LEMMA 1. If Ok

L
is consistent, then time matrix Ok+1

N

obtained by (4) is also consistent.

Proof. We can easily reach this result by the definition of
the addition operation of intervals.

An internal state transition should occur within t i(s)
(i.e., t i(s)|min ≤ ta(s) ≤ t i(s)|max), with no external input
event by then. Thus, the time span of the next transition time
is given by the minimum of the next transition times in each
column, which gives a vector time vk

N,max
[1...n] ∈ V T :

1 ≤ j ≤ n : vk

N,max
[j ] := min

i∈D
(Ok

N
[i, j ]), (5)

where min(v1, v2, . . . , vn) = [min(l1, l2, . . . , ln), min
(u1, u2, . . . , un)], for vi := [li , ui] ∈ I (�). Time vk

N,max
[j ]

means the least time interval among the next transition
times in the view of clock j .

LEMMA 2. The time span in (5) is the maximum interval
within which at least one internal transition occurs in the
system.

Proof. In the view of clock j ∈ D, the earliest next
internal transition time is vtk

N,max
[j ]|min. Thus, for all

i ∈ D, Ok+1
N [i, j ]|min ≥ vtk

N,max
[j ]|min. At the other ex-

treme, there is at least one machine m ∈ D such that
Ok+1

N [m, j ]|max = vk
N,max[j ])|max. Machine m has to per-

form an internal transition until that time, or it violates the
system specification. These two factors support the lemma.

Lemma 2 states that at least a machine has to perform an
internal transition at a time within the maximum interval
vk

N,max
. It gives us a valid next vector time at which at least

one machine fires. For all i ∈ D, we write

1 ≤ j ≤ n : Ok

N,max
[i, j ] := Ok

N
[i, j ] ∩ vk

N,max
[j ]. (6)

With this, we can determine the candidate machines that
have a possibility to perform an internal transition at qk.

CANDk := {i ∈ D|Ok

N,max
[i, j ] �= ∅, ∀j ∈ D}. (7)

The rationale is that a candidate machine for the next inter-
nal transition is selected when all clocks agree that at least
an internal transition would take place by the time.

EXAMPLE 1. Consider the railroad crossing system
shown in Figure 9 and its final result from TBA analy-
sis in Figure 11. To show how TBA works, we assume in
the subsequent examples that the system is at a composite
state q4 = (a4,OL,4), where a4 = (T , D, TD), and its clock
matrix OL,4 is given by

OL,4 =
[

0, 0 35, 50 0, 0
−50, −35 0, 0 −50, −35

0, 0 35, 50 0, 0

]
.

For instance, the first column represents the last transition
times of the train, the gate, and the controller, respectively,
in the view of the train model. From q4 and time intervals
at states T , D, and TD in Figure 11, we can obtain ON,4 by
using equation (4):

ON,4 =
[

90, 95 125, 145 90, 95
∞ ∞ ∞

9, 12 44, 62 9, 12

]
.

Application of (5) to ON,4 results in a vector time vN,4,max =[
9, 12 44, 62 9, 12

]
. Combining vN,4,max and ON,4

with equation (6), we can get

ON,4,max =
[ ∅ ∅ ∅

∅ ∅ ∅
9, 12 44, 62 9, 12

]
.

Note that there is only one candidate model for the
next transition: the controller model C; that is, we have
CAND4 = {C} by equation (7), with ON,4,max[C, ·] =[

9, 12 44, 62 9, 12
]
.

7.2.2 Step 2: Weak Synchronous Composition

The second step is to find machines, for each output
event from a candidate, that synchronously perform ex-
ternal transitions with the associated output events; how-
ever, if there is no such machine, the candidate fires
alone. A machine in the candidate set m ∈ CANDk has
at least one internal transition defined at a timed state
qk := (sk, Ok

L
) ∈ Qz, where sk := (sk

1 , s
k
2 , · · · , sk

n
) ∈ S.

In general, a set of feasible internal transitions of machine
Mi =< Xi, Ai, Yi, δext,i , δint,i , λi , t ii > on a state s ∈ Si is
defined as follows:

INTi (si) := {(si, y
′
i
, s ′

i
) ∈ Si × Yi × Si |δint,i (si, y

′
i
)

= s ′
i

is defined}. (8)

Application of equation (8) obtains INTm(sk
m
), a set of in-

ternal transitions on a state sk
m

∈ Sm of each machine m ∈
CANDk. Recall that an internal transition (sk

m
, yk+1

m
, sk+1

m
) ∈
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INTm(sk
m
) generates an output event yk+1

m
∈ Ym, which is im-

mediately transmitted to other machines connected by cou-
pling relations. Weak synchronization rules in definition 2
can provide us with a set of machines that synchronously
perform external transitions stimulated by the output event
yk+1

m
∈ Ym at the timed state qk as

SYNCk

m
(yk+1

m
) := {j ∈ D|δext,j (s

k

j
, ej , x

k

j
) = sk+1

j
and

(yk+1
m

, xk

j
) matches}. (9)

We can ignore elapsed times of the influenced machines as
the following lemma states.

LEMMA 3. Every machine p ∈ SYNCk
m
(yk+1

m
), m ∈

CANDk, can synchronously perform an external transition
due to the matching input of yk+1

m
∈ Ym within the valid

next transition time Ok
N,max

[m, ·].
Proof. The next transition time Ok+1

N [p, j ] is greater than
or equal to the upper bound of the span vk

N,max
[j ]|max by

equation (5); for all clocks j ∈ D, it is obvious that an
external state transition is always defined within the next
transition time Ok

N,max
[p, ·]. Thus, when the matching event

is received from a sending machine m, the elapsed time of
a receiving machine p is less than or equal to its upper time
bound at its current state.

By lemma 3, we can get a timed state qk+1 =
(sk+1, Ok+1

L ) ∈ Qz from qk = (sk, Ok
L
) ∈ Qz using the

weak synchronization mechanism as every internal transi-
tion of m ∈ CANDk and associated external transitions in
p ∈ SYNCk

m
(yk+1

m
) are eligible up to time Ok

N,val
[m, ·]. First,

the new composite state sk+1 = (sk+1
1 , sk+1

2 , · · · , sk+1
n

) ∈
S can be obtained as follows. For all m ∈ D and
(sk

m
, yk+1

m
, sk+1

m
) ∈ INTm(sk

m
),

(a) sk+1
m

= δint(s
k
m
, yk+1

m
);

(b) sk+1
p

= δext(s
k
p
, −, xk+1

p
), for all p ∈ SYNCk

m
(yk+1

m
)

and (yk+1
m

, xk+1
p

) matches; and

(c) sk+1
r

= sk
r,

for all r ∈ D − SYNCk
m
(yk+1

m
) ∪ {m}.

By the definition of weak synchronization, we can see
that elapsed times of machines in SYNCk

m
(yk+1

m
)∪{m} reset

to zeroes because they all undergo state transitions. Thus,
the new elapsed time Ok+1

L will be adjusted for the new
state sk+1, as shown in the following step.

EXAMPLE 2. Considering the result of example 1, the
candidate set has only one model, CAND4 = {C}.
The feasible internal transition set of controller C at
state q4 = (a4, OL,4), a4 = (T , D, TD) can be eas-
ily obtained from the controller model in Figure 9 as
INTC(TD) = {(TD, !β2, T U)}. By the coupling relation,
we see that SYNCC,4(β) = {G, C} through event β2. That
is, the controller and the gate will synchronize together
through event β2, and the resultant composite state will
be q5 = (a5, OL,5), where a5 = (T , U, T U). That is,

(T , D, TD)
#β(C#up)−→ (T , U, T U), where #β denotes the syn-

chronized event. Clock matrix OL,5 of the state q5 can be
computed by the following step.

7.2.3 Step 3: Computing the New Clock Matrix

Note that a clock matrix records a relative time, leads, or
lags in the view of each machine’s eye. Thus, if one of
the elements is updated, then other related time elements
should be updated accordingly. This section defines the
update rules to maintain consistency and correctness in the
clock matrix. We can find time Ok+1

L from Ok
L

and Ok+1
N,max

in equation (4).

PROPOSITION 1. For m ∈ CANDk, let SYNC :=
SYNCk(yk+1

m
) ∪ {m} and SYNCc := D − SYNC be a set of

synchronous machines and its conjugate set, respectively.
Then, the (k + 1)th elapsed time Ok+1

L , obtained by the
following four rules, is semantically consistent.

∀i ∈ SYNC, j ∈ SYNC : Ok+1
L

[i, j ] := [0, 0]
(synchronization) (10)

∀i ∈ SYNCc, j ∈ SYNCc : Ok+1
L

[i, j ] := Ok

L
[i, j ]

(unchanged) (11)

∀i ∈ SYNC, j ∈ SYNCc : Ok+1
L

[i, j ] := Ok+1
N,max

[m, j ]
(advanced) (12)

∀i ∈ SYNCc, j ∈ SYNC : Ok+1
L

[i, j ] := −Ok+1
N,max

[m, i]
(normalization) (13)

Proof. Equation (10) comes from the fact that after an activ-
ity transition occurs, the clocks of machines in SYNC reset
to zeroes by either internal transitions (machine m) or ex-
ternal transitions (machine in SYNC−{m}). Equation (11)
holds because there has been no transition in machines
in SYNCc, and neither does the reference time of clock
j ∈ SYNCc. Thus, the transition times of the machines in
the view of their local clocks are invariant. In the view of
clock j ∈ SYNCc, it is true that clock i ∈ SYNC increments
up to Ok

N,max
[m, j ] in equation (4). Finally, recall that the

launching time of a machine i ∈ SYNCc is unchanged,
whereas clock j ∈ SYNC is newly updated to [0,0], even
though it really advances by Ok

N,max
[m, j ]. Therefore, the

last transition time of machine i ∈ SYNCc should lag rela-
tively behind by the time advance Ok

N,max
[m, j ] in the view

of clock j , which gives equation (13).

LEMMA 4. A clock matrix Ok+1
L obtained by proposi-

tion 1 is valid.

Sketch of proof. The validity conditions (a) and (b) in
definition 7 can be easily proved by four equations in the
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proposition. Furthermore, we have Clead(OL) = SYNC
and vlead(O

k+1
L ) = Ok+1

L [m, ·] = Ok+1
L [j, ·], for all j ∈

Clead(OL). It can easily be deduced that Ok+1
L [k, j ]|max ≤

Ok+1
L [m, j ]|min from the four cases in the proposition and

the causality constraint in equation (4), which proves (c).
It completes the proof.

Now consider elements of a clock matrix, Ok+1
L [i, j ]. It

is certain that an element (i, j) of a clock matrix records
not only the clock differences between clocks i and j but
also the last transition time of machine i in the view of
clock j . Now that we have obtained a new starting time, we
have finished calculating a transition from qk = (sk, Ok

L
)

to qk+1 = (sk+1, Ok+1
L ) with an event yk+1

m
and the next

transition time Ok+1
N,max from the timed state qk. The timed

behavior algorithm is a repetition of the above three steps:
(1) find the next transition time and candidates, (2) do the
state composition, and (3) calculate the elapsed time at the
time of the transition.

EXAMPLE 3. Recalling example 2, we have the state q5 =
(a5, OL,5), where a5 = (T , U, T U), and the clock matrix
OL,5 of the state q5 can be computed by proposition 1.
From example 1, we obtained vector time ON,4,max[C, ·] =[

9, 12 44, 62 9, 12
]
, which means the internal tran-

sition time of the controller at the current stateq4. By propo-
sition 1, with SYNCC,4(β) = {G, C} and ON,4,max[C, ·], we
can get

OL,5 =
[

0, 0 −12, −9 −12, −9
9, 12 0, 0 0, 0
9, 12 0, 0 0, 0

]
.

Note that the diagonal elements are always [0, 0] by the
definition of the clock matrix. The rest are obtained as
follows. By the synchronization rule (10), we have clock
matrix OL,5[i, j ] = [0, 0], where i, j ∈ SYNCC,4(β) =
{T , G}. For i ∈ SYNCC,4(β) = {G, C}, j ∈ SYNCC

C,4(β) =
{T } (first column), and OL,5[i, j ] = ON,4,max[C, j ] =
[9, 12] using the advanced rule (12). Finally, for j ∈
SYNCC,4(β) = {G, C}, i ∈ SYNCC

C,4(β) = {T } (first row),
and OL,5[i, j ] = −ON,4,max[C, j ] = [−12, −9] using the
normalization rule (13).

7.3 Timed Behavior Analysis

This section sums up parts of the previous sections and
composes a procedure to analyze the maximal timed be-
havior of a closed component model with minimal uncer-
tainty. The idea is relatively simple: full state exploration
based on the spontaneous internal transitions as long as
time constraints permit. The timed behavior analysis al-
gorithm gives us a timed reachability graph from a closed
RT-DEVS model. Let N = < X, Y, M, EIC, EOC, IC >
be a closed system where each machine Mi ∈ M is an
atomic model Mi =< Xi, Ai, Yi, δext,i , δint,i , λi , t ii >. The
timed behavior of a closed coupled model N is a set of
timed event-state sequences, T (N) ⊆ Qz × (Σ̄ × Qz)

∗,
where Σ̄ ∈ ∪i∈DYi × V T is a set of timed events, and

Qz ⊆ S × CT is a set of timed states.

Algorithm TBA. Timed behavior T (N) of a closed system
N is obtained by induction on the length n = |ω|, ω ∈
T (N):

1. n = 0: Obviously, q̄0 := (s0, O0
L
) ∈ T (N), where

s0 := (s0
1 , s

0
2 , · · · , s0

n
) ∈ S, and a clock matrixO0

L
:=

0 is zero matrix whose elements are all [0, 0]s.

2. n = k: Assume that ω̄k := q̄0σ̄1q̄1 · · · σ̄kq̄k ∈ T (N)
is a timed behavior where q̄k := (sk, Ok

L
).

3. Determine Ok+1
N,max and CANDk from q̄k := (sk, Ok

L
),

sk := (sk
1 , s

k
2 , · · · , sk

n
).

4. n = k + 1:∀m ∈ CANDk: for each yk+1
m

∈ Ym,
(sk

m
, yk+1

m
, sk+1

m
) ∈ INTm(sk

m
):

ω̄ := ω̄k(σ̄k+1q̄k+1) ∈ T (N),

σ̄k+1 := (σk+1, vk+1) ∈ Σ̄,

q̄k+1 := (sk+1, Ok+1
L

) ∈ Qz,

where σk+1 = yk+1
m

, vk+1 := Ok
N,max

[m, ·], sk+1 :=
(sk+1

1 , sk+1
2 , · · · , sk+1

n
) ∈ S:

(a) sk+1
m

= δint(s
k
m
, yk+1

m
);

(b) sk+1
p

= δext(s
k
p
, −, xk+1

p
), for all p ∈

SYNCk
m
(yk+1

m
) and (yk+1

m
, xk+1

p
) matches;

(c) sk+1
r

= sk
r
, for all r ∈ D −SYNCk

m
(yk+1

m
)∪{m};

and Ok+1
L can be obtained by proposition 1 from

SYNCk
m
(σk+1), Ok

L
, and Ok

N,max
.

This analysis method consists of essentially two parts:
untimed behavior analysis and timing analysis. Only the
candidate machines restrict the state transitions of ma-
chines that have not reached their firing times. Thus, it
is true that TBA restricts an untimed behavior by the time
constraints. Although this general algorithm gives us the
maximal behavior with the minimum uncertainty, it cannot
avoid the state explosion problem that is common in the
general composite reachability analysis of state machines.
Another limitation comes from the assumption that a sys-
tem is closed in which no input events to the system are
defined. However, we can extend the closed system to an
open one by adding an artificial environment model, but
that is beyond the scope of this article.

8. Safety Analysis

Safety analysis of a safety-critical real-time system model
in RT-DEVS is one of application of the TBA in the pre-
vious section. Safety analysis is necessary to guarantee
that the time constraints on a designed untimed controller,
which may deviate from a correct to a bad state path in the
case of an incorrect timing specification, are safe.
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Due to the untimed behavior analysis algorithm pro-
posed in Song [20], we can easily get a reachability graph
of an untimed model of a system. As a timed behavior is
usually a subset of untimed behavior [18], once a system
is proved to be safe in untimed safety analysis, it is auto-
matically safe in the timed safety analysis. Timed behavior
analysis, however, requires more time and space complex-
ity than the untimed one. We first show an untimed safety
analysis and then present the application result to the timed
safety analysis.

8.1 Safety Definition

We define safety as a system that does not go into any bad
state. For example, state (T .I, G.U) is a bad state because
of the possibility of it having a disastrous accident (due
to SPEC.1). Thus, safety analysis of RT-DEVS models in-
volves a timed behavior analysis based on weak synchro-
nization, which explores all the timed states that the system
undergoes. In a reachability analysis, once it reaches a bad
(or unsafe) state such as B = {(T .I, G.U)}, the system
turns out to be unsafe, and the exploration stops.

8.2 Untimed Safety Analysis

Consider again a controller shown in Figure 9, where
time constraints are specified manually. By applying un-
timed behavior analysis based on the weak synchroniza-
tion mechanism to the model, we can get a partial untimed
reachability graph of the whole system, as shown in Fig-
ure 10. A node represents a composite state of the train,
the gate, and the controller, in that order, and an edge des-
ignates a transition with a firing event annotated. From the
initial state (T , U, T U), where the train is at state T , the
gate U , and the controller T U , only the train has a sponta-
neous (or internal) transition by which an output event α1

is produced. Then, due to the coupling relation, the event is
translated to an input event of the controller, which causes
a simultaneous external transition, thus leading to a new
composite state (A, U, AU). At this new state, both the
train and the controller have internal transitions that pro-
duce respective outputs α2 and β1. If the controller fires
first, the output event β1 is wired to the gate waiting for the
event, which entails a simultaneous transition to the state
(A, D, AD); meanwhile, if α2 fires earlier, the system will
be at the state (I, U, AU), a bad state in B. This proves
that the system is not safe anymore, and the exploration
may stop also. As a consequence, in the untimed safety
analysis, the system specified in Figure 9 is proved to be
unsafe. Nevertheless, an assignment of appropriate timing
constraints could prevent the state (A, U, AU) from mov-
ing to the bad state (I, U, AU).

8.3 Timed Safety Analysis

Consider a sample timing specification on the states shown
in Figure 9. The train approaches after traveling for about
[90,95] time units; then, around [30,35] time units later,

! 1

! 1

! 3

! 2

! 2

! 2

! 1

! 1

! 1

! 3

! 2

! 2

! 2

! 1

Figure 10. Untimed reachability graph of N in Figure 9

the train stays at the crossing area and finally leaves the
area in [20,25] time units. The gate always awaits and per-
forms a transition upon receiving control inputs from the
controller. When the controller receives an event M?appr
from the train, it commands the gate to close after about
t1 = [10, 15] time units; then, it observes the train until the
train leaves. After that, it demands the gate to open around
t2 = [9, 12] time units later. Could this timing specifica-
tion prevent the system from falling into bad states? By
the TBA, we can verify whether this is a correct timing
specification. If it is not correct, we must choose another
value of t1 and t2.

Figure 11 depicts the resultant reachability graph, an-
other illustration of the timed behavior obtained by apply-
ing TBA to the railroad control system shown in Figure 9.A
node in the graph represents a timed state qi := (ai, OL,i),
and a timed transition is represented by a dotted arc with a
timed event annotated, a pair of events, and the next tran-
sition time σi := (ym, ON,max(m, ·)), where the machine
m ∈ D is one with an initiative internal transition trans-
mitting an output event ym.

Fortunately, we can see in the figure that the system
never falls into a bad state (I, U, −), owing to a correct
timing of controller inputs, which was not in the untimed
case. For example, the controller sends the output event
C!down around [10,15] at the timed state q1, to which the
controller transmits with a synchronous event M#appr
generated from the train at the initial state q0. It is interest-
ing to see the same thing in the gate’s view; for transition
q1 → q2, the gate receives inputC?down around [100,110]
time units after the gate’s last transition (no transition since

Volume 81, Number 2 SIMULATION 133



Song and Kim

[90,95  90,95 90,95]

[10,15  100,110 10,15]

[20,25  35,50 20,25 ]

[9,12 44,62 9,12]

[30,35  15,25 15,25]

[90,95 78,84 78,84]

# 1

OL,0 =

0,00,0

0,0 0,0

0,0 0,0

0,0

0,0

0,0

OL,1 =

90,950,0

-95,-90 0,0

0,0 90,95

0,0

-95,-90

0,0

OL,2 =

-15,-100,0

10,15 0,0

10,15 0,0

-15,-10

0,0

0,0

OL,3 =

15,250,0

-25,-15 0,0

0,0 15,25

0,0

-25,-15

0,0

OL,4 =

35,500,0

-50,-35 0,0

0,0 35,50

0,0

-50,-35

0,0

OL,5 =

-12,-90,0

9,12 0,0

9,12 0,0

-12,-9

0,0

0,0

OL,6 =

78,840,0

-84,-78 0,0

0,0 78,84

0,0

-84,-78

0,0

a0 = ( t0, g0, c0 )
= (T,U,TU)

a1 = ( t1, g0, c1 )
= (A,U,AU)

a2 = ( t1, g1, c2 )
=(A,D,AD)

a3 = ( t2, g1, c3 )
=(I,D,ID)

a4 = ( t0, g1, c4 )
=(T,D,TD)

a5 = ( t0, g0, c0 )
=(T,U,TU)

a6 = ( t1, g0, c1 )
=(A,U,AU)

[10,15 88,99 10,15 ]

# 1

# 1

# 1

# 2

# 3

# 2

qi = ( ai, OL,i)

[90,95  90,95 90,95]

[10,15  100,110 10,15]

[20,25  35,50 20,25 ]

[9,12 44,62 9,12]

[30,35  15,25 15,25]

[90,95 78,84 78,84]

# 1

OL,0 =

0,00,0

0,0 0,0

0,0 0,0

0,0

0,0

0,0

0,00,0

0,0 0,0

0,0 0,0

0,0

0,0

0,0

OL,1 =

90,950,0

-95,-90 0,0

0,0 90,95

0,0

-95,-90

0,0

90,950,0

-95,-90 0,0

0,0 90,95

0,0

-95,-90

0,0

OL,2 =

-15,-100,0

10,15 0,0

10,15 0,0

-15,-10

0,0

0,0

-15,-100,0

10,15 0,0

10,15 0,0

-15,-10

0,0

0,0

OL,3 =

15,250,0

-25,-15 0,0

0,0 15,25

0,0

-25,-15

0,0

15,250,0

-25,-15 0,0

0,0 15,25

0,0

-25,-15

0,0

OL,4 =

35,500,0

-50,-35 0,0

0,0 35,50

0,0

-50,-35

0,0

35,500,0

-50,-35 0,0

0,0 35,50

0,0

-50,-35

0,0

OL,5 =

-12,-90,0

9,12 0,0

9,12 0,0

-12,-9

0,0

0,0

-12,-90,0

9,12 0,0

9,12 0,0

-12,-9

0,0

0,0

OL,6 =

78,840,0

-84,-78 0,0

0,0 78,84

0,0

-84,-78

0,0

78,840,0

-84,-78 0,0

0,0 78,84

0,0

-84,-78

0,0

a0 = ( t0, g0, c0 )
= (T,U,TU)

a1 = ( t1, g0, c1 )
= (A,U,AU)

a2 = ( t1, g1, c2 )
=(A,D,AD)

a3 = ( t2, g1, c3 )
=(I,D,ID)

a4 = ( t0, g1, c4 )
=(T,D,TD)

a5 = ( t0, g0, c0 )
=(T,U,TU)

a6 = ( t1, g0, c1 )
=(A,U,AU)

[10,15 88,99 10,15 ]

# 1

# 1

# 1

# 2

# 3

# 2

qi = ( ai, OL,i)

Figure 11. Timed reachability graph by TBA: T(N)

the start), while the controller thinks it is around [10,15]
time units after the train and controller’s last transition.

Regarding the control objectives, recall that in Figure 6,
the desired state path is weakly controllable since there

are external transitions, (T .A, G.U)
?β1−→ (T .A, G.D)and

(T .T , G.D)
?β2−→ (T .T , G.U). The plant’s execution

would be kept in the desired state path if the input events
?β1 and ?β2 occur before output events !α2 and !α1, re-
spectively. It is a typical example that control depends on
both the events’sequence and the times associated with the
events for safety and liveness.

For an intuitive understanding of TBA, a projection op-
eration is employed. The operation extracts only the behav-
ior of the plant (TG-PLANT) from the whole behavior. This
can be done in an easy and straightforward way, which is
not described in this article (see [18]). Figure 12 shows the
resultant projected behavior T (N) ↓ {T , G} to the train
and the gate model, T and G.

Consequently, we can see that the timing specification
has been chosen so successfully that the controller can con-
trol the plant as desired. In particular, at timed states q1 and
q6, the control input ?β1proceeds !α2, and ?β2 happens be-
fore !α1 at q4, which prohibits the system from executing
undesired activities. Therefore, we find that an uncontrol-
lable state path in the untimed domain can be controlled in
the time domain by choosing appropriate control timing.

8.4 Remarks

The time assignment problem that allocates an appropriate
timing for each state of a controller in RT-DEVS is an
open question, especially for weakly controllable paths.
Although it is out of the scope of this study, it could be
solved by methods such as linear programming [21]. With
this assumption, we can briefly summarize the design steps
in the time domain based on TBA as follows. Let N be a
control system with a plant P specified and a controller
unspecified.

1. Use TBA to get T (P ) and U(P ) of the plant, the
untimed behavior.

2. Apply the untimed design steps to get a set of the
desired state path, ST ⊆ U(P ).

3. Get an untimed controller by the inverse transforma-
tion for ST .

4. Assign time variables to active activities of the un-
timed controller and find a solution.

5. Confirm safety and liveness by applying TBA again
to the controlled system with time specified.

The design steps in the time domain will be completed
when we find a way of solving the time assignment prob-
lem; otherwise, one can solve it by an ad hoc method. The
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Figure 12. Projection of system N to plant: T(N)↓{T,G}

final step, checking safety and liveness, is also required for
the untimed design steps when time is specified. Note that
if one needs a robust controller against time, the untimed
design steps can be used.

Finally, we briefly remark on the correctness of TBA,
which can be dictated by the projection operation to indi-
vidual machines [20, 21]. If the behavior obtained by the
projection operation to a machine is a subset of the whole
behavior of the machine, we shall say that TBA is correct.

Figure 13 shows the resultant behaviors of machines—
T , G, and C, respectively. First consider the gate behavior
T (N) ↓ G, shown on the left-hand side of the figure.
Compared to the gate model in Figure 9, the behavior is
a subset of the original since the trajectory (state-event
sequence) is the same as the original, and the transition
times are a subset of the original time [0,∞]. It is interesting
to note that the train’s behavior in the center figure is the
same as the original one, that is, T (N) ↓ T ≡ T (T ).
Likewise, the output times of the controller’s behavior on
the right-hand side of the figure are the same as the original
one. Note that the system shows cyclic behavior when it
reaches steady states after some transient behavior. This
comes from the artificial assumption that, initially, all the
machines start at the same time. From these facts, we claim
that the proposed TBA produces correct results.

9. Conclusion

This article has dealt with an application of real-time DEVS
to the analysis of a real-time discrete event control system
in two aspects: a controller design with an untimed model
and the safety analysis of the designed controller with a
given timing specification. For the analysis, a synchroniza-
tion mechanism for communicating RT-DEVS models has
been defined as a weak synchronization. We reviewed the
untimed controller design framework using a weakly con-
trollable path for the railroad crossing control, which was
then extended to the timed design framework. To confirm
the safety of a timed controller, we proposed precise no-
tions of a vector time and a clock matrix for a reachability
analysis algorithm TBA based on weak synchronization.
TBA has been effectively applied to the railroad crossing
control problem. The notion is to overcome the inherently
increasing uncertainty induced by the dense time interval
operations in the analysis. We have shown that TBA can
generate a de facto finite state space of RT-DEVS mod-
els using the vector time and the clock matrix, although
the total state space is inherently infinite. However, the
space complexity is rather high due to the size of the clock
matrices in its representation. Indeed, being based on the
DEVS framework, the control analysis approach in this
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Figure 13. Projection of timed behavior. Left: projected to gate; middle: projected to train; right: projected to controller.

article is different from other approaches in that the same
model can be used for all phases of controller design and
implementation: modeling, analysis, performance evalua-
tion, and virtual prototyping. Under preparation is further
work that deals with details of TBA [18]. Finally, the auto-
matic timing assignment problem for an untimed controller
with a weakly controllable path is still open for study.
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