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Abstract. In this paper we are concerned with the solution of degenerate variational
inequalities. To solve this problem numerically, we propose a numerical scheme which is
based on the relaxation scheme using non-standard time discretization. The approximate
solution on each time level is obtained in the iterative way by solving the corresponding
elliptic variational inequalities. The convergence of the method is proved.
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1. Introduction

The aim of this paper is to propose an efficient numerical scheme for solving a

degenerate variational inequality of the form

∫

I

(
∂tb(u), v − u

)
+

∫

I

(
k∇u,∇(v − u)

)
+

∫

I

(g, v − u)Γ2(1)

�
∫

I

(
f(b(u)), v − u

)
u ∈ L2(I,K), ∀v ∈ L2(I,K),

u(x, 0) = u0(x) in Ω.

Here Ω ⊂ �
� is a bounded domain with Lipschitz continuous boundary ∂Ω = Γ1 ∪ Γ2,

Γ1 ∩ Γ2 = ∅, Γ1 �= ∅ is measurable, I = (0, T ) and

K = {v ∈ V : v
∣∣
Γ1
= 0, v � 0 a.e. in Ω}
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is closed, convex, nonempty. The scheme is based on relaxation schemes developed

in [11], [12] for equations.

We use the standard function spaces V = W 1
2 (Ω) (Sobolev space), L2(Ω),

L2(I, L2(Ω)). By ‖.‖, |.|2, |.|Γ2 we denote the norms in the function spaces V ,

L2(Ω), L2(Γ2) and (u, v) =
∫
Ω uv dx.

We consider b, k, g, f, u0 such that

1. b : � → � is a nondecreasing, Lipschitz continuous function with a constant Lb

such that 0 � b′(s) � Lb,

2. k = (kl,m(t)) is a symmetric and uniformly positive definite matrix in I with a

constant ck, Lipschitz continuous (with a constant Lk),

3. g = g(t) is a Lipschitz continuous function,

4. f = f(t, s) is a Lipschitz continuous in s, moreover ∃cf > 0: |ft(t, s)| � cf (1 +

|s|),
5. u0 ∈ L2(Ω) is such that u0

∣∣
Γ1
= 0 and u0 � 0 a.e. in Ω.

This mathematical model includes a large scale of problems from physics, mechan-

ics, biology and chemistry. As an example we present an oxygen diffusion problem.

The diffusion with the absorption process is represented by the partial differential

equation

∂tb(u) = ∇(k(t).∇u) + f(u) in Ω, t ∈ I,

u(x, t) � 0 in Ω

where u(x, t) denotes the concentration of oxygen free to diffuse at a point x at

time t, b can express the storativity of oxygen in the domain Ω which depends

on the concentration of oxygen in Ω, k is the diffusion tensor, f(u) is the rate of

consumption of oxygen per unit volume of the medium such that f(u) = −m for

u > 0 and f(u) = 0 for u � 0. The boundary conditions are in the form

u = 0 on Γ1, t ∈ I,

−νT k(t)∇u = g(t) on Γ2, t ∈ I

and the initial condition

u(0, x) = u0(x) in Ω.

Since the concentration of oxygen is non-negative, we can formulate this problem in

the form of a variational inequality (1).
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������ 1. We can interpret the variational inequality (1) as a free boundary

problem (see Glowinsky [8]). Considering the solution u of (1) we define

Ω+ = {x | x ∈ Ω: u(x, t) > 0},
Ω0 = {x | x ∈ Ω: u(x, t) = 0},

γt = ∂Ω+ ∩ ∂Ω0, u+(x, t) = u(x, t)
∣∣
Ω+

, u0(x, t) = u(x, t)
∣∣Ω0.

Problem (1) can be formulated as a problem of finding γt (the free boundary) and u

such that

∂tb(u(x, t)) −∇
(
k(t)∇u(x, t)

)
= f

(
t, b(u(x, t))

)
, x ∈ Ω+, t ∈ I,

u(x, t) = 0, x ∈ Ω0, t ∈ I,

u(x, t) = 0, x ∈ Γ1, t ∈ I,

−νT k(t)∇u(x, t) = g(t), x ∈ Γ2, t ∈ I,

u+(x, t) = u0(x, t), x ∈ γt, t ∈ I,

∂νu+(x, t) = ∂νu0(x, t), x ∈ γt, t ∈ I,

u(x, 0) = u0(x), x ∈ Ω.

2. Relaxation scheme

Definition 1. A function u(t) ∈ L2(I,K) with u ∈ L∞(I,K), b(u(t)) ∈ L2(I,

L2(Ω)), ∂tb(u) ∈ L2(I, L2(Ω)) and u(x, 0) = u0(x) satisfying (1) is called a varia-

tional solution.

Our goal is to solve numerically the variational inequality (1). An existence and

uniqueness result for problem (1) was proved by Hornung [10] and in a more general

form by Alt and Luckhaus [1].

The linear relaxation scheme corresponding to (1) reads

(
λi(θi − θi−1), v − θi

)
+ τ

(
ki∇θi,∇(v − θi)

)
+ τ(gi, v − θi)Γ2 � τ(fi, v − θi)(2)

θi ∈ K, ∀v ∈ K

where τ = T
n (n ∈ �), ti = iτ , i = 1, . . . , n, ki := k(ti), fi := f(ti, b(ui−1)), gi := g(ti)

and λi has to satisfy the convergence condition

(3)

∣∣∣∣λi −
bn(ui−1 + θi − θi−1)− bn(ui−1)

θi − θi−1

∣∣∣∣ < τα
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with

(4) bn(s) = b(s) + τds (0 < d < α < 1)

and α and d constants independent of n. In the case θi = θi−1 we take λi = b′(ui−1).

By means of θi we define ui by the algebraic equality

(5) ui = ui−1 + θi − θi−1

with

(6) θ0 = u0,n for |u0 − u0,n|2 = O(τ) and u0,n ∈ W 1
2 (Ω).

������ 2. The existence of the solution of the inequality (2) follows from

Duvaut, Lions [5, Theorem 7.1] and from λi > 0 because of

bn(ui)− bn(ui−1)
θi − θi−1

� τd,

∣∣∣∣λi −
bn(ui)− bn(ui−1)

θi − θi−1

∣∣∣∣ < τα,

and the assumption 0 < d < α < 1.

������ 3. Now we introduce a constructive way of finding the couple λi, θi

satisfying (2) and (3). We use an iteration scheme similar to that for variational

equations by Jäger, Kačur [11], Kačur [12], which reads

(
λi,k−1(θi,k − θi−1), v − θi,k

)
+ τ

(
ki∇θi,k,∇(v − θi,k)

)
+ τ(gi, v − θi,k)Γ2

� τ(fi, v − θi,k) ∀v ∈ K, θi,k ∈ K

and

λi,k =
bn(ui−1 + θi,k − θi−1)− bn(ui−1)

θi,k − θi−1
, k � 1

starting with

λi,0 = b′(ui−1).

Note that if θi,k = θi−1, then we take λi,k = b′(ui−1).

The convergence λi,k → λi and θi,k → θi was proved for variational equations

(which are special cases of variational inequalities) in Kačur [12]. In the most prac-

tical implementations we can observe the convergence of iterations in k.
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3. Convergence of the method (2)–(6)

We shall construct approximate solutions θn, un (Rothe’s functions) by means of

θi, ui from (2) and (5) in the following way:

θn(t) := θi−1 +
t− ti−1

τ
(θi − θi−1) t ∈ 〈ti−1, ti〉 , i = 1, . . . , n,

and the step function

θ
n
(t) := θi t ∈ (ti−1, ti〉, i = 1, . . . , n

with

θ
n
(0) := θ0.

Analogously we define un and un. Here θn, θ
n
, un, un are functions from L2(I,K),

thus θn(t) := θn(t, x), θ
n
(t) := θ

n
(t, x), un(t) := un(t, x), un(t) := un(t, x).

We rewrite (2) in terms of the step function in the form

(∂tb̂n(un), v − θ
n
) + (ωnτα−1(θ

n − θ
n

τ ), v − θ
n
) + (k

n∇θ
n
,∇(v − θ

n
))(7)

+ (gn, v − θ
n
)Γ2 � (fn

, v − θ
n
) ∀v ∈ K

where the convergence condition (3) was used for the function λi in the form

(8) λi =
bn(ui−1 + θi − θi−1)− bn(ui−1)

θi − θi−1
+ ωiτ

α with |ωi| � 1.

Here k
n
, gn, f

n
, ωn, θn, b̂n are defined as k

n
:= ki, gn := gi, f

n
:= fi = f(ti, b(ui−1)),

ωn := ωi for t ∈ (ti−1, ti〉, θ
n

τ := θ
n
(t− τ) and

b̂n(un) := bn(ui−1) +
t− ti−1

τ

(
bn(ui)− bn(ui−1)

)
(9)

for t ∈ 〈ti−1, ti〉 , i = 1, . . . , n.

Theorem 1. Let assumptions 1–5 be fulfilled. Then there exists u ∈ L2(I,K)
with b(u) ∈ L2(I, L2(Ω)), ∂tb(u) ∈ L2(I, L2(Ω)) such that

bn(u
n)→ b(u), ∂tb̂n(u

n)⇀ ∂tb(u) and θ
n

⇀ u in L2(I,K)

where {n} is a suitable subsequence of {n}. If the solution u is unique then the

original sequences {θn}, {un} are convergent.
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To prove Theorem 1, we derive some a priori estimates, in which assumptions 1–5

will be employed. Denote δθi =
θi−θi−1

τ and δbi =
b(ui)−b(ui−1)

τ .

Lemma 1. The estimate

(10) τ

j∑

i=1

∫

Ω
λi|δθi|2 + τ

j∑

i=1

|δb(ui)|22 + ‖θj‖2 +
j∑

i=1

|∇(θi − θi−1)|22 � c

holds uniformly for n � n0 > 0, where c is a generic positive constant independent

of j, n.

�����. We take the test function v = θi−1 in (2). We sum it for i = 1, . . . , j

and write the corresponding inequality in terms J1 + J2 + J3 � J4.

We rearrange the term J1 to the form

J1 =
j∑

i=1

τ(λiδθi, δθi)(11)

=
1
2
τ

( j∑

i=1

∫

Ω
λi|δθi|2 +

j∑

i=1

(bn(ui)− bn(ui−1)
τ

,
θi − θi−1

τ

)

+
j∑

i=1

τα(ωiδθi, δθi)

)

� 1
2
τ

( j∑

i=1

∫

Ω
λi|δθi|2 +

j∑

i=1

(δb(ui), δθi) +
j∑

i=1

τd(δθi, δθi)

+
j∑

i=1

τα(ωiδθi, δθi)

)

� 1
2
τ

( j∑

i=1

∫

Ω
λi|δθi|2 +

1
Lb

(
1 +

1
Lb
(τd − τα)

) j∑

i=1

|δb(ui)|22
)

� 1
2
τ

( j∑

i=1

∫

Ω
λi|δθi|2 +

1
Lb

j∑

i=1

|δb(ui)|22
)

,

where we have used assumption 1, θi − θi−1 = ui − ui−1 and the convergence condi-

tion (3) in the form (8).
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For terms J2 and J3 we conclude

J2 =
1
2

{
(kj∇θj ,∇θj)− (k0∇θ0,∇θ0)(12)

+
j∑

i=1

(
ki∇(θi − θi−1),∇(θi − θi−1)

)

−
j∑

i=1

(
(ki − ki−1)∇θi−1,∇θi−1

)}

� 1
2

{
ck|∇θj |22 − c+ ck

j∑

i=1

|∇(θi − θi−1)|22 − Lkτ

j∑

i=1

|∇θi|22
}

,

J3 � (gj , θj)Γ2 − (g0, θ0)Γ2 −
j∑

i=1

(gi − gi−1, θi−1)Γ2(13)

� (gj , θj)Γ2 − c−
j∑

i=1

τc

{
ε|∇θi|22 +

1
ε
|θi|22

}
,

where the inequality

|θi|2Γ2 � c

(
ε|∇θi|22 +

1
ε
|θi|22

)

has been used.

We estimate

(14) (gj , θj)Γ2 � |gj | |θj |Γ2 � c

δ21
+ δ21c

{
ε|∇θj |22 +

1
ε
|θi|22

}
.

The right-hand side can be estimated (using Abel’s summation) in the following

way:

J4 = K2 −K3 −K1 = K2 −K3 −
j∑

i=2

(K1i, θi−1).

Using assumption 4 we have

|K1i| � |f(ti, b(ui−1))− f(ti−1, b(ui−1))|+ |f(ti−1, b(ui−1))− f(ti−1, b(ui−2))|
� τcf (1 + |b(ui−1)|) + τc|δb(ui−1)|.

For K1 we get

|K1| � τcf

j∑

i=2

|θi−1|2 + τcf

j∑

i=2

|b(ui−1)|2|θi−1|2 + τc

j∑

i=2

|δb(ui−1)|2|θi−1|2(15)

� c+ τ
c

δ22

j∑

i=1

|θi|22 + τcδ22

j∑

i=1

|δb(ui)|22.
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We estimate the term K2 by

|K2| � |f(tj , b(uj−1))|2|θj |2 � c+
c

δ23
|b(uj−1)|22 + cδ23 |θj |22

and from

1
δ23
|b(uj−1)|22 � c|b(u0)|22 +

δ25
δ23

(j−1∑

i=1

|δb(ui)|2τ
)2

� c+ c
δ25
δ23

Tτ

j∑

i=1

‖δb(ui)|22

we get

(16) |K2| � c+ τc
δ25
δ23

j∑

i=1

|δb(ui)|22 + cδ23 |θj |22.

We can estimate the last term of J4:

(17) |K3| � |f(t1, b(u0))|2|θ1|2 � cε + ε|θ1 − θ0|2 � cε + ε

j∑

i=1

|∇(θi − θi−1)|22,

where we have used |v|2 � c‖v‖ from the embedding W 2
1 (Ω) into L2(Ω).

Finally, if we choose suitable parameters δ1, . . . , δ5, ε, we can summarize (11)–(17)

into

τ

j∑

i=1

∫

Ω
λi|δθi|2 + τ

j∑

i=1

|δb(ui)|22 +
j∑

i=1

|∇(θi − θi−1)|22 + ‖θj‖2

� c+ cτ

j∑

i=1

|θi|22 + cτ

j∑

i=1

|∇θi|22.

The Gronwall lemma enables us to obtain the estimate (10). �

Lemma 2. The sequence of {bn(un)} is compact in L2(I, L2(Ω)).

�����. We use Kolmogorov’s compactness criterion to prove the compactness

of {bn(un)}.
We put (8) into (2), take v = θi−1 and sum it up for i = 1, . . . , j:

j∑

i=1

1
τ

(
bn(ui)− bn(ui−1), θi − θi−1

)
+

j∑

i=1

(
ωiτ

α−1(θi − θi−1), θi − θi−1
)

+
j∑

i=1

(
ki∇θi,∇(θi − θi−1)

)
+

j∑

i=1

(gi, θi − θi−1)Γ2 �
j∑

i=1

(fi, θi − θi−1).
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The second term is estimated by

j∑

i=1

(
ωiτ

α−1(θi − θi−1), θi − θi−1
)

�
j∑

i=1

τα+1(δθi, δθi)

=
j∑

i=1

τα

(
τ

∫

Ω

1
λi

λi|δθi|2
)

� τα−dc → 0 for τ → 0,

where we have used λi � 1
2τ

d > 0 for τ � τ0.

We have estimated the third, the fourth and the right-hand side terms in the

previous part. So we have to estimate the first term only.

From (10) we get

(18)
∫

I

|∂tb̂n(u
n)|22 � c

and hence

∫ T−z

0
|bn(un(t+ z))− bn(un(t))|22 dt �

∫ T−z

0

∫

Ω

(∫ z

0
∂tb̂n(un(t+ s)) ds

)2
dΩdt

�
∫ z

0
ds

∫

I

∫

Ω
(∂tb̂n(u

n(t)))2 dΩdt � z

∫

I

|∂tb̂n(u
n)|22 dt � cz.

The estimate

∫

I

∫

Ω
|bn(u

n(t, x+ y))− bn(u
n(t, x))|2 � c

∫

I

∫

Ω
|un(t, x+ y)− un(t, x)|2(19)

� c

{∫

I

∫

Ω
|un(t, x+ y)− θ

n
(t, x+ y)|2 + |θn

(t, x+ y)− θ
n
(t, x)|2

+|θn
(t, x)− un(t, x)|2

}
� c(τ2 + |y|2)

follows directly from (10) because

|θi − ui|2 � τ2 implies
∫

I

∫

Ω
|un(t, x)− θ

n
(t, x)|2 � τ2c,

|∇θj |2 � c implies
∫

I

∫

Ω
|θn
(t, x+ y)− θ

n
(t, x)|2 � c|y|2.

From (18) and (19) and Kolmogorov’s compactness criterion we get the compactness

of the sequence {bn(un)}∞n=1. �
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����� of Theorem 1. From (5) we have un = θ
n
+(u0−θ0). Because

∫
I
|θn|22 � c

and θ0 → u0 in L2(Ω) we have
∫

I
|un|22 � c and there exists u ∈ L2(I, L2(Ω)) such

that

un ⇀ u

and hence

θ
n

⇀ u in L2(I, L2(Ω)).

From (10) we have
∫

I |∇θ
n|22 � c, thus there exists χ ∈ L2(I, L2(Ω)): ∇θ

n
⇀ χ and

from un ⇀ u we get χ = ∇u. Thus un ⇀ u in L2(I, V ). The space L2(I,K) is
convex and closed, so u ∈ L2(I,K).
Due to the compactness of {bn(un)}∞n=1 in L2(I, L2(Ω)) there exists a subsequence

{bn(unk)}∞k=1 which converges in L2(I, L2(Ω)) to a function χ, i.e.

∃χ ∈ L2(I, L2(Ω)): bn(unk)→ χ.

Let us denote this subsequence again by {bn(un)}∞n=1 and say that the original se-
quence converges to χ in the sense of subsequence.

Using the Minty-Browder argument and the monotonicity of b we obtain that

b(u) = χ. Indeed, the monotonicity of bn implies

∫

I

(
bn(u

n)− bn(v), u
n − v) � 0 ∀v ∈ L2(I, L2(Ω))

and then for n → ∞ we have
∫

I(χ − b(v), u − v) � 0. We set v = u + εw, then∫
I
(χ − b(u + εw), w) � 0. Now we set v = u − εw; then

∫
I
(χ − b(u − εw), w) � 0.

For ε → 0 we obtain that χ = b(u).

Since
∫

I
|∂tb̂n(un(t))|22 � c, there exists a function χ ∈ L2(I, L2(Ω)) such that

∂tb̂n(un(t))⇀ χ. The definition of the function b̂n implies

∫

I

|b̂n(un(t))− bn(un(t))|22 �
j∑

i=1

∫ ti

ti−1

2|bn(ui)− bn(ui−1)|22

� 2τ
j∑

i=1

|bn(ui)− bn(ui−1)|22 � cτ

and hence χ = ∂tb(u) because bn(un(t))→ b(u) and b̂n(un)→ b(u) in L2(I, L2(Ω)).

�

In order to pass to the limit for n →∞ in (7) we need two lemmas:
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Lemma 3. Let u be as in Theorem 1. Then

∫ t

0
(∂tb(u), u) =

∫

Ω
B(u(t))−

∫

Ω
B(u0),

where

B(s) := b(s)s−
∫ s

0
b(z) dz.

�����. For the proof see, e.g. Alt, Luckhaus [1], the proof of Lemma 1.3. �

Lemma 4. Let u be as in Theorem 1. Then

lim inf
n→∞

∫ t

0
(∂tb̂n(un), un) �

∫

Ω
B(u)−

∫

Ω
B(u0).

�����. The proof of this lemma follows from [9]. We have un ⇀ u in

L2(I, L2(Ω)) by virtue of Theorem 1. There exists a convex combination vl =
N(l)∑
n=l

αl
nun with

N(l)∑
n=l

αl
n = 1, α

l
n � 0 of {un}N(l)

n=l such that vl → u in L2(I, L2(Ω)) (see

Ekeland, Temam [6]).

Let us denote

rn(t) =
∫ t

0
(∂tb̂n(un), un) for t ∈ I.

Since {rn} is bounded in L1(I) and {∂trn} is bounded in L1(I), {rn} is compact in
L1(I). Choosing a suitable subsequence we can assume rn(t) → r(t) with n → ∞
for a.e. t in I. Hence we deduce

r(t) � lim inf
l→∞

N(l)∑

n=l

αl
nrn(t) = lim inf

l→∞

N(l)∑

n=l

∫ t

0
αl

n(∂tb̂n(un), un)

� lim inf
l→∞

N(l)∑

n=l

αl
n

(∫

Ω
Bn(un(t)) −

∫

Ω
Bn(u0)

)

= lim inf
l→∞

N(l)∑

n=l

αl
n

(∫

Ω
B(un(t)) −

(∫

Ω
B(u0) +

1
2
τd(|un|22 − |u0|22)

))

� lim inf
l→∞

∫

Ω
B(vl(t))−

∫

Ω
B(u0) =

∫

Ω
B(u(t))−

∫

Ω
B(u0)

because of the convexity of B. Thus, the proof is complete. �
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Theorem 2. Let assumptions 1–5 be fulfilled. Then u from Theorem 1 is a

solution of the variational inequality (1).

�����. We integrate the inequality (7) over (0, t) and rewrite it to

∫ t

0
(∂tb̂n(un), v) +

∫ t

0
(k

n∇θ
n
,∇v) +

∫ t

0
(gn, v)Γ2(20)

�
∫ t

0
(∂tb̂n(u

n), θ
n
) +

∫ t

0
(ωnτα−1(θ

n − θ
n

τ ), θ
n − v)

+
∫ t

0
(k

n∇θ
n
,∇θ

n
) +

∫ t

0
(gn, θ

n
)Γ2 +

∫ t

0
(f

n
, v − θ

n
).

Now we can take the limit for n →∞.
The convergence of the terms on the left-hand side of (20) follows directly from

∂tb̂n(un) ⇀ ∂tb(u) in L2(I, L2(Ω)), ∇θ
n

⇀ ∇u in L2(I, L2(Ω)) and assumptions 2,

3. So we have
∫ t

0
(∂tb̂n(un), v)→

∫ t

0
(∂tb(u), v),(21)

∫ t

0
(k

n∇θ
n
,∇v)→

∫ t

0
(k∇u,∇v),(22)

∫ t

0
(gn, v)Γ2 →

∫ t

0
(g, v)Γ2 .(23)

We pass to the limit for n → ∞ with the first three terms on the right-hand side
of (20) separately:

1. Due to Lemmas 4, 3 and by virtue of θ
n − un → 0 in L2(I, L2(Ω)) and

∂tb̂n(un)⇀ ∂tb(u) we obtain

(24) lim inf
n→∞

∫ t

0
(∂tb̂n(un), θ

n
) �

∫ t

0
(∂tb(u), u).

2. For the second term we get
∣∣∣∣
∫ t

0
(ωnτα−1(θ

n − θ
n

τ ), θ
n − v)

∣∣∣∣(25)

�
∫ t

0
τα|(δθn

, θ
n − v)| �

∫ t

0
cτα− d

2

(∫

Ω
λ

n|δθn|2
∫

Ω
(θ

n − v)2
)1/2

→ 0

because of (10) and θ
n

⇀ u.

3. We know that
∫ t

0
(k

n∇θ
n
,∇θ

n
) =

∫ t

0
(k∇θ

n
,∇θ

n
) +O(τ).
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We define an equivalent norm in V = {v ∈ W 2
1 (Ω): v|Γ1 = 0} by

‖v‖− :=
(∫

Ω
k(∇v)2 dx

)1/2
,

which is a weakly lower semicontinuous function; then

(26) lim inf
n→∞

∫ t

0
(k

n∇θ
n
,∇θ

n
) � lim inf

n→∞

∫ t

0
‖θ̄n‖2− �

∫ t

0
(k∇u,∇u).

The convergence of the last two terms on the right-hand side of (20) follows from

assumptions 3, 4 and from θ
n

⇀ u in L2(Γ2), or θ
n

⇀ u in L2(Ω), respectively. Thus

∫ t

0
(gn, θ

n
)Γ2 →

∫ t

0
(g, u)Γ2,(27)

∫ t

0
(f

n
, v − θ

n
)→

∫ t

0
(f, v − u).(28)

So, taking the limit n →∞ in (20) and exploiting (21)–(28) we get ∀v ∈ L2(I,K)
∫ t

0

(
∂tb(u), v − u

)
+

∫ t

0

(
k∇u,∇(v − u)

)
+

∫ t

0
(g, v − u)Γ2 �

∫ t

0
(f, v − u).

Thus u is a variational solution of (1). �

It is also possible to obtain a stronger convergence result:

Theorem 3. Let assumptions 1–5 be fulfilled. Then

θ
n → u in L2(I,K).

�����. To prove the stronger convergence result we put (8) into (2) and

integrate it over (0, t). When taking v = u we obtain

∫ t

0
(∂tb̂n(un), θ

n − u) +
∫ t

0

(
ωnτα−1(θ

n − θ
n

τ ), θ
n − u

)
(29)

+
∫ t

0

(
k

n∇θ
n
,∇(θn − u)

)
+

∫ t

0
(gn, θ

n − u)Γ2

�
∫ t

0
(f

n
, θ

n − u) u ∈ L2(I,K),

where θ
n

τ := θ
n
(t− τ, x).
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We take into account that

lim inf
n→∞

∫ t

0
(∂tb̂n(un), θ

n − u) � 0,

which is a consequence of

∫ t

0
(∂tb̂n(un), θ

n
) =

∫ t

0
(∂tb̂n(un), un) +

∫ t

0
(∂tb̂n(un), θ

n − un),

lim inf
n→∞

∫ t

0
(∂tb̂n(un), un) �

∫ t

0
(∂tb(u), u)

and ∂tb̂n(un) ⇀ ∂tb(u) in L2(I, L2(Ω)) since θ̄n − un → 0 in L2(I, L2(Ω)). We

rearrange the elliptic term of (29) to the form

∫ t

0

(
k

n∇θ
n
,∇(θn − u)

)
=

∫ t

0

(
k

n∇(θn − u),∇(θn − u)
)
+

∫ t

0

(
k

n∇u,∇(θn − u)
)

� c

∫ t

0
‖θn − u‖2 +O(1)

since

θ
n

⇀ u in L2(I, V ) and |kn − k| → 0

and |∇v|2 is a norm equivalent to ‖v‖ because of mess Γ1 > 0. Due to the convergence

properties of θ
n
we find out

∫ t

0

(
ωnτα−1(θ

n − θ
n

τ ), θ
n − u

)
→ 0,

∫ t

0
(gn, θ

n − u)Γ2 → 0 for n →∞,

∫ t

0
(f

n
, θ

n − u)→ 0

because of Theorem 1, 3 and 4. Thus the proof is complete. �

Similar convergence results can be obtained when elliptic variational inequality (2)

is projected to a finite dimensional space Vh (e.g. by FEM) provided Vh → V for

h → 0 in the canonical sense. Then instead of un we obtain u(µ) with µ = (τ, h),

µ → 0.
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4. Numerical experiments

To illustrate the efficiency of the approximation scheme (2) we use a model of

the oxygen diffusion problem in the form (1). Applying the approximation scheme

(2) to the variational inequality (1) we get a sequence of linear elliptic variational

inequalities, which we have solved by a standard method for solving such problems

(modification of Gauss-Seidel method, see, e.g. Cea [2]).

	
����� 1. We consider a one-dimensional problem (1). We consider Ω =

(0, 1), Γ1 = {1}, Γ2 = {0},

b(s) =

{
ur, u > 0,

0, u < 0,

k(t) ≡ 1, g ≡ 0,

f(s) =

{
−m, u > 0,

0, u � 0,

m = 1 and u0(x) = 1
2 (1−x)2 for x ∈ (0, 1). We present the results of this problem for

r = 1 (Tab. 1, Fig. 1), r = 2 (Tab. 2, Fig. 2) and r = 3 (Tab. 3, Fig. 3). Our figures

show the evolution of a) the concentration of oxygen for various times and b) the

moving free boundary. In the case of r = 1 we compare our numerical solution with

those obtained by Crank and Gupta [3] (C-G columns in Tab. 1), Donat, Marquina

and Martínez [4] (D-M-M columns in Tab. 1) and Furzeland [7] (F columns in Tab. 1).

We have arrived at the “total absorption time” T = 0.1977, i.e., at the point where

there is no oxygen in the domain Ω. The total absorption time for the analytical

solution derived by Crank and Gupta [3] is T = 0.196731.

time
u(0, t)

81 points C-G D-M-M F
0.04 0.27084 0.274324 0.276975 0.2745
0.10 0.143658 0.143177 0.144939 0.1433
0.18 0.022048 0.0215383 0.023538 0.0219
0.19 0.009279 0.00853796 0.010913 0.0091

time
s(t)

81 points C-G D-M-M F
0.04 0.983 0.998271 0.998273 0.9992
0.10 0.924 0.892989 0.932287 0.9358
0.18 0.507 0.400949 0.531313 0.5028
0.19 0.341 0.255895 0.400626 0.3477

Table 1. Values of u(0, t) and free boundary position x = s(t) for r = 1.
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Figure 1. Evolution of a) the concentration of oxygen and b) the moving boundary x = s(t)
(full line—numerical solution, dotted line—solution obtained by Crank and
Gupta).
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Figure 2. Concentration of oxygen (r = 2).

time u(0, t) s(t)
0.01 0.375009 0.983
0.03 0.253189 0.935
0.05 0.114358 0.682
0.055 0.0445203 0.447

Table 2. Values of u(0, t)
and free boundary
position x = s(t) for
r = 2.

0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5 u

x

t=0.005

t=0.01

t=0.015

t=0.0192

Figure 3. Concentration of oxygen (r = 3).

time u(0, t) s(t)
0.005 0.389865 0.983
0.01 0.322587 0.95
0.015 0.243483 0.864
0.0192 0.0840281 0.52

Table 3. Values of u(0, t) and
free boundary po-
sition x = s(t) for
r = 3.

Finally, Figure 4 presents the evolution of the moving boundary for different ex-

ponents r in the function b (r = 1—dotted line, r = 2—dashed line and r = 3—full

line).

	
����� 2. We consider the following two-dimensional situation. Let Ω =

(0, 1) × (0, 1). Each boundary side of Ω is divided into three parts in the ratio
1−q
2 : q : 1−q

2 as depicted in Figure 5.
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Figure 4. Evolution of the moving boundary for r = 1 (dotted line), r = 2 (dashed line),
r = 3 (full line).

1−q
2
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Γb1 Γb2 Γb3

Γr1

Γr2

Γr3Γl3

Γl2

Γl1

Γt1 Γt2 Γt3

Figure 5. Domain Ω with boundary Γ.

Here we take q = 0.4. We denote Γ1 = Γb1 ∪ Γb3 ∪ Γr1 ∪ Γr3 ∪ Γt1 ∪ Γt3 ∪ Γl1 ∪ Γl3

and Γ2 = Γb2 ∪ Γr2 ∪ Γt2 ∪ Γl2. The function g is defined as follows:

g(x, t) =





gb2 on Γb2 × (0, T ),
gr2 on Γr2 × (0, T ),
gt2 on Γt2 × (0, T ),
gl2 on Γl2 × (0, T )

and the initial condition is u0((x, y)) = 0. Functions b and f are the same as in the

previous one-dimensional example.

We are interested in the stationary state of the concentration of oxygen in the

domain Ω where the consumption of oxygen and the flow of oxygen into the domain

through the boundary Γ2 are in balance. The stationary solution appears when

q(gb2+ gr2+ gt2+ gl2) = m|Ω+|, where Ω+ is the subdomain of Ω in which oxygen is
present. Figures 6–7 represent equilibrium for different exponents in the function b,

constants gb2, gr2, gt2, gl2 and the constant of consumption m (see Tab. 4).
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Figure 6. Equilibrium u((x, y)).

Figure 7. Equilibrium u((x, y)).

gb2 gr2 gt2 gl2 r m
Figure 6 1 1 1 1 2 −0.5
Figure 7 1 2 1 2 3 −1

Table 4. Data for Figures 6–7.
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