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Abstract

Proper treatment of heavy metal ions present in wastewaters is a major concern. With extensive usage in various industries, 

Cr(VI) contamination has become threatening for the environment. Biosorption is a favorable technique for heavy metals 

removal. In the present study, dried cyanobacterial consortium of Dinophysis caudata and Dinophysis acuminata were used 

to assess its biosorption capability. The surface texture and morphology of the biosorbent were obtained through scanning 

electron microscopy. The presence of different chemical bonds, namely hydroxyl, C–H and C–N, was confirmed through 

FTIR study. Pseudo-second-order Mckay-Ho model was found to perform best to fit the kinetic data. Temkin adsorption 

isotherm model fit best to the equilibrium data. Response surface methodology (RSM) was employed to optimize Cr(VI) 

abatement. Effect of initial concentration (IC) of metal ion, temperature, pH variation and amount of adsorbent (AD) were 

studied during batch study. Maximum Cr(VI) abatement after 5 min contact time was 80.77% for an IC of Cr(VI) of 25 mg/L, 

at pH 11 and 45 °C with the AD of 2.5 g/L. The optimum removal conditions as shown by RSM study were IC of Cr(VI): 

15 mg/L, AD: 1 g/L, pH: 11, and the removal was predicted as 81.72%. Artificial neural network-based model was further 

developed based on experimental points which indicated that the model can predict abatement of Cr(VI) for various operat-

ing conditions with reasonably high accuracy.
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List of symbols

A′  Initial Cr(VI) conc. (mg/L)

b  Langmuir constant (L/mg)

b′  Variation of sorption energy (J/mol)

B′  Initial solution pH

C′  Amount of adsorbent (g/L)

C0  Initial ion conc. (mg/L)

Ce  Equilibrium or final ion conc. (mg/L)

C″  Constant (mg/g)

k1  First-order reaction rate constant  (min−1)

k2  Second-order reaction rate constant (g/(mg min))

km  Rate constant of Morris–Weber model (mg/

(g min1/2))

Kf  Freundlich adsorption constant ((mg/g) (L/mg)1/n′)

KT  Equilibrium binding constant corresponding to 

maximum binding energy (L/mg)

M  Biomass dry weight (g)

n  Total number of variables

nc  Number of central run

n′  Empirical parameter relating the sorption intensity

N  Total number of data

qe  Biomass biosorption equilibrium ions uptake 

capacity (mg/g)

qmax  Maximum biosorption capacity (mg/g)

qt  Mass of metal adsorbed at time t (mg/g)

R  Universal gas constant = 8.314 × 10−3 (J/mol K)

R′1  Percentage removal of Cr(VI) (%)

t  Time (min)

T  Temperature (K)

V  Sample volume (L)

X′i  Independent variables

y′i,exp  Response obtained from experiments

y′i,pred  Predicted response obtained from ANN

Y′  Response

β  Activity coefficient related to sorption mean 

energy  (mol2/KJ2)
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β0  The constant coefficient

βij  The linear-by-linear interaction effect between the 

input factors Xi and Xj

βii  The quadratic effect of input factor Xi

βi  The slope or linear effect of the input factor Xi

ɛ  Polanyi potential (KJ/mol)

ΔG0  Gibbs free energy (KJ/mol)

ΔH0  Enthalpy (KJ/mol)

ΔS0  Entropy (KJ/mol K)

Introduction

Since the dawn of industrialization, water pollution is 

a critical environmental issue as the industrial wastewa-

ter containing various pollutants is directly or indirectly 

released into the water bodies that undoubtedly interrupt 

the aquatic biota. Among the various pollutants such as 

organic or inorganic chemicals, dyes and pesticides, heavy 

metals in wastewater play a crucial role due to their toxic 

and carcinogenic nature (Sen et al. 2017). Furthermore, they 

cannot be biodegraded rather bioaccumulated in the living 

body causing serious health hazards and even death (Tan-

gahu et al. 2011). The atomic weights of heavy metals vary 

between 63.5 and 200.6, and their specific gravities are five 

times higher than that of water (Shanab et al. 2012). Chro-

mium is commonly found in wastewater of tannery, textile, 

paint, ink, aluminum, galvanometry and electric, dyes and 

pigments, metal cleaning, plating and electroplating, film 

and photography, mining, leather industries, and its concen-

tration can range from tens to hundreds of mg/L (Han et al. 

2008). Cr(III) and Cr(VI) are the most stable form of chro-

mium (Gupta and Rastogi 2009). Though Cr(III) is used as 

an important nutrient to animals, the toxicity of Cr(VI) is 

near about 300 times more than Cr(III) because of its pro-

found carcinogenic, mutagenic and teratogenic effects (Qu 

et al. 2014). Adverse health effects of chromium depend on 

its dose, exposure duration and the nature of compound. 

As per World Health Organization (WHO), the maximum 

allowable limit of hexavalent chromium is 0.05 mg/L in 

drinking water (Gupta and Rastogi 2009). Thus, chromium 

removal from wastewater is mandatory before releasing into 

the environment.

Several conventional treatment process, such as chemi-

cal precipitation (Karale et al. 2007; Ramakrishnaiah and 

Prathima 2012), membrane separation (Rad et al. 2009; Zar-

gar 2012), ion exchange (Dharnaik and Ghosh 2014; Dima 

et al. 2015) and solvent extraction (Sahu et al. 2008; Mane 

et al. 2012), have been used for abatement of chromium from 

wastewater. However, conventional techniques are having 

the limitations of high chemical or energy requirements, 

formation of secondary pollutants, high cost, toxic sludge 

generation, etc. (Rizzuti et al. 2015). Furthermore, they can-

not be used effectively for the metal concentration below 

100 mg/L (Anjana et al. 2007; Gupta and Rastogi 2009). It 

will always be beneficial if some low-cost adsorbents can 

be synthesized from waste biomass or agricultural residue 

(Pangeni et al. 2014). Therefore, the researchers are now 

trending toward alternate environment-friendly, low-cost and 

technically viable process.

About 7000 algal species are found in the world. The 

reasons behind the choice of microalgae as pollutant removal 

agent are numerous. Some of them are: (1) microalgae are 

capable of biofixing  CO2 from waste gas/atmosphere; (2) 

they can utilize low-quality water, such as agricultural and 

municipal run-off, industrial wastewater containing toxic 

metals, organic matters; (3) algal bodies can live in natural 

weather condition; (4) they provide much higher yields of 

biomass when grown in wastewater; and (5) high-quality 

agricultural land is not required to grow the algal cells 

(Ramanan et al. 2010; Sen et al. 2017). Cyanobacteria, a 

photoautotrophic bacteria, also known as blue green algae, 

are recommended to have some additional advantages such 

as higher mucilage volume, greater binding affinity, simple 

nutrient requirements and larger surface area which leads to 

a better treatment in combating pollution over other micro-

organisms (Sen et al. 2017). Though several researches 

have been done on abatement of Cr(VI) using microalgal/

cyanobacterial biomass, only a very few paper addresses the 

detailed mathematical analysis substantiated with experi-

mental findings.

In the present article, cyanobacterial consortium of 

Dinophysis caudata and Dinophysis acuminata has been 

employed for the Cr(VI) abatement. ANN (artificial neural 

network) model has been developed to predict the bioreme-

diation of Cr(VI) using said consortium, and RSM (response 

surface methodology) has been implemented for optimizing 

the removal condition. Thus, the effect of operating variables 

on biosorption process has been ascertained using these two 

highly sophisticated mathematical tools.

Materials and methods

Collection, identi�cation, culture condition 
and preparation of biosorbents

Cyanobacterial consortium of Dinophysis caudata and 

Dinophysis acuminata, collected from East Kolkata Wet-

land (EKW), was used for the study. The details of collec-

tion and identification were described by Sen et al. (2017). 

The consortium was cultured in BG-11 media and incu-

bated inside an algal incubator at 25 ± 2 °C under light 

intensity of 2500 lx with dark to light period of 8:16. For 
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the preparation of the biosorbent, the well-grown consor-

tium was first harvested by centrifugation (Eltek TC 8100 

F) at 5000 rpm, followed by washing 2–3 times using dis-

tilled water (Gupta and Rastogi 2009). The biomass was 

then dried naturally under sunlight. The prepared biomass 

was then grinded in mortar pestle to make it fine dust 

particles.

Characterization of biosorbent

Scanning electron microscopy (SEM) study of both dry 

cyanobacterial biomass and Cr(VI)-loaded sample was 

done to obtain the topographical characteristics using SEM 

(Hitachi-S-3000N, Japan). To get Cr(VI)-loaded sample, 

dried cyanobacterial biomass (2.5 g/L) was contacted with 

10 mL solution of Cr(VI) with IC of 25 mg/L. Batch experi-

ment was done inside a BOD incubator (Modern Instrument) 

at 25 °C and under constant agitation speed of 120 rpm for 

5 min. After that, the centrifugation was done for 10 min 

at 5000 rpm. The biomass was then collected, dried and 

used for characterization. To get the elemental analysis, 

energy-dispersive spectroscopy (EDS) (Hitachi-S-3000N, 

Japan) study was also performed for both native and Cr(VI)-

treated biomass. Fourier transform infrared (FTIR) study 

was done using (FTIR) spectrometer (Model No. Spectrum 

100, Perkin-Elmer, USA) to determine the presence of dif-

ferent chemical bonds in the cell wall which are responsible 

for biosorption.

Preparation and analysis of Cr(VI) solution

To make a 100 mg/L stock solution of Cr(VI), 0.1414 g 

 K2Cr2O7 was dissolved in 500 mL distilled water. The 

preparation of desired concentration of Cr(VI) was done 

by diluting the proper amount of stock solution. All the 

chemicals of analytical grade were used throughout this 

study and procured from MERCK, India. To maintain the 

initial solution pH at the start of the each experiments, 

0.1N NaOH and 0.1N HCL were used. Batch experimen-

tations were conducted to investigate the biosorption of 

Cr(VI) using dried algal biomass in Erlenmeyer flasks. 

In each flask, proper amount of biomass was added and 

flasks were kept inside the BOD incubator at 120 rpm agi-

tation speed and 25 °C, until the equilibrium was reached. 

Finally, 1.0 mL sample was collected followed by the cen-

trifugation. The supernatant was collected and analyzed 

for residual Cr(VI) concentration spectrophotometrically 

at 540 nm using a VIS spectrophotometer (Thermo Fisher 

Scientific, Genesys 20) after adding 1,5 diphenylcarbazide 

in acidic medium following the standard protocol (Clesceri 

et al. 1996).

Cr(VI) removal study

Batch study

The batch experiments were studied with synthetic solu-

tion of Cr(VI). To see the effect of various input variables, 

namely IC of Cr(VI) ion, initial pH of solution, tempera-

ture and AD on percentage abatement of Cr(VI), they were 

varied in the range of 2.5–25 mg/L, 5–11, 25–45 °C and 

0.5–2.5 g/L, respectively. Instead of following one-factor-

at-a-time (OFAT) methodology, IC of Cr(VI) was varied 

along with individual variation of other three variables, 

namely pH, AD and temperature. The solutions of all the 

experiments were thoroughly stirred at 120 rpm for 5 min. 

At first, initial pH was varied in the range of 5–11 for vari-

ous ICs of Cr(VI) when AD and temperature of the system 

were kept fixed at 2.5 mg/L and 25 °C, respectively. The 

pH value for which the biomass gave the maximum metal 

removal was chosen for the next set of experiments where 

effect of biomass dosage was studied on Cr(VI) abate-

ment. Similarly to see the effect of temperature, initial pH 

of solution and biomass dose was kept constant at their 

optimum values which were obtained through previous 

sets of experiments. Three sets of each experiment were 

done, and the mean value of these data was reported with 

standard deviation.

Equilibrium study

Equilibrium study was performed by changing IC in the 

range of 2.5–25 mg/L at three temperatures (25 °C, 35 °C 

and 45 °C). Other parameters such as AD, volume of solu-

tion and pH were kept constant at 2.5 g/L, 10 mL and 

11, respectively. Samples were collected after 5 min and 

analyzed for Cr(VI) concentration. The amount of Cr(VI) 

uptake in each flask was calculated as follows:

where q
e
 is the solid-phase concentration of Cr(VI) at equi-

librium (mg/g) and C
e
 is the equilibrium or final ion con-

centration (mg/L).

Kinetic study

Kinetics of abatement of Cr(VI) was investigated in 

batch mode for different ICs (2.5–25  mg/L) and ADs 

(0.5–2.5 g/L) at pH 11 and temperature 25 °C. When AD 

was varied, IC was kept constant at 25 mg/L, and when IC 

(1)q
e
=

C
0
− C

e

M
× V
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was varied, AD was kept 2.5 g/L. Samples were collected 

from the flasks at a fixed time interval of 1 min, and Cr(VI) 

concentration was measured.

Optimization of abatement of Cr(VI) using 
cyanobacterial biomass using response surface 
methodology

Design of experiment

Application of RSM is sequential in nature, and optimiza-

tion is done through three successive major steps such as (1) 

designing of experiments, (2) analyzing the responses with 

prediction of model and (3) finding out optimum condition 

(Myers and Montgomery 1995; Chatterjee et al. 2012). RSM 

tells us the relationship between different input factors and 

the response. Mathematically, it can be shown as follows:

where Y ′ is the response and X�

1
, X

�

2
,… , X

�

n
 are the independ-

ent variables called the numeric factors.

Central composite design (CCD), the most familiar class 

of second-order design, was used in the present study (Myers 

and Montgomery 1995).

Thus, for n number of variables, total number of tests 

required is:

For the three input variables used in this study, the total 

number of tests required is:

To avoid aliased terms present in the higher-order models, 

a second-degree polynomial equation is selected to analyze 

the responses as a function of numeric factors. The equation 

is as follows:

where �
0
 = the constant coefficient, �

i
 = the slope or linear 

effect of the input factor X′

i
 , �

ii
 = the quadratic effect of input 

factor X′

i
 , �ij = the linear-by-linear interaction effect between 

the input factors X′

i
 and X′

j
 (Myers and Montgomery 1995; 

Sen et al. 2017).

Experimentation

Three input variables, viz. IC of Cr(VI), initial pH and AD, 

were independent factors, whereas percentage abatement 

of Cr(VI) was dependent variable. The minimum (− 1) and 

maximum (+ 1) values of IC of Cr(VI), initial pH and AD 

were kept as 8.125 g/L and 19.375 g/L, 6.5 and 9.5 and 

(2)Y � = f (X�

1
, X�

2
,… , X�

n
)

(3)N = 2
n
+ 2n + n

c
.

(4)N = 2
3 + (2 × 3) + 6 = 20.

(5)Y �
= �

0
+

∑

�iX
�

i
+

∑

�iiX
�2

i
+

∑

�ijX
�

i
X�

j

0.1 g/L and 0.2 g/L, respectively. Design Expert software 

(version 8.0.7.1; Stat-Ease, Inc., Minneapolis, USA) was 

used for such purpose. Test cyanobacterial biomass was 

added in Erlenmeyer flasks containing synthetic wastewater 

of Cr(VI). The pH, AD and concentration of Cr(VI) were 

varied according to the design. The volume of wastewater 

was kept at 10 mL. Since equilibrium was obtained within 

5 min as seen from equilibrium and kinetic studies, time was 

not considered as input variables and all the experiments 

were performed for 5 min. After experimentation, sample 

broth was analyzed for residual Cr(VI) concentration.

Theoretical analysis

Arti�cial neural network (ANN)

The development of empirical model using artificial neural 

network (ANN) is very much promising technique for the 

prediction of behavior of a biosorption system. ANN can be 

considered as a powerful tool and can be applied in the situ-

ations where there is an existence of inherent nonlinearity 

between the process inputs and the corresponding dependent 

variables. The idea of artificial intelligence that formulates 

the relation between human brain and nervous system was 

used for the development of ANN (Rumelhart et al. 1986; 

Nandi et al. 2001). A number of mathematical correlations 

are used in ANN which model learning and memorizing 

processes. There are several advantages of ANN models over 

traditional mathematical models such as detailed process 

understanding of the process which may not be needed, and 

it can be developed fast based on process input and outputs 

in relatively lesser time as compared to rigorous phenom-

enological models. The other important benefit of ANN 

model is its lesser simulation time which enables it to use 

extensively for the online process control applications (Him-

melblau 2000; Kumar et al. 2014). Nodes of the input lay-

ers are used for feeding of all process input data, and the 

output layer has equal number of nodes (neurons) as that of 

output variables. The numbers of nodes in the hidden layer 

are chosen heuristically as depicted in Fig. 1. The nonlinear 

transformation carried out at the hidden nodes improves the 

performance of ANN to model difficult problems. The num-

ber of such nodes varies; however, the key parameter is the 

level of complication of the function. Neural network acts as 

a means in which input information is fed to the input nodes, 

and finally, after all the processing, the predicted outcome 

is received at the output layer to an external receiver. The 

main important parameters for network training are setting 

the number of hidden nodes and the nonlinear transforma-

tion to be used. The actual number of neurons in the hid-

den layer is calculated based on minimum value of mean 

squared error (MSE). For training of network, two param-

eters, namely momentum rate and learning coefficients, are 
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used. However, for better generalization capability, the slow 

learning rate with little momentum coefficients is generally 

preferred. Initially, assigned weights connecting inputs to 

hidden nodes and hidden nodes to outputs layer are getting 

updated through backpropagation strategy (Kumar et al. 

2014; Nandi et al. 2001).

In order to estimate the model applicability, the mean 

square error (MSE) is employed as a function of error.

Here N denotes number of experimental data points, y′
i,pred

 

denotes predicted output for ith experimental data point, and 

y′
i,exp

 denotes the experimentally determined output for ith 

data point.

Results and discussions

Characterization of cyanobacterial biomass

Surface texture of native cyanobacterial biomass and bio-

mass after biosorption of Cr(VI) has been examined by 

SEM study as shown in Fig. 2a, b. From both the figures, 

irregular shaped cluster has been seen and no clear dis-

tinction for loading of Cr(VI) has been observed. To get 

the elemental analysis, EDS study has been performed. 

EDS spectra (Fig. 3a, b) show that for native sample, no 

traces of Cr(VI) are present in the sample; however, for 

(6)MSE =
1

N

i=N
∑

i=1

(

y�
i,pred

− y�
i,exp

)2

treated biomass 35.24 weight  % Cr(VI) has been found 

which clearly ascertains the binding of Cr(VI) onto the sur-

face of cyanobacterial biomass. Conversely, all the other 

elements found in the treated biomass are comparatively 

lower than that in native cyanobacterial biomass (C: reduces 

from 28.39 to 14.15%, N: reduces from 7.81 to 5.24%, O: 

reduces from 49.57 to 33.68% and Na: reduces from 10.01 

to 7.25%). Figure 4a, b shows the FTIR spectra of native 

cyanobacterial biomass and chromium-loaded biomass 

when wave number varies in the range of 400–4000 cm−1. 

The characteristics groups present in the native cyanobacte-

rial biomass are –C–N bond, –C=C bond, C≡N bond, –C–H 

bond and –O–H bond at the wave numbers of 1045 cm−1, 

1659 cm−1, 2357 cm−1, 2928 cm−1 and 3431 cm−1, respec-

tively. For chromium-loaded biomass, –C–N stretch shifts 

to the wave number 1053 cm−1. C≡N bond and –C–H bond 

have not been found in the chromium-loaded biomass, 

whereas the –C=C bond and –O–H bond remain same as 

that of native cyanobacterial biomass. The changes or shift 

of these bonds may be due to the interaction between the 

cell wall and metal ions for which the binding of Cr(VI) 

occurs onto the cell wall.

IC

pH

Ad

Temp

Input layer

Hidden layer

Output layer 

% Removal

bias bias

Fig. 1  Network architecture for ANN model

Fig. 2  a SEM image of native cyanobacterial consortium and b SEM 

image of chromium-loaded cyanobacterial consortium
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E�ect of operating variables on abatement of Cr(VI) 
using cyanobacterial biomass

Combined e�ect of IC and pH

The effect of pH has been studied for different initial pHs of 

the solution in the range of 5–11 at varying ICs of Cr(VI) 

from 2.5 to 25 mg/L keeping other variables such as AD, 

temperature, shaking speed and time constant at 2.5 g/L, 

25 °C, 120 rpm and 5 min, respectively (Fig. 5). From the 

figure, it is seen that higher abatement of Cr(VI) occurs at 

higher pH and IC. At pH 5.0, when IC of Cr(VI) is varying 

from 2.5 to 25 g/L, the percentage abatement of Cr(VI) is 

minutely increased from 10.12 to 35.01%. However, higher 

pH of the medium facilitates the biosorption process which 

leads to higher abatement of Cr(VI). Biosorption is the only 

mechanism for abatement of Cr(VI) using dried cyanobac-

terial biomass. As seen from FTIR study, the major bonds 

responsible for the biosorption process are –C–N bond, 

Fig. 3  a EDAX spectra of native cyanobacterial consortium and b 

EDAX spectra of chromium-loaded cyanobacterial consortium

Fig. 4  a FTIR spectra of native cyanobacterial consortium and b 

FTIR spectra of chromium-loaded cyanobacterial consortium
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C≡N bond and –C–H bond. At higher pH, the net negative 

charge present in the cyanobacterial biomass is compara-

tively higher which facilitates the binding of positive Cr(VI) 

ion onto the cell surface. At pH 11, cyanobacterial consor-

tium shows maximum abatement of Cr(VI), and under such 

condition, when IC of Cr(VI) is varied from 2.5 to 25 g/L, 

the corresponding removal has significantly increased from 

35.01 to 80.36%. From the figure, it is seen that for a par-

ticular pH, higher the IC, higher is the percentage abatement 

of Cr(VI). Again, maximum removal has been obtained at 

IC of 25 mg/L irrespective of pH of solution. When solution 

pH increases from 5 to 11, the abatement of Cr(VI) increases 

from 27.23 to 80.36% at 25 mg/L IC. The increase in per-

centage removal with increasing IC of Cr(VI) was observed 

by Sibi 2016. When IC of Cr(VI) increased from 24.5 to 

147 mg/L, the removal efficiency increased from 17.4 to 

63.2 mg/g at pH 2 and from 16.9 to 58.1 mg/g at pH 1(Sibi 

2016).

Combined e�ect of IC and AD

To examine the effect of AD on abatement of Cr(VI), the 

cyanobacterial biomass has been varied in the range of 

0.5–2.5 g/L for different ICs of the solution ranging from 2.5 

to 25 g/L keeping other parameters such as initial pH of the 

solution (11), temperature (25 °C), shaking speed (120 rpm) 

and time (5 min) constant (Fig. 6). From the figure, it is 

evident that the biosorption process depends significantly 

on the AD. For a particular concentration of 2.5 mg/L, when 

AD increases from 0.5 to 2.5 g/L the corresponding percent-

age removal increases from 10.64 to 35.01%. However, at 

higher IC of Cr(VI) (25 mg/L), increasing AD in the same 

range (0.5–2.5 g/L), percentage removal increases from 

32.63 to 80.36%, respectively. The higher removal at higher 

AD is quite obvious because of availability of more adsorp-

tion site (Gupta and Rastogi 2009). In addition, it can also 

be seen that for same AD, the removal is more at higher IC. 

This may be caused by higher driving force of mass transfer 

at higher IC. Thus, it can be stated that the present system 

may be mass transfer-driven process instead of kinetically 

controlled one. Furthermore, at higher AD, the removal is 

almost same for 15 mg/L (78.11%), 20 mg/L (79.86%) and 

25 mg/L (80.36%) solution. This is because of the reduction 

in available surface area for biosorption due to the formation 

of biomass aggregates.

E�ect of IC at varying temperatures

Results on the effect of temperature at different ICs of 

Cr(VI) are depicted in Fig. 7. Though the enhanced tem-

perature increases the percentage abatement of Cr(VI), the 

influence of temperature on the abatement of Cr(VI) is not 

significant at higher IC range. The higher the temperature of 

the solution, the higher will be the diffusion rate of Cr(VI) to 

the surface of biosorbent. At lower concentration, the mass 

transfer driving force is less, and thus, the effect of tempera-

ture on the removal process becomes significant. However, 

at higher IC, mass transfer driving force, i.e., the difference 

between concentration at solution and concentration at inter-

face, is higher and biosorption rate will solely be dependent 

on such factor and effect of temperature becomes insignifi-

cant. Maximum percentage removal (80.77%) of Cr(VI) is 

obtained at 25 mg/L IC of Cr(VI), at pH 11.0, AD 2.5 g/L, 

temperature 45 °C after 5 min contact time.

Equilibrium study

Various equilibrium models have been used for fitting the 

experimental data for examining the relationship between 

solid- and liquid-phase concentrations of Cr(VI) at equi-

librium. For each isotherm study, IC of Cr(VI) has been 

varied at different temperatures, while the other parameters 

have been kept constant. The values of isotherm constants 

and corresponding correlation coefficients are presented in 

Table 1. From the table, it is seen that Langmuir isotherm 

0

10

20

30

40

50

60

70

80

90

2.5 mg/L 5 mg/L 7.5 mg/L 10 mg/L 15 mg/L 20 mg/L 25 mg/L

R
em

o
v

a
l 

o
f 

C
r(

V
I)

 (
%

)

Concentration(mg/L)

Ad-.005 Ad-.0075 Ad-.010 Ad-.015 Ad-.020 Ad-.025

Fig. 6  Combined effect of initial concentration and adsorbent dose on 

chromium removal

0

10

20

30

40

50

60

70

80

90

2.5 mg/L 5 mg/L 7.5 mg/L 10 mg/L 15 mg/L 20 mg/L 25 mg/L

R
em

o
v

a
l 

o
f 

C
r(

V
I)

 (
%

)

Concentration(mg/L)

25°C 35°C 45°C

Fig. 7  Combined effect of initial concentration and temperature on 

chromium removal



 Applied Water Science (2018) 8:148

1 3

148 Page 8 of 12

is not apt for the present study. Temkin isotherm model has 

been fitted best in comparison with other isotherm models 

with a maximum R2 value of 0.9553.

To understand the impact of temperature, and feasibil-

ity of the biosorption process, the various thermodynamic 

parameters, such as Gibbs free energy (ΔG
0) , enthalpy 

(ΔH
0) and entropy (ΔS

0) , were evaluated using the follow-

ing equations:

where K
e
 is the equilibrium constant, T  is temperature and 

R is the universal gas constant.

Based on the van’t Hoff plot of ln K
e
 versus 1∕T  , the val-

ues of ΔH
0 and ΔS

0 were determined from the slope and 

intercept. From the thermodynamic plot, the parameters such 

as ΔG
0 , ΔH

0 and ΔS
0 for the biosorption of Cr(VI) on cyano-

bacterial strain were calculated (Table 2). The value of ΔG
0 

was found negative at the temperatures ranging from 25 to 

45 °C, indicating the favorable and spontaneity of the pro-

cess. The positive value of ΔH
0 indicates that the biosorp-

tion reaction is endothermic.

Kinetic study

Kinetic studies on abatement of Cr(VI) have been done 

by varying two variables, viz. AD (0.5–2.5 g/L) and IC 

(7)ΔG
0
= −RT ln K

e

(8)ΔG
0
= ΔH

0
− TΔS

0

(2.5–25 g/L) separately, and are shown in Figs. 8 and 9, 

respectively. From Figs. 8 and 9, it can be stated that higher 

values of both AD and IC of Cr(VI) enhance the abate-

ment of Cr(VI). In all the cases, major removal has been 

obtained within 1 min, and after that, a minute increase in 

removal is seen. For ADs of 0.5 g/L and 2.5 g/L, the abate-

ment of Cr(VI) has been obtained as 31.61% and 76.34% 

after 1 min and then increases to 32.63% and 80.36% after 

5 min, respectively. Similarly, the percentage abatement of 

Cr(VI) increases from 34.48 to 35.01% with the increase 

in time of operation from 1 to 5 min at IC of Cr(VI) of 

2.5 mg/L.

To examine the kinetics of the biosorption process using 

cyanobacterial biomass, various kinetic models, namely 

Lagergren first-order, pseudo-second-order (PSOM) and 

Morris–Weber (MB) kinetic models, have been used to fit 

the experimental data obtained during kinetic study. The 

values of the constants of different kinetic models are pre-

sented in Tables 3 and 4 considering AD and IC of Cr(VI) 

as varying parameters, respectively. From the tables, it can 

be stated that PSOM holds good to interpret the kinetic data 

of the biosorption process.  

Table 1  Values of different isotherm constants

Isotherm 25 °C 35 °C 45 °C

Langmuir

q
e
=

q
max

bC
e

1+bC
e

Not fitted Not fitted Not fitted

Freundlich

q
e
= K

f
C

1

n�

e

1

n
′
 = 2.732

Kf = 0.1285

R2 = 0.8941

1

n
′
 = 2.583

Kf = 0.1722

R2 = 0.9116

1

n
′
 = 2.431

Kf = 0.2323

R2 = 0.9224

Tempkin

q
e
=

RT

b�
ln(K

T
) +

RT

b�
ln(C

e
)

B =
RT

b�

B = 7.026

KT = 0.571

R2 = 0.9314

B = 6.844

KT = 0.605

R2 = 0.9417

B = 6.654

KT = 0.648

R2 = 0.9553

Dubinin–Radushkevich

ln (qe) = ln (qmax) − βɛ2
β = 6.120

R2 = 0.7896

β = 5.245

R2 = 0.7991

β = 4.503

R2 = 0.8182

Table 2  Values of different thermodynamic parameters

Tempera-

ture (K)

ln(K
e
) ΔG0 (KJ/mol) ΔH0 (KJ/mol) ΔS0 (J/mol K)

298 10.298 − 25.52 4.98 102.30

308 10.356 − 26.52

318 10.425 − 27.56
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Determination of optimum conditions 
for abatement of Cr(VI) using RSM

RSM is employed for the optimization of Cr(VI) removal 

using the biomass of cyanobacterial consortium. IC of 

Cr(VI) ( A′ , mg/L); initial solution pH ( B′ ); AD ( C′ , g/L) 

are taken as input factors or independent variable, whereas 

abatement of Cr(VI) ( R′

1
 , %) is taken as a response. The 

experimental design along with responses is shown in 

Table 5. Since the maximum (95%)-to-minimum (64.78%) 

ratio of the response is 1.47, less than 10, the transfor-

mation is not required. To avoid aliased terms present in 

higher-order models, a quadratic order equation is used as 

suggested by the software for analyzing the responses and 

the final equation is as follows:

(9)

R
�

1
= + 81.85 + 2.94 × A

�
+ 4.11 × B

�
+ 3.72 × C

�

− 0.75 × A
�
× B

�
+ 0.94 × A

�
× C

�
+ 0.16 × B

�
× C

�

− 4.09 × A
�2
+ 2.39 × B

�2
+ 2.21 × C

�2

.

The results of ANOVA for response surface quadratic 

model are shown in Table 6. The values of “Prob > F” 

lower than 0.05 designate the significance of the model 

terms. Analysis by ANOVA (Table  6) reveals that IC 

of Cr(VI), pH and AD have major effect on biosorptive 

abatement of Cr(VI) using cyanobacterial biomass. The 

combined effect of IC of Cr(VI) and pH and interactive 

effect of IC of Cr(VI) and AD are found significant. The 

diagram of the interactive effect of these two parameters 

is discussed in the present article.

The values of correlation coefficients have been found as 

R
2 : 0.9872, R2

adj
 : 0.9692 and R2

pred
 : 0.8998. Since the values 

Table 3  Values of different parameters in kinetic model (varying adsorbent doses)

Adsorbent dose

0.5 g/L 0.75 g/L 1.0 g/L 1.5 g/L 2 g/L 2.5 g/L

Kinetic model

qe(exp) (mg/g)

3.263 3.94 4.907 5.733 6.68 8.036

Lagergren model

log(qe − qt) = log qe −
k1

2.303
t

k1 = 1.68

R2 = 0.758

qe = 1.135

k1 = 1.05

R2 = 0.879

qe = 0.572

k1 = 1.145

R2 = 0.839

qe = 1.036

k1 = 2.298

R2 = 0.712

qe = 9.656

k1 = 1.900

R2 = 0.742

qe = 6.68

k1 = 1.733

R2 = 0.729

qe = 4.24

Pseudo-second order
t

q
t

=
1

k
2
q2

e

+
t

q
e

k2 = 6.14

R2 = 1

qe = 3.295

k2 = 4.211

R2 = 1

qe = 3.992

k2 = 2.708

R2 = 0.999

qe = 4.977

k2 = 1.945

R2 = 0.999

qe = 5.83

k2 = 1.434

R2 = 0.999

qe = 6.81

k2 = 1.558

R2 = 0.999

qe = 8.17

Morris–Weber

qT = kmt1/2 + C″
km = 0.0854

R2 = 0.957

km = 0.1249

R2 = 0.965

km = 0.1898

R2 = 0.962

km = 0.259

R2 = 0.956

km = 0.350

R2 = 0.958

km = 0.3536

R2 = 0.916

Table 4  Values of different parameters in kinetic model (varying ini-

tial concentrations)

Initial concentration

2.5 mg/L 10 mg/L 25 mg/L

Kinetic model

qe(exp) (mg/g)

0.350 2.849 8.036

Lagergren model

log(qe − qt) = log qe −
k1

2.303
t

k1 = .271

R2 = 0.9879

qe = 0.007

k1 = .715

R2 = 0.9811

qe = 0.578

k1 = 1.7328

R2 = 0.9011

qe = 4.24

Pseudo-second order
t

q
t

=
1

k
2
q2

e

+
t

q
e

k2 = 104.002

R2 = 1

qe = 0.3511

k2 = 2.206

R2 = 0.9999

qe = 2.93

k2 = 1.56

R2 = 0.9999

qe = 8.17

Morris–Weber

q
t
= k

m
t1∕2 + C��

km = .0039

R2 = 0.9135

km = .2339

R2 = 0.9118

km = .3536

R2 = 0.9161

Table 5  The experimental design obtained from RSM

Run A′:IC (mg/L) B′:pH C′:Dose (g/L) R′1:Removal (%)

1 13.75 8.00 1.50 81.86

2 20.44 9.78 0.91 82.98

3 7.06 9.78 2.09 86.94

4 25.00 8.00 1.50 75.56

5 13.75 8.00 0.50 82

6 13.75 8.00 1.50 81.86

7 13.75 8.00 1.50 81.86

8 20.44 6.22 0.91 77.89

9 13.75 8.00 1.50 81.86

10 13.75 8.00 1.50 81.86

11 2.50 8.00 1.50 64.78

12 20.44 9.78 2.09 94.50

13 7.06 9.78 0.91 82.52

14 13.75 8.00 1.50 81.86

15 7.06 6.22 0.91 71.10

16 13.75 5.00 1.50 82.00

17 13.75 8.00 2.50 94.00

18 7.06 6.22 2.09 78.24

19 13.75 11.00 1.50 95.00

20 20.44 6.22 2.09 85.45
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of correlation coefficients are much higher, it can be stated 

that the predicted data match quite well with experimental 

one.

Figure 10a shows conjugate effect of both IC of Cr(VI) 

and pH on the abatement of Cr(VI). For constant IC of 

Cr(VI) of 7.06 mg/L, when the pH increases from 6.22 to 

9.78, the percentage abatement of Cr(VI) increases from 

72.41 to 81.96%. Similarly for a constant pH of 6.22 when 

IC of Cr(VI) increases from 7.06 to 20.44 mg/L, the percent-

age abatement of Cr(VI) increases from 72.41 to 80.46%. 

Figure 10b represents the interactive effect of AD and IC of 

Cr(VI) on removal process. From the figure, it is seen that 

higher AD facilitates the removal process. At constant IC of 

7.06 mg/L and 20.44 mg/L, when AD increases from 0.91 

to 2.09 g/L, the abatement of Cr(VI) increases from 74.53 

to 80.09% and from 78.57 to 87.79%, respectively. Similar 

trend of abatement of Cr(VI) with varying ICs of Cr(VI), 

AD and pH has been described in the section “Effect of 

operating variables on abatement of Cr(VI) using cyano-

bacterial biomass.” To acquire the optimum abatement of 

Cr(VI), the criteria are as follows: IC: “in range”; pH: equal 

to “11”; AD: “minimize”; the response: “maximize.” The 

optimum condition obtained as: IC of Cr(VI): 15 mg/L; pH: 

11.00; adsorbent dosage: 1 g/L, and at this condition, the 

removal has been predicted as 81.72%.

ANN modeling

In the present study, neural network is used for prediction 

of percentage abatement of Cr(VI) due to biosorption based 

on key governing parameters, namely IC of the heavy metal 

mg/L, pH of the medium, AD used in g/L and temperature 

in °C. Altogether 77 data points were available based on 

experimentation, and those are classified into learning or 

training, testing and validation set. Majority of data (70%) 

have been chosen for training of the model, whereas rest data 

were analyzed for validation purpose (15%) and the model 

was further tested with unseen test set (15%). Hence, the 

ANN model is developed (trained) based on 54 data points 

(70% of total data points), 12 data points were utilized for 

validating the model, and remaining 11 unseen data points 

were utilized for the testing the model performance. Based 

on some trial and error, it has been observed that network 

architecture comprises of four nodes in input—four nodes 

in the hidden layer, and 1 output node possesses maximum 

generalization capability. All the output and input data were 

first normalized, and the hyperbolic tangent sigmoid transfer 

Table 6  ANOVA for response surface quadratic model

Source Sum of squares df Mean square F value P value

Prob > F

Model 986.70 9 109.63 152.29 < 0.0001 

(signifi-

cant)

A-IC 118.04 1 118.04 163.96 < 0.0001

B-pH 230.64 1 230.64 320.38 < 0.0001

C-Dose 189.12 1 189.12 262.71 < 0.0001

AB 4.47 1 4.47 6.21 0.0319

AC 7.07 1 7.07 9.82 0.0106

BC 0.19 1 0.19 0.27 0.6166

A2 240.99 1 240.99 334.76 < 0.0001

B2 82.41 1 82.41 114.47 < 0.0001

C2 70.67 1 70.67 98.17 < 0.0001

Residual 7.20 10 0.72

Lack of fit 7.20 5 1.44

Pure error 0.00 5 0.00

Cor total 993.90 19

Fig. 10  a Conjugate effect of pH and initial concentration on percent-

age removal and b conjugate effect of adsorbent dose and initial con-

centration on percentage removal
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function was used as the nonlinear transformation for all 

hidden and output nodes. Levenberg–Marquardt optimi-

zation method was utilized to minimize the mean squared 

error of the output through backpropagation strategy. As 

evident from Fig. 11a, the ANN model predicts the percent-

age removal quite accurately for the training set data points, 

and the percentage error in model prediction is well within 

10% for all the 54 data points for training set. Similarly, the 

developed model fares reasonably well for the validation set 

as well, as shown in Fig. 11c, d for the actual performance. 

Subsequently, the developed neural network model was 

tested with unseen data and the performance of the model 

was really superb as evident from perfect fit in Fig. 11e and 

very low error in model prediction (much below 0.05%, refer 

to Fig. 11f). These clearly indicate true generalization capa-

bility of the model.
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Fig. 11  a Comparison of ANN prediction for training data set (54 

points), b percentage error in ANN prediction for training data set (54 

points), c comparison of ANN prediction for validation data set (12 

points), d percentage error in ANN prediction for validation data set 

(12 points), e comparison of ANN prediction for unseen data test data 

set (11 points) and f percentage error in ANN prediction for unseen 

data test data set (11 points)
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Conclusion

In the present study, cyanobacterial consortium consisting 

of Dinophysis caudata and Dinophysis acuminata, collected 

from EKW, has been proved efficient for the abatement of 

Cr(VI) from wastewater. The presence of chromium in the 

treated cyanobacterial biomass has been confirmed through 

EDS study. Different input variables, namely IC of Cr(VI), 

pH, AD and time, have significant effect on the removal pro-

cess. From batch study, optimum Cr(VI) removal has been 

obtained as 80.77% with an IC of Cr(VI) of 25 mg/L, pH 11, 

AD 2.5 g/L, at temperature 45 °C after 5 min of operation, 

whereas the optimum removal conditions during RSM study 

are IC of Cr(VI): 15 mg/L; pH: 11.00; AD: 1 g/L, and at this 

condition, the removal has been predicted as 81.72%. Temkin 

adsorption isotherm fits the best for equilibrium data; however, 

kinetic data match quite well with pseudo-second-order model. 

Finally, an ANN model has been developed for biosorption 

based on part of the experimental data, and the model has suf-

ficient generalization ability as evident from prediction of the 

unseen experimental data with reasonable accuracy.

Acknowledgement Authors are grateful to the Department of Chemi-

cal Engineering, National Institute of Technology Durgapur, India.

Open Access This article is distributed under the terms of the Crea-

tive Commons Attribution 4.0 International License (http://creat iveco 

mmons .org/licen ses/by/4.0/), which permits unrestricted use, distribu-

tion, and reproduction in any medium, provided you give appropriate 

credit to the original author(s) and the source, provide a link to the 

Creative Commons license, and indicate if changes were made.

References

Anjana K, Kaushik A, Kiran B, Nisha R (2007) Biosorption of Cr(VI) 

by immobilized biomass of two indigenous strains of cyano-

bacteria isolated from metal contaminated soil. J Hazard Mater 

148:383–386

Chatterjee S, Kumar A, Basu S, Dutta S (2012) Application of 

response surface methodology for methylene blue dye removal 

from aqueous solution using low cost adsorbent. Chem Eng J 

181–182:289–299

Clesceri LS, Greenberg AE, Trussell RR (1996) Standard methods 

for the examination of water and wastewater. APHA, AWWA, 

WPCF, Washington

Dharnaik AS, Ghosh PK (2014) Hexavalent chromium [Cr(VI)] 

removal by the electrochemical ion-exchange process. Environ 

Technol 35(18):2272–2279

Dima JB, Sequeiros C, Zaritzky NE (2015) Hexavalent chromium 

removal in contaminated water using reticulated chitosan micro/

nanoparticles from seafood processing wastes. Chemosphere 

141:100–111

Gupta VK, Rastogi A (2009) Biosorption of hexavalent chromium by 

raw and acid-treated green alga Oedogonium hatei from aqueous 

solutions. J Hazard Mater 163:396–402

Han X, Wong YS, Wong MH, Tam NFY (2008) Effects of anion spe-

cies and concentration on the removal of Cr(VI) by a microalgal 

isolate, Chlorella miniata. J Hazard Mater 158:615–620

Himmelblau DM (2000) Applications of artificial neural networks in 

chemical engineering. Korean J Chem Eng 17(4):373–392

Karale RS, Wadkar DV, Nangare PB (2007) Removal and recovery of 

hexavalent chromium from industrial waste water by precipitation 

with due consideration to cost optimization. J Environ Res Dev 

2(2):209–216

Kumar A, Dutta S, Bhattacharjee C, Datta S (2014) Artificial neural 

network modelling for removal of chromium(VI) from wastewa-

ter using physisorption onto powdered activated carbon. Desalin 

Water Treat. https ://doi.org/10.1080/19443 994.2014.98717 2

Mane CP, Mahamuni SV, Kolekar SS, Han SH, Anuse MA (2012) Hexava-

lent chromium recovery by liquid–liquid extraction with 2-octylami-

nopyridine from acidic chloride media and its sequential separation 

from other heavy toxic metal ions. Arab J Chem 9:S1420–S1427

Myers RH, Montgomery DC (1995) Response surface methodology: 

process and product optimization using designed experiments, 1st 

edn. Wiley, New York

Nandi S, Ghosh S, Tambe SS, Kulkarni BD (2001) Artificial neural-

network-assisted stochastic process optimization strategies. 

AIChE J 47(1):126–141

Pangeni B, Paudyal H, Inoue K, Kawakita H, Ohto K, Gurung M, Alam 

S (2014) Development of low cost adsorbents from agricultural 

waste biomass for the removal of Sr(II) and Cs (I) from wastewa-

ter. Waste Biomass Valor 5:1019–1028

Qu Y, Zhang X, Xu J, Zhang W, Guo Y (2014) Removal of hexavalent 

chromium from wastewater using magnetotactic bacteria. Sep 

Purif Technol 136:10–17

Rad SAM, Mirbagheri SA, Mohammadi T (2009) Using reverse osmo-

sis membrane for chromium removal from aqueous solution. Int J 

Chem Mol Nucl Mater Metall Eng 3(9):505–509

Ramakrishnaiah CR, Prathima B (2012) Hexavalent chromium removal 

from industrial watsewater by chemical precipitation method. Int 

J Eng Res Appl 2(2):599–603

Ramanan R, Kannan K, Deshkar A, Yadav R, Chakrabarti T (2010) 

Enhanced algal  CO2 sequestration through calcite deposition by 

Chlorella sp. and Spirulina platensis in a mini-raceway pond. 

Biores Technol 101:2616–2622

Rizzuti AM, Ellis FL, Cosme LW (2015) Biosorption of mercury from 

dilute aqueous solutions using soybean hulls and rice hulls. Waste 

Biomass Valor 6:561–568

Rumelhart D, Hinton G, Williams R (1986) Learning representations 

by back propagating errors. Nature 323:533

Sahu SK, Verma VK, Bagchi D, Kumar V, Pandey BD (2008) Recovery 

of chromium(VI) from electroplating effluent by solvent extraction 

with tri-n-butyl phosphate. Indian J Chem Technol 15:397–402

Sen S, Dutta S, Guhathakurta S, Chakrabarty J, Nandi S, Dutta A (2017) 

Removal of Cr(VI) using a cyanobacterial consortium and assess-

ment of biofuel production. Int Biodeterior Biodegrad 119:211–224

Shanab S, Essa A, Shalaby E (2012) Bioremoval capacity of three 

heavy metals by some microalgae species (Egyptian Isolates). 

Plant Signal Behav 7(3):1–8

Sibi G (2016) Biosorption of chromium from electroplating and galva-

nizing industrial effluents under extreme conditions using Chlo-

rella vulgaris. Green Energy Environ 1:172–177

Tangahu BV, Abdullah SRS, Basri H, Idris M, Anuar N, Mukhlisin 

M (2011) A review on heavy metals (As, Pb and Hg) uptake by 

plants through phytoremediation. Int J Chem Eng. https ://doi.

org/10.1155/2011/93916 1

Zargar FH (2012) Separation of hexavalent chromium from water using 

nanofiltration. In: International conference on trade, tourism and 

management (ICTTM’2012)

Publisher’s Note Springer Nature remains neutral with regard to 

jurisdictional claims in published maps and institutional affiliations.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1080/19443994.2014.987172
https://doi.org/10.1155/2011/939161
https://doi.org/10.1155/2011/939161

	Application of RSM and ANN for optimization and modeling of biosorption of chromium(VI) using cyanobacterial biomass
	Abstract
	Introduction
	Materials and methods
	Collection, identification, culture condition and preparation of biosorbents
	Characterization of biosorbent
	Preparation and analysis of Cr(VI) solution
	Cr(VI) removal study
	Batch study
	Equilibrium study
	Kinetic study

	Optimization of abatement of Cr(VI) using cyanobacterial biomass using response surface methodology
	Design of experiment
	Experimentation

	Theoretical analysis
	Artificial neural network (ANN)


	Results and discussions
	Characterization of cyanobacterial biomass
	Effect of operating variables on abatement of Cr(VI) using cyanobacterial biomass
	Combined effect of IC and pH
	Combined effect of IC and AD
	Effect of IC at varying temperatures

	Equilibrium study
	Kinetic study
	Determination of optimum conditions for abatement of Cr(VI) using RSM
	ANN modeling

	Conclusion
	Acknowledgement 
	References


