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Abstract
New generations of DNA sequencing technologies are enabling the systematic study of genetic derangement in can-
cers. Sequencing of cancer exomes or transcriptomes or even entire cancer genomes are now possible, though tech-
nical and economic challenges remain. Cancer samples are inherently heterogeneous and are often contaminated
with normal DNA, placing additional demands on informatics tools for detecting genetic variation. However, even
low coverage sequencing data can provide valuable information on genetic rearrangements, amplifications and
losses in tumor genomes. Novel recurrent oncogenic mutations and fusion transcripts have been discovered with
these technologies. In some sequenced cancer genomes, tens of thousands of genetic alterations have been dis-
covered. While this enables the detailed dissection of mutation classes, it also presents a formidable informatics
problem of sorting active ‘driver’ mutations from inactive ‘passenger’ mutations in order to prioritize these for
further experimental characterization.
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INTRODUCTION
Most cancers possess extensive genome alteration

ranging from a small number of point mutations to

widespread aneuploidy [1]. Ongoing genomic in-

stability results in chronic accumulation of mutations

in tumors, an effect which can be heightened by

DNA-damaging therapies. The study of such

changes through DNA sequencing has a long history

but has been limited by the high cost and limited

throughput of DNA sequencing technologies.

Second-generation sequencing instruments capable

of generating vast quantities of sequencing data at

modest cost have enabled a new round of studies

scanning for somatic mutations across the exome,

transcriptome or even the entire genome.

Second-generation sequencing technologies have

been reviewed in detail elsewhere [2]. All of these

technologies work via extension of a defined DNA

primer, much like conventional Sanger sequencing.

A key difference is that these technologies do not size

separate fragments by electrophoretic mobility, but

instead sequentially image the stepwise addition of

nucleotides (or nucleotide blocks). This allows the

packing of tens or hundreds of millions of sequen-

cing targets onto an area the size of a microscope

slide. Read lengths from many of these technologies

are substantially shorter than from conventional

Sanger sequencing, with the exception of the

Roche 454 platform which can attain reads well

over 700 nucleotides [2]. These short (35–100 nu-

cleotides) reads present specific informatics challenges

which will be touched on in this review.

Here I review the identification of somatic muta-

tions and rearrangements in cancer genomes using

second-generation sequencing technologies. This

scope results in the omission of several other inter-

esting topics at the intersection of sequencing and

cancer, such as genome-wide analysis of the somatic

epigenomics of cancer and studies to better under-

stand inherited predispositions to cancer.

Replacement of microarray technology for measur-

ing mRNA and microRNA levels by sequencing is

also gaining popularity [3], but will only be discussed
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when this information is obtained as a by-product of

hunting for mutations.

Any review of second-generation sequencing

technology is doomed to omit key new work

which appears during the processing of the manu-

script, as the field moves rapidly due to technological

evolution, introduction of entirely new technology

platforms and the application of these approaches to

cancer. This review covers publications prior to

March 2010.

SPECIAL ISSUES POSEDBY
CANCER SAMPLES
The acquisition of high-quality, appropriately con-

sented samples is a significant challenge to cancer

genomics [4]. Many tumors are not easily accessible

for biopsy, particularly recurrent tumors.

Histopathological slides and blocks represent a huge

resource of cancer [4]. These room temperature

stable archives of material have generally been pre-

served via formalin fixation and embedding in par-

affin. Such ‘FFPE’ samples are potentially a rich

source of information on cancer [5]. However, the

process of fixing and embedding the samples subjects

the DNA to many insults which may generate

artifactual mutations in DNA sequencing data [6].

Furthermore, these samples are often small and ex-

traction of DNA is inefficient. Whole genome amp-

lification (WGA) may enable working with small

amounts of input DNA, though WGA can introduce

biases [7, 8], point mutations [9] and spurious

rearrangements [8]. Advanced sample preparation

methods can reduce the required amount of input

DNA from many micrograms to nanograms [10, 11].

While cell lines yield pure samples, clinical cancer

samples are generally mixed with normal cells. These

may include surrounding tissue, fibroblasts (tumor

stroma) and infiltrating lymphocytes. Hence, the

DNA preparations are likely to contain a mixture

of normal and tumor DNA, diluting the signal

from the tumor [12]. Microdissection or laser capture

approaches can improve the purity of tumor DNA,

but often generate extremely tiny samples. The

problem of normal DNA admixture is particularly

acute for Sanger sequencing from uncloned DNA

(e.g. PCR products), as the peaks in the electropher-

ogram present the averages across the population of

molecules [13]. Second-generation systems work on

either individual DNA molecules or homogenous

clusters of DNA amplified from a single DNA

molecule [2]. Hence, they are less sensitive to this

effect. However, admixture of normal DNA will

increase the coverage requirements to detect somatic

mutations [14].

Tumors themselves are generally not homoge-

neous. As noted before, a hallmark of cancers is the

reduction in their ability to faithfully replicate their

genome. In some tumors, such as those arising from

hereditary defects in DNA replication, very high

mutation rates are observed [15]. Hence, each

tumor cell mitosis has a possibility of generating pro-

geny genetically distinct from their parent.

Furthermore, environmental insults (such as contin-

ued smoking in lung cancer [16] or sun exposure in

non-metastatic melanoma [17]) have the opportunity

to generate additional mutations. In addition, muta-

tions can occur within a region of focal amplifica-

tion, which will also result in dilution of the

mutation within a large background of amplified

wild-type DNA.

WHOLEGENOME SEQUENCING
Most second-generation sequencing systems gener-

ate very short reads in contrast to the near kilobase

reads obtainable in very good Sanger sequencing

data. Published data using the Illumina system have

ranged from 31 [18] to 100 nucleotides [19]; using

the SOLiD sequencing-by-ligation approach from

25 to 50 nucleotides [20], and the Helicos system

from 20–50 nucleotides [21]. The 454 system is not-

able for substantially longer read lengths, with 200–

500 nucleotide reads common. A variety of issues

ultimately cause degradation of the sequencing

signal and limit the amount of sequence which can

be read from a single primer [2].

Read pair approaches increase the information

obtainable from a single DNA molecule by obtaining

sequence from both ends of the original fragment

[20]. Paired end sequencing on the Illumina platform

acquires sequence from both ends of a single DNA

molecule. Upon completion of sequence acquisition

from one primer, a series of steps strips the old primer

from one end and replaces it with a primer on the

other end from which a new read is acquired. In

mate pair strategies, enzymatic or mechanical

means are employed to replace the majority of the

central DNA by a second universal priming site.

Mate pair approaches enable sequencing both ends

of initial fragments which are not practical to amplify

within a sequencer. Large fragments are more
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sensitive for detecting rearrangements, although they

are also less precise at locating the breakpoints [22].

However, mate pair strategies can generate chimeric

molecules [23], which can cause false positive

rearrangement predictions.

While reads from the SOLiD, Illumina and

Helicos system are limited in length, hundreds of

millions of such reads can be obtained from a

single sample in a single sequencer run. This imme-

diately presents a bioinformatic challenge: how to

efficiently map millions to billions of very short

reads. Several dozen programs have been developed

to address this problem, a topic covered elsewhere in

this volume [24]. Read pair strategies introduce an

additional element of information, as the two reads

should (in the absence of genomic rearrangement) be

situated from each other with distance and orienta-

tion appropriate to the library preparation. Read

pairs also enable the unambiguous alignment of a

read to a repetitive region, if its partner maps unique-

ly and this mapping is consistent only with a single

repeat location. However, such alignments must be

interpreted with caution, particularly if an inferred

genomic feature is supported by only a small number

of read pairs in the dataset. This feature is likely to be

very valuable for sequencing genes with close

paralogs or retrotransposed pseudogene copies.

However, even with read pair strategies many reads

cannot be mapped uniquely due to both reads being

derived from repetitive sequences.

Even when aligning normal DNA to a human

reference, natural genomic structural variation can

prevent correct reads from aligning [25, 26]. Both

germ-line SNPs [27] and somatic point mutants

may reduce alignment sensitivity. Small indels are

troublesome to detect, with adjacent indels poten-

tially reducing the ability to detect nearby substitu-

tions [28]. In a melanoma genome a known

oncogenic 2-bp deletion was not detected automat-

ically but could be found in the original data when

specifically sought out [17]. However, a more recent

study of a glioblastoma genome using longer reads

on the same platform (SOLiD) had a high frequency

of indel detection [29], suggesting that this problem

can be addressed by a combination of improved

sequencing protocols and new bioinformatics tools

[30]. The sequenced melanoma genome also showed

a high frequency of doublet mutations, in which two

adjacent bases are mutated [17]. The possibility that

doublet mutations may have led to the failure to map

reads was not explored in this article. While most

non-aligning DNA fails because of low quality or a

highly repetitive nature, careful analysis of such reads

may reveal infectious agents [31], structural variants

[26, 32], highly mutated regions or regions otherwise

well represented in the reference genome sequence.

An alternate approach is de novo genome assembly

for each human DNA sample, but this approach

requires enormous compute resources [33] and is

unlikely to become routine. Localized reassembly

of reads suspected to contain novel variants is a pro-

mising strategy, balancing variant detection sensitiv-

ity with compute expense [32–34].

A plethora of tools have emerged for converting

aligned or assembled reads into variant calls, which

has been reviewed elsewhere [35]. An assumption of

diploidy will frequently be invalid in cancer genomes

due to deletions or amplifications. The interaction of

mutation and amplification processes as well as ad-

mixture can yield a wide range of allele frequencies

[36]. Hence, tools developed for variant detection in

normal tissue may not work well in clinical cancer

samples. It is worth noting that three of the pub-

lished whole cancer genome sequencing papers at

this time have used pure material from tissue culture

[16, 17, 29] and the other three used clinical samples

with >80% tumor [36–38]. For truly broad applica-

tion to cancer, validation of these approaches in

lower tumor purity samples will be required.

Variant detection tools developed for pooled samples

may prove useful [14, 39, 40] and estimates of sample

purity can be used to inform the identification of

high-confidence mutations [37]. Variants identified

in the tumor sample must be partitioned into germ-

line variants and somatic mutations, generally by

sequencing normal DNA from the same patient in

parallel [16, 17, 37, 38]. Normal DNA is most typ-

ically obtained from a blood sample, skin biopsy or

cheek (buccal) swab, which provide samples less

likely to be contaminated with tumor DNA than

adjacent tissue. However, in a leukemia study

tumor-specific mutations were detected in a skin

biopsy due to contamination with leukemic blast

cells, underscoring the challenge of obtaining even

normal DNA from some cancer patients and the

value of computational approaches which can utilize

sample purity information [37].

Cancer genomes often contain multiple

rearrangements, including insertions, deletions, local

segmental duplications and translocations. Identifying

these changes and particularly their boundaries

(breakpoints) is of great interest [22, 41], though
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few of these rearrangements are recurrent [42, 43].

Breakpoints generated by rearrangements can be tar-

geted by PCR assays, enabling patient specific blood

assays potentially useful for monitoring treatment

[43]. Two different strategies have generally been em-

ployed. First, with sufficient data it is possible to iden-

tify reads which contain the actual breakpoint.

Bioinformatics tools such Pindel can reconstruct the

sequence of a breakpoint by local reassembly of paired

reads [34]. Read pair data may also be used to indir-

ectly detect breakpoints. The most straightforward

approach is to identify read pairs which map to dif-

ferent chromosomes or map in incorrect orientation

on the same chromosome. An additional category is

read pairs in the correct relative orientation but map-

ping in the wrong order due to a segmental duplica-

tion. Intrachromosomal alterations can be detected by

identifying read pairs in the correct orientation but

separated by unusually short or long distances.

Because of the deep sampling nature of second-

generation sequencing, tools such as MoDIL can

identify short indels by the shift in sequence pair sep-

aration distance distribution which they induce [44].

However, the sensitivity and precision of such meth-

ods is limited by the tightness of the insert size distri-

bution in a paired end library preparation. For

example, long insert (3 kb or greater) mate paired

libraries may falsely imply indels due to the challenge

of precisely controlling the insert lengths during li-

brary preparation and can lead to false inference of

rearrangements due to chimaeras [23]. Tools such as

BreakDancer [45], PEMer [46] and VariationHunter

[47] identify multiple types of rearrangements in a

single run. However, rearrangements and indels iden-

tified by such programs should be weighed carefully

in light of the number of reads supporting each infer-

ence, given the possibility of false positives arising

from mismapped reads, particularly read pairs in

which one read maps to repetitive sequence.

Paired read strategies can also enable the deter-

mination of local linkage of alleles (haplotypes) by

chained inference. If the paired reads each contain a

heterozygous variant, then those two variants are

linked. Further pairs may enable a chain of linked

variants to be inferred [48]. While to date this has

been applied only to normal genomes [20], applica-

tion to cancer data promises to yield significant in-

sight. Linkage of multiple mutations may suggest

cooperative effects, such as the evolution of che-

motherapeutic resistance [49]. Linkage of tumor mu-

tations to germline polymorphisms may suggest

mechanisms of oncogenesis [50]. Somatic mutations

or germline variants may also be used to detect unba-

lanced amplification or transcription of one allele

[51].

Deviations from normal copy number in cancer

are common. In addition to indicating the deletion

or amplification of one or more genes, unbalanced

amplification within genes can suggest unbalanced

translocations. Second-generation sequencing data

has demonstrated two key advantages over micro-

arrays for copy number analysis. First, breakpoints

can be located with a precision determined by

sampling depth; higher resolution can simply be

achieved with additional sequence data. Second,

paired read strategies can identify balanced transloca-

tions in addition to copy number changes. Copy

number estimation requires far less data than full

genome scanning. High resolution (<1 kb) copy

number maps have been achieved with 0.3� se-

quence coverage [52], whereas 30–40� coverage is

required for whole-genome heterozygous variant

discovery [20, 21, 26, 32, 33]. Even a few million

mapped reads are sufficient to provide 15 kb preci-

sion, 3-fold better resolution than a commonly used

244 K microarray [5]. However, the detection sensi-

tivity for breakpoints is dependent on sequence

coverage; one study estimated only 50% of re-

arrangements were detected [53]. Use of longer

insert mate pair libraries may enhance this sensitivity.

Cross-referencing copy number information with

rearrangement predictions from paired read strategies

can be used to filter artifactual rearrangements [43].

Finally, from a bioinformatic perspective it is crit-

ical to consider the specific platform and sample

preparation methods used to generate a cancer

genome dataset. Each second-generation sequencing

platform has its own characteristic error spectrum.

For example, much study has gone into the problem

of homopolymer tracts with the Roche 454 system

[54]. Neighboring bases have been observed to in-

fluence sequencing errors in the Illumina system,

notably a higher proportion of miscalls after G resi-

dues [55], and quality values generated by base callers

may misestimate actual error rates [56]. The

two-base encoding used by the SOLiD system

should lead to very sensitive and reliable single nu-

cleotide variant calling [29], though one recent study

found that only 25% of small indels detected by

SOLiD sequencing could be validated with Sanger

sequencing [16]. Improved library methods have

increased the uniformity of genome sampling with
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regard to GC content [20, 57]. While no cancer

genome datasets are available from the Helicos plat-

form, a normal human sample sequenced with this

system showed a high rate of indel errors owing to

unobserved nucleotide incorporation events (‘dark

bases’) [21]. The specific nature of these

platform-specific biases will probably periodically

shift as improved library preparation techniques and

base calling software are developed in response to

identified issues.

Even with the issues noted above, in the most

recent studies 85% or more of single nucleotide vari-

ants identified by second-generation sequencing can

be validated by Sanger sequencing [16, 17, 29]. A

valuable benchmark for estimating false positive and

false negative rates from second-generation sequen-

cing is SNP microarray profiling of the same sample;

concordances in excess of 95% have been observed

in such analyses [37, 38].

TARGETED SEQUENCING
Whole genome sequencing (WGS) is becoming the

gold standard for genome analysis. WGS has the ad-

vantage of detecting effectively all mutations, re-

arrangements and copy number changes. However,

although costs continue to drop rapidly, WGS re-

mains prohibitively expensive to apply on a grand

scale, currently in excess of $35 000 per human

sample in reagent costs [21], which does not include

labor, equipment depreciation, bioinformatics and

other real expenses. It is worth noting that as reagent

costs per genome drop, informatics may become the

dominant expense in human genome sequencing

projects. Particularly with the need to assay many

samples to detect recurrent mutations and co-

occurring mutations, strategies which reduce cost

and enable analyzing more samples are valuable.

Targeted sequencing refers to strategies for en-

riching the input to the sequencer for DNA regions

of strong interest. In addition to reducing cost per

sample, these approaches offer the possibility of

much higher coverage of areas of interest, which

may overcome issues of sample purity or quality.

However, targeted methods may require substantial-

ly more input DNA than WGS [38]. These

approaches generally either use hybridization of

target DNA to designed oligonucleotides (or PCR

products) or the specific amplification of targeted re-

gions by PCR [58]. Each of these approaches has

important considerations for cancer genomics and

for the bioinformatic analysis of data derived by

such approaches.

PCR methods are very well understood and can

give very even coverage. Microfluidic setup enables

small amounts of input material to be analyzed

against many primer sets [59]. For cancer genomes,

one liability of most PCR-based approaches is an

inability to detect large rearrangements, insertions

and deletions. Novel translocations are effectively

invisible to PCR due to the need to define both

primers in the reaction. Similarly, deletions will not

be captured unless both primers in a reaction flank

the deletion. Large insertions may not be amplified

well if the insertion greatly enlarges the size of the

PCR amplicon or exceeds the size of the input DNA

fragments. PCR methods also can suffer from two

specific informational problems when the PCR frag-

ments are converted to sequencer-ready libraries by

mechanical fragmentation. First, the ends of ampli-

cons can be greatly overrepresented. Second,

sequences derived from PCR primers will be en-

riched for errors due to oligonucleotide synthesis

errors. If overlapping PCR amplicons are used, spe-

cial care must be used when calling mutations in

sequences which could have derived from primer

regions. Finally, the possibility of allelic bias or drop-

out must be considered; variants affecting a primer

binding site may suppress priming efficiency.

Similarly, insertions within an amplicon may

reduce or eliminate amplification and deletions in-

ternal to an amplicon may enhance its amplification.

Clearly, deletions which destroy a primer binding

site will eliminate amplification. Overlapping

amplicons are one approach to minimizing these

ascertainment biases [54].

Hybridization methods use oligonucleotides or

DNA fragments either in solution or on solid sup-

ports to bind to targets of interest [58]. These meth-

ods can detect the full range of mutations and

rearrangements and have also been scaled to the

entire set of coding exons (exome) [60]. However,

approaches to date have shown highly variable

coverage of targeted regions, with a minority of re-

gions receiving insufficient coverage for reliable vari-

ant detection. Hybrid selection can preserve copy

number information, though multiple rounds of hy-

bridization (which improve specificity) may degrade

the copy number signal [60]. From a bioinformatic

perspective, it is critical to align reads from targeted

sequencing experiments to the entire genome and

not just the targeted region. Not only are 15% or
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more of the sequences from untargeted regions due

to carry-over [60], but also it is critical to ensure that

other regions are included to detect rearrangements

and to correctly assign reads to genes rather than

their paralogs or pseudogenes. Hybrid selection stra-

tegies, as with PCR, may exhibit bias for reference

alleles when the variant position is contained within

the targeting oligo [29].

Targeted sequencing can also be a valuable means

to confirm mutations discovered by second-

generation technologies as well as to follow novel

mutations longitudinally. In a breast cancer study,

the initial whole-genome sequencing was based on

DNA from a metastasis. Non-synonymous coding

variants identified from this sample were PCR

amplified from the patient’s normal DNA to distin-

guish somatic mutations from germline variants. The

same PCR strategy was then used to determine

which mutations had been present in the primary

tumor [36].

Each second-generation sequencing read results

from a single molecule or clone of identical mol-

ecules, enabling rare allele identification. This has

been exploited to identify oncogenic [12] or chemo-

therapy resistance [61] mutations, with sensitivities of

<0.1% have been reported [61]. In these cases, tar-

geted sequencing is essential to assure a very high

sampling depth for the region of interest.

Ultimately, the inherent noise of the system will

limit sensitivity [2, 14].

The clonal nature of second-generation sequen-

cing can reveal the population structure of a tumor.

Many B-cell malignanies arise from a B-cell which

has already undergone a productive heavy-chain

VDJ rearrangement. However, somatic hypermuta-

tion after the rearrangement will cause sequence di-

vergence between cells. Targeted deep sequencing of

the heavy chain locus and analysis by standard phylo-

genetic techniques demonstrated both a diversity

of genotypes and a highly dominant clone. This

suggests that the dominant clone became so through

the acquisition of additional driver mutations after

the initial oncogenic event [62]. Sequencing of rear-

ranged immunoglobulin loci can also identify

myleoproliferative disorders arising from multiple

clones as well as be used to monitor residual disease

[63]. In an AML patient, a similar approach

demonstrated heterogeneity for the presence of the

oncogenic FLT3 internal tandem duplication

allele in both the original tumor and a relapse

sample [37].

RNA-Seq
Whole transcriptome shotgun sequencing, also

known as RNA-Seq, offers the opportunity to

collect a range of information from a cancer

sample. Newer sample preparation methods

enable RNA-Seq from a few hundred nanograms

[64] or even a few hundred picograms of total

RNA [65].

As a mechanism to detect oncogenic point muta-

tions, there has already been one spectacular

RNA-Seq success. Granulosa cell tumors (GCT) of

the ovary are rare cancers which can present either

early or late in life and had been suggested to have a

low rate of tumor mutation and rearrangement.

RNA-Seq of only 16 ovarian tumors, four of

which were GCTs, identified a recurrent mutation

unique to the adult-type GCT samples. A validation

set of 27 additional adult-type GCTs showed uni-

versal presence of the mutation whereas only one of

eight juvenile GCTs contained this. Only two out of

60 other tumors contained the distinctive mutation,

and these were both in a related tumor (thecoma)

which may not be truly distinct from GCTs. The

prior identification of germline FOXL2

loss-of-function alleles in premature ovarian failure

provided evidence for the importance of this gene in

normal ovarian development [66].

Gene fusions drive a number of tumors, with the

50 fusion partner often providing transcriptional ac-

tivation whereas the 30 partner possesses inherent

oncogenic potential [67]. Most fusions result from

chromosomal aberrations, though some arise via

transcriptional read-through from the 50 fusion part-

ner to a neighboring gene, some of which appear to

recur in a tumor type [19, 42]. One approach for

gene fusion detection relies on the 454 platform’s

long reads to identify breakpoint-crossing reads

[68–71]. Alternatively, numerous short reads from

the Illumina platform may cross a breakpoint [18].

The odds of detecting fusions to known or suspected

fusion partners can be increased by hybrid selection,

which also captures the greatest depth and diversity

of fusion transcript isoforms [72]. Combination of

long (454) and short (Illumina) can enable confident

identification of rare fusion transcripts with the long

read supplying a template for alignment of multiple

short reads [73]. Paired reads offer even greater sen-

sitivity for fusion transcript identification than indi-

vidual reads [19, 74, 75]. Deep sequencing with

paired ends is sufficiently sensitive to detect highly

expressed fusion transcripts in pooled RNA [19].
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RNA-Seq can also reveal non-mutational events.

RNA-Seq yields expression information with a su-

perior dynamic range to microarrays and with details

of the transcript isoform distribution [3]. RNA-Seq

may also suggest cases of imbalance in the transcrip-

tion of two alleles of a gene [27, 51], suggesting

the partial or complete silencing of one [36].

Comparison of RNA-Seq data with whole

genome data from a breast tumor suggested that

many sites had undergone RNA editing [36], a di-

mension of genetic diversity which has received little

attention in the context of cancer.

While RNA-Seq can be a valuable tool for mu-

tation and fusion discovery, its sensitivity will be

limited by the expression level of the altered gene.

The identification of point mutants in oncogenic

genes of low expression level will remain challenging

even with very deep transcriptome sequencing.

MUTATION SPECTRA AND
CHARACTERIZATION
Whole genome sequencing offers an opportunity for

the complete census of mutations within a tumor. A

number of these mutations either have suggestive or

direct evidence for participation in oncogenesis

(Table 1); bioinformatic approaches to the challenge

of identifying these will be discussed in the next sec-

tion. In addition to identifying specific causative mu-

tations, deep sequencing has identified a wide range

of mutation loads, ranging from 10 missense muta-

tions each in two leukemia genomes [37, 38] to

nine times as many in a breast cancer [36] and

small cell lung cancer [16] and 17 times as many in

melanoma [17].

Careful analysis of the specific classes of mutations

found and their distribution between transcribed and

non-transcribed regions has revealed several trends.

In melanoma, C > T/G > A changes overwhelming-

ly predominated and CC > TT/GG > AA mutations

accounted for more than half of all doublet muta-

tions, in agreement with known patterns of UV-

mutagenesis [17]. Many of the remaining mutations

were suggestive of oxidative damage [17]. In con-

trast, the small cell lung cancer sample had three

major classes of mutations in a pattern in agreement

with prior data from p53 mutations in the same

tumor type [16]. CpG dinucleotides were enriched

both for G > A transitions and G > C transversions,

but these classes differed in their prevalence within

CpG islands [16]. Conversely, GpA dinucleotides are

mutated less frequently than expected by chance but

TpA more frequently [16]. Single base insertions

were most commonly gains of A or T but single

base deletions favored C or G [16]. Overall, WGS

of small cell lung cancer paints a complex picture of

the mutagenic effects of cigarette smoke [16].

Mutations were much less prevalent in transcribed

regions, illustrating the effects of transcription-

coupled repair [17]. Furthermore, mutations were

more likely to be found near the 30 end of tran-

scribed regions than the 50 end, suggesting that

abortive transcription contributes to more effective

transcription-coupled surveillance [17]. Similarly,

Table 1: Cancer driver mutations discovered by second-generation sequencing

Tumor type Method Gene Mutation
type

Effect Validation Ref.

Lung, small cell WGS PVT1-CHD7 Fusion Activating Elevated expression in multiple
samples

[16]

AML WGS IDH1 Mutation Activating Mutations in 16/188 samples [38]
AML WGS ND4 Mutation Unknown Mitochondrial; highly enriched in

three tumor samples
[38]

Prostate RNA-Seq HERPUD1-ERG Fusion Activating Androgen-dependent expression [19]
Prostate RNA-Seq FLJ35294-ETV1 Fusion Activating Androgen-dependent expression [19]
Prostate RNA-Seq SLC45A3-ELK4 Fusion (read

through)
Activating Androgen-dependent expression;

recurrence
[73]

Ovarian, Granulosa
Cell Tumor

RNA-Seq FOXL2 Mutation Activating Recurrence [66]

Lung,
Adenocarcinoma

RNA-Seq R3HDM2-NFE2 Fusion Activating RNAi; elevated expression of
NFE2 in multiple samples

[74]

Breast WGS ARFGEF2-SULF2 Fusion Activating RNAi [92]
Melanoma RNA-Seq RB1-ITM2B Fusion Inactivating? Recurrence [42]
B-cell lymphoma EZH2 Mutation Inactivating Recurrence [93]
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more highly expressed genes were less likely to be

mutated than genes with low expression [16]. In

melanoma, C > T and CC > TT mutations were

highly strand-biased in transcribed regions, congru-

ent with the bias of transcription-coupled repair for

the transcribed strand [17]. Different mutational

classes in the lung cancer sample showed different

degrees of bias for transcribed regions, suggesting

varying effectiveness of repair [16]. However,

nearly two-thirds of the mutational deficit in tran-

scribed regions does not fit the patterns expected for

known mechanisms of nucleotide excision repair,

suggesting that one or more additional mechanisms

remain to be discovered [16, 17].

In melanoma the mutation spectrum for regions

of copy-neutral loss of heterozygosity differed

between heterozygous and homozygous mutations,

suggesting different mutational processes [17].

Homozygous mutations (which must have formed

before the chromosome reduplication that led to

copy-neutral LOH) showed a pattern consistent

with sun exposure whereas the heterozygous muta-

tions (formed after reduplication) did not, suggesting

that these had formed after metastasis [17]. As add-

itional cancer genomes are sequenced, careful mining

the combined data may identify additional mutation-

al patterns inexplicable by known mutational or

repair processes or which illuminate the temporal

mutational history of tumors.

Given the large number of mutations generated by

these studies, methods to differentiate biologically

significant changes from irrelevant ones will remain

critical. The COSMIC database records published

somatic mutations in cancer, enabling the identifica-

tion of recurrently mutated genes or sites [76].

General-purpose tools such as SIFT [77], MutPred

[78] and CanPredict [79] use information from

multiple alignments to estimate the effect of muta-

tions. CHASM is trained specifically to find driver

mutations based on random forest classification of

49 protein structure, evolutionary history and gen-

omic context features [80]. Known cancer driver

mutations may have different properties than

phenotype-altering coding SNPs, which may be

exploited for further driver discovery [81].

Structure-based tools attempt to identify substitutions

likely to disturb the packing of amino acids within the

3D structure [82, 83]. Special-purpose tools have also

been developed which focus on particular gene

families recurrently mutated in cancer, such as protein

kinases [84–86]. Other tools have specialized on

particular features, such as signal peptides [87].

Analysis of biological networks may suggest the

mechanism by which gene mutations induce onco-

genesis [88]. Pleasance et al. [16] also identified one

mutation potentially altering a transcriptional regula-

tory site, though the functional significance of neither

this site nor the change has been experimentally

tested. The flood of data from such projects will in-

crease the need for tools to prioritize potential gene

regulatory mutations for functional testing [89].

As with point mutations, many fusions may

simply be ‘passenger’ events due to general genomic

instability or the selection for amplification of an

adjacent gene. The databases COSMIC [76] and

ChimerDB [90] record known fusions from the lit-

erature. Some genes may be activated by fusion in

some cancers and by other mechanisms in other [74].

Recurrent rearrangements or high expression of

rearranged transcripts are clues to biological rele-

vance. Computational methods for prioritizing

fusion proteins for functional characterization have

emerged. One approach relies on the observation

that known oncogenic fusion protein partners are

enriched for certain functional classes (such as kinases

or transcriptional activators), an enrichment which is

most pronounced for the 30 partner [74]. An alter-

native approach notes that oncogenic fusion break-

points occur in disordered regions of proteins and

not well folded domains [67].

Despite this complexity, second-generation

sequencing has already identified a number of

candidates for oncogenic driver mutations which

have supporting experimental or expression evidence

(Table 1). Evidence supporting the causative nature

of these mutations can include recurrence, analogy to

well characterized driver mutations and systems

biology inference of likely impact on oncogenic

pathways. Ultimately, experimental validation will

be required to validate these mutations and measure

their impact on cancer initiation and progression.

CONCLUSIONSAND LOOKING
FORWARD
Second-generation sequencing has already demon-

strated great utility for identifying mutations in

cancer, despite the application to date in only a

limited number of samples. Cancer genomes will

continue to present bioinformatics challenges in

terms of the large degree of genomic alteration and

the prioritization of genes for functional analysis.
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Refinement of existing technologies and the

introduction of new technologies [32, 91] will con-

tinue to reduce the cost of this approach, enabling it

to be applied across the diverse spectrum of cancer

types. As the price of sequencing drops to a several

thousand dollars or less per sample [2, 32, 60, 91],

cancer genomics will become a standard part of the

diagnostic arsenal, enabling rational selection of

therapeutics [12] and the tracking of tumor burden

through minimally invasive methods [43]. This will

bring new bioinformatics challenges to the forefront,

such as choosing therapies based on genomic infor-

mation and storing genomic information within

standard electronic medical records.

Key Points

� Second-generation sequencing methods, including targeted
sequencing, transcriptome sequencing and whole genome
sequencing, are emerging as a key approach to survey genomic
changes in cancer.

� Cancer genomes present specific bioinformatics challenges due
to the short read lengths of most second-generation
technologies.

� Second-generation sequencing discovery of mutations is outpa-
cing experimental and computational methods for determining
which are drivers contributing to disease.
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