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_ !,. Abslm_. A one-parameter family of explicit and implicit second-order-

S:i} accurate, entropy satisfying, total variation diminishing (TVD) schemes
has been developed by Harten. These TVD schemes have the property of

_" not generating spurious oscfllatlons for one-dlmensional nonlinear scalar
°"i_. IlYl_rbolic conservation laws and constant coefficient hyperbolic systems.

i °:'_; Application of these methods to one- and two-dimensional fluid flows con-
°__-" raining shocks (in Cartesian coordinates) yields highly accurate nonoscil-
o0 _i latory numerical solutions. The goal of this work is to extend these methods

_, to the multidimensional Euler equations in generalized coordinate systems.
: Some numerical results of shock waves impinging on cylindrical bodies are
, compared with MaeCormack's method.

_ "i_: §1. Motivation and Objective

°:, Several techniques for the construction of nonlinear, second-order-
_._ accurate, high-resolution, entropy satisfying schemes for hyperbolic conser-
_: wtion laws have been developed in recent years. See, for example, van Leer
_: [1], Colella and Woodward [2], Harten [3,4], Roe [5] and Osher [6]. We can

°0'i_ also view these schemes as shock-capturing algorithms based on either an
4 exact or approximate Riemann solver. From the standpoint of numerical

_i_ analysis, these schemes are TVD for on-dimensional nonlinear scalar hyper-
_ boric conservation laws and for one-dimensional constant coetflcient hyper-
i_- botic systems. In [4],Harten introduced the notion of TVD schemes. Entropy

, j_" satisfying _ schemes have the property that they do not generate spurious
°°_: oscillations and that the weak solutions are physical ones. The goal of con-

_: _i structing these highly nonlinear schemes is to simulate complex flow fields
o _.

:_! more accurately (i.e., to construct schemes that are stable in a strong non-
_/ linear sense). TVD schemes are usually rather complicated to use compared

/o_ _Research scientist, Computational Fluid Dynamics Branch.

o _ $Chlef, Applied Computational Aerodynamics Branch.
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_ with the conventional shock-capturing methods such as variants of the Lax-
i_!_ Wendroff scheme. The complexity of these schemes has inhibited their ap-

'_ plication to complicated flow geometries in the past. .'1

Application of Harten's explicit and implicit methods to standard one-
and two-dlmensional transient and steady-state gas-dynamic test problems

!, in Cartesian coordinates was examined by Harten [3] and Yee et al. [7-9].
: In both one and two dimensions, accurate solutions containing shocks and
• contact discontinuities were obtained.

_j, The objective of this report is to extend Harten's TVD method to general-
i: ized coordinate systems, and to test the method on a two-dimensional
: problem of a moving shock wave impinging on a cylinder. The numerical

results are compared with MacCormack's explicit method. From here on, we
! refer to this method as the TeD scheme.

f A description of the TVD algorithms in Cartesian coordinates can be found
i_: in reference [9]. A description of this method for two-dimensional F_uler
'_: equations in generalized coordinate systems will be discussed in the next

: section. Some results on the shock wave-cylinder interaction are presented in
section 3.

§3. Extension of an Explicit TVD Scheme for the Euler Equations in
Generalised Coordinate Systems

ii

_ Here we assume the reader is either familar with the development and
properties of explicit and implicit TVD schemes, or will consult the ap-
propriate references [3,4,7-9]. A brief description of these methods and a

: detailed implementation of these methods for one- and two-dimensional Euler
equations of gas dynamics can be found in reference [9]. To avoid extra
notation, a particular form of the explicit TVD scheme in [3] is extended
to generalized coordinates. Generalization of the implicit TVD scheme to
arbitrary geometries follows the same procedure.

93.1 The Euier Equations

in two spatial dimensions, the Euler equations of gas dynamics can be
written in the conservative form as

t

2

®
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where

[i]rml [nlm21p -5 p nu

70

iii! with m = pu and n -----pv. The primitive variab!es _re _he density p, the
. :;_3 velocity components u and v, and the pressure,p. The total energy per unit
_ volume e, is related to p by the equation of state for a perfect gas

p----(,_--1)[e (m2 -5 n2)]2p (le)

where "yis the ratio of specific heats.

A generalized coordinate transformation of the form _ = _(_,y) and _ =
_(z,y) which maintains the strong conservation law form of equation (1) is
given by

where_ -- Q/J, k --(&F -F_uG)IJ,0 = (_xF-5%G)/J, and J =
_,_y -- _/,, the Jacobian of transformation. Let A = OF/OQ and B =
OG/aQ; then the Jacobian A aad _ of _ aad (_ caa be written as

= (.,A + .yB)/J (3b)

Let c be the local speed of sound; the eigenvalues of _ are

3



b, b)

where _"--(_zu -F _yv) and ke -----_ "1-_. The eigenvaluesof h are

(a_'a_ ,-'_%,_,t'-4'= (Tr_ k,lc ' Tr, _r..I..k,lc ' _) (4b)

where _r .-(t/z, -I- _/uv) and kq = _/'r/_ + T/_

Furthermore, let R e 1 2 a--- (Re, Re, Re, R_) and R,s ffi (/2_,R2 n, Re,_J2_4)be

the matrices whose columns are eigenvectors of A and/_..Let R_-1 and R,71
be the inverses of R e and R_. A form of R e and R_ "1 can be written as

H 1 1 1 0 ]

u -- klc u u -I- klc --k_
Re -- v- k_c v v "t-k2c kl

-- kluc-- k2vc (U2_-v2)/2 H -_- klUC-_- k2vc klV -- k2u !
(sa), I !

where

kl ---G, k2= _s, (Sb)

U2 _2 112H= c2 +,, (5c)"y--1
and

L

I½(b, +k, ts/c4- k2vlc) _(--b_b2 u k, lc) _(--b2v-- k21c) ½b2
; _. 1 -- bl_. b2v --b_

_!!i R_'i ½(bl -- kxulc kaulc) ½(--beu + kl/c) _(--b2v + k21c) _b2

oi!! -- k,_t."T"k_v ha --kl 0
,i: (0:' with a
::2,
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bl = b="u2( "_"v2) (6b)2

b=: '_- I (6c)
C2

Let the grid spacing be denoted by At and AT/ such that _ = jA_ and
= kay. Denote _j-1-1/2,k as some symmetric average of (_,_ and (_j-I-l,k

(for example, the Roe's average [10]). Let a_+1/2,_Rj+I/2, Rj+I/2-1 denote
the qnantitic_ of a_, Re, R_-1 related to/t evaluated at _j+l/2,k. Similarly,
let _ --ta_+112, R_+112, Rk+ll2 denote the quantities of a_, R,, R_-1 related to

evaluated at _j,k+l/2.
We define

as the component of (t_'+l,k -- (_j,k) (omitting the k index) in the locally
/-th characteristic _-direction [9]. Denote

ak-t-1/2-----Rk'_t/2(Qj, A:-,t..1-Qj,k) (7b)

as the component of ((_j,k-I-1-- (_j,_) (omitting the 3' index) in the locally
bth characteristic r/-direction. The vector _ of equation (7a) can be written

•._ IS

r(..-bb)121
/%"+'/'/=/4j+'/'-p- "=/,_.,/"_+'/" / (aa-_-bb)/2 I (Sa)
L=;+,/=j = cc "

:3
'-_ wl_ere:--j

;_q
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u_+_/2-I" 2 '
v_-1.II2_ _

q -- I Ad+Ila e .st. ' _aj+ll2P
aa = c_+_12 2

-- uj-t.n/2_'+ nl2m -- vj+ nl2A¢+xl2n] (Sb)

1 [klAj+l/2m -- (kluj+l/2 -I- k2vj+l/2)Aj+l/2Pbb
cj+1/2 t

._. k2Aj+ l/2n] (8c)

cc _- --kl /tj+lpn -- (k2uj+ll2 -- I¢lvj+ll2)/x/+ll2P -t- k2Aj-{-l/2 m (Sd)

_sith

and

Aj+ll_n _ n_+_,, -- n_,_, Aj+l/ge _ ej.+.l,k -- ej, k (8f)

The simplest form for Qj+tl:_,h is

0j+,/2,_= (Oj+,,k+ _¢,_)/2 (9)

18.Roe's form of the averaging in the q-direction" •

k

6
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! • •

_uj+z,_+ uj,k ' (loa)
,:-o

• . vj+l/2,l _ (lOb)
i:, _+ 1

: Hj+I/2,k _ -DH_+I,k + Hj,k (10c)

2 [ I _ , ]_::i: Ct+tl2,k --_('7 -- 1) Hj+tl2,k -- _(uj+ll2,k + vj+ll2,_) (lOd)
i

_/! "Dr _/Pj-I-l,klPj, k (10e)

: Y'I 1 u2,'_ H = (_ )¢+ g( + _2) (1of)'i

,i

/? Therefore to use Roe's averaging for the _-differencing, all one has to do is
_; compute u#+lla,k, vj+llp..k, and cj+x/2,_ in equations (4a), (5)-(6), (Ta) and
:_: (8) by equation (10). Similarly, Roe's averaging can be obtained for uj, k+ll2,
_ V_',k+112, and ¢j,_+tl2. In the numerical experiments for the two-dimensional

test problem, Roe's averaging is used.I

i'

i
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92.2Alsorithmof a TVD Methodin Ue5ersliJedCoordinates

-:. Let h _- At be the time step; then a particular form of the explicit TVD
method of [3] in generalized coordinates, when implemented by the method
of fractional steps, can be written as follows:

_n+_ t412e_ththth/2_n (lla)

where

_,_,+ -. At .=. -r+ 14,._" (lib)-- Q++,+- _'_tJ+'_+slm,+- F,_-,,/mf} = ,.-e"+:j,_
_n+t "* At =* "* h'*

•j,+ = Q+,+ - _-'_((;j,++t/m- O+,l_-tl2) =/-qQ$',+ (llc)

Here

+ _, ,°, ,+,+_-_ _j+tl2(gj+_'+z)--_("}+tp-_lj+l/2J j+l/9_j _'+t/2

(11d)
and

.. ,[.. ]a_.,+,+_/2- + G(Qj,,+)+ +(++.,++_)

An_-,[_, ,_ "+' 'd 1R'
+ +-a_L _+,/.t_++ _+,1- ¢(..L+,/.++-_,+./., ,+./.j ,+./.+

(Ire)
with

ml+,/m = [1 -+-_ max(O_.,0_.1.,)]18 (11f)

t

8

_e.--.,++,,_- ..... "" +
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r .

(_i_ 0 "_:

o _<J < 2 (11h)
o

_8"max[o, min(la_ I,s.a_._,12) ] (11i)

! t t 2
¢_(V_+_/2+ = (V_'+,/2 (llj)_+_/2) + %'+J/2)+ 1/4

v_+s/2 = At_-_ay.l.l/2 (11k)
and

i •_}+1/= i +_ - gi')/_._+_p- %'+,/2_ o= _'y+1/2 _ (111)

_l ay+ll__ -- O.

I We can define the variables of equation (lle) by simply replacing thet

! subscripts 7"and 7"_ 1/2 in equations (11f)-(111)by k and k -[- 1/2. Extension
_' of the implicit TVD scheme [4,9] to a generalized coordinate system follows

_} the same procedure as described above.

; In general, if one handles the intermediate boundary conditions correctly,
-_ one only needs to do the half steps in (1l a) at the beginning and immediately

before printout; Le.,

b"+= /._/=/.h.h ._.h/2_o (12)
"0

where Qy,k is the initial condition.

§3. Numerical Result for the Shock Wave-CylinderInteraction

A good test problem for assessing the capabilities of any shock-capturing
scheme is the shock-diffraction problem; i.e., the computation of the unsteady
flow field resulting from a planar moving shock wave striking an obstacle. In
the present numerical experiment the diffraction process is determined over

9 t



a cylinder. The shock pattervs at two instances in _,imetl and t_ after initial
impingement are sketched in Fig. 1.

When the incident shock first collides with the cylinder, regular reflection
oeeurs at the shock impingement point. As the impingement point of the
incident shock propagates around the body, the reflection process makes IL
transition from regular to Math reflection. It _ould bo pointed out that
during the transition process, complex and double Math reflection shock
structures are possible. Their occurrence is dependent ol, the initial st_'ength
of the incident shock wave. For single Math reflection, a triple point forms
and the incident shock no longer touches the body. Emanating from the triple
point are three waves: 1) a Math stem which strikes the body perpendicularly,
2) a slip surface or shear layer which strikes the body and results in a

, vortical singularity (nodal point of streamlines)_ and 3) the reflected shock
_ which propagates away from the body. In.addition to the ab_'c flm_ tieid

characteristics, a stagnation point (saddle point of streamlines) exist._ _ _,he
plane of symmetry, both forward and aft on the body.

The shock-diffractionproblemcontains most ot the flr_ _,scok.J.:,,_:Jespo_
sible wi_h the Euler equations and is thus a _ _,._, :._ra numerical sho_.k-
capturing procedure. Both MacCormack's _,_piicit method and the e_phcit
TVD scheme were applied to the shock wave-cylinder interaction problem.
For a fair comparision, the TVD scheme was implemented in an existing com-
put.ercode [11] which also contained MacCormack's method, so that same
initlal conditlons, boundary conditions and coordinate transformation were
used. A cylindrical grid consisting of 50 points around the half-cylindrical
(_-direction) body and 51 points between the body and outer boundary (#-
direction) was ',.sed. The body radius is one and the distance from the body
to the outer boundary is between 2 to 4 (depending on the incident shock
Math number). Rays from the coordinate system origin are spaced at equal
angles with points uniformly placed in the radial direction between the body
and the outer boundary (see Fig. 2).

§3.1 Initial and Boundary'Couditions

Fig. 2 shows a schematic representation of the grid with its boundaries
and initi_.!conditions. The nodal points to the right of the planar moving
shock are initialized to free stream values while those to the left are set equal
to the post moving shock conditions. In the outer boundary, it is necessary
to track the moving planar shock as a function of time along this boundary

t

10
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surface.

Ax:the planes of symmetry, the reflectionprinciple is used; i.e., the pressure,
d_av::_ _ud u-velocity component are treated as even funJtions across the
plane of symmetry while the v-velocity component is treated as an odd
function. The boundary condition at the surface of the cylinder must satisfy
the tangency condition which requiresthat the velocity in the radial-direction
be equal to zero at the body. Furthermore, for convenience, an image line of
nodal points is considered which falls one mesh_interval inside the body, so
that_the reflection principle can be applied.

§3._Numerical Result

MscCormack's method with a fourth-order dissipation term was run at
a Courant (CFL) number of 0.6 for stability while the TVD method was
operated at a Courant number of 0.9 for efficiency. The Courant number
is a measure of the maximum permissible time step for a stable solution.
The TVD method is insensitive to Courant number between 0.5 and 1. Both
methods were run to approximately the same total time (100 steps for the
MacCormack's method, 70 steps for the TVD method). The results in the
form of pressure and density contour plots are shown in Fig. 3 at a time for
which Mach reflection of the incident shock exists. The incident shock Mach
number was 2. The results from MacCormack's method are shown in Figs.
3a and 3b. Those for the TVD method are shown in Figs. 3c and 3d. It
can be seen that the 1TD scheme results in a better defined flow field; i.e.,
"crisper" shocks and hardly any associated spurious oscillations. The slip
surface which emanates from the triple point is smeared beyond recognition
by both methods. It is, however, possible to observe the location on the body
where the slip surface impinges (i.e., the vortical singularity). At this point, a
local pressureminimum occurs, and the pressurecontours, as a result, encircle
it. This behavior can be observed in the pressure contour plot in the region
to the left of the Mach stem at the body for the TVD scheme.

To test the shock-capturing capability of the TVD method at higher inci-
dent shock Mach numbers using the same grid size as before, cases were run
at Maeh numbersbetween 3 and 10. Figure 4 shows the pressure and density
contour plots for the TVD scheme with an incident shock Math number of
10 at a time when the incident shock was already passed the cylinder. For
this case the Mach stem that extended from the triple point to the body

t
11
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,A,!_ has struck the plane of symmetry an4 reflected from it. This will eventually
oI make a transition to a Mach reflection just as it did at the body. The result
t shows that the TVD scheme is very stable and produces high resolution shock

i waves. The MacCormack method, on the other hand, was unstable under the
same flow condition.

°i

! The TVD scheme _equires approximately twice the CPU time per time
_!' step as MacCormack's method but results in enhanced numerical stability
,._ and solution accuracy.

_ §4 Concluding Remarka

The nonlinear, second-order accurate explicit TVD scheme in generalized !
coordinate systems has been applied to obtain transient solutions on the two-
dimensional problem of a moving shock wave impinging on a cylinder. Fairly
accurate solutions were obtained. Moreover, from numerical experiments,
the scheme is stable in a strong nonlinear sense (e.g., the calculation with an
incident shock Mach number of 10). The report is the first attempt to apply
the TVD scheme to non-cartesian coordinates, it is preliminary in nature.
Further research is underway on improving the resolution of discontinuities by
the artificial compression method [12,13], and on improving the efficiency of ',
computation by possibly using a large-time step (explicit method) approach i
[14].

ACKNOWLEGEMENT

The authors wish to thank Ami Harten for many enlightening suggestions.
Special thanks to Robert Warming and Sukumar Chakravarthy for their

_ valuable discussions throughout the course of this study.

REFERENCES

V. [i]kB. van Leer, "Towards the Ultimate Conservative Difference Scheme.Second-Order Sequel to Godunov's Method," J. Comp. Phys., Vol. 32,
1979, pp. 101-136.

........ ' l uvou-'/'-+o"'""""'---"----"-



o _ i

_!i_ [2] P. Colella and P.R. Woodward, "The Piecewise-Parabolic Method
_i (PPM) for Gas-Dynamical Simulationst" LBL report no. 14661, July 1982.

!I_ [3] A. Harten, "A High Resolution Scheme for the Computation of Weak

!_i Solutions of Hyperbolic Conservation Laws," J. Comp. Phys., Vol. 49, 1983,
0_ pp. 35T-393.

:_ .[4] A..Harten, "On a Class of High Resolution Total-Variation-Stable
_ F,mte-Dlfference Schemes," to appear m SIAM J. Num. Anal.

'_: [5] p.L. Roe, "Some Contributions to the Modelling of Discontinuous
_i'!I:_I Flows," to appear in Proc. AMS-SIAM Summer Seminar on Large Scale

Computations in Fluid Mechanics, Univ. of Calif. at San Diego, June 27-
July 8 1983.

[6] S. Osher, "Shock Modeling in Transonic and Supersonic Flow," to
appear in Recent Advances in Numerical Methods in Fluids, Vol. 4, Advances
in Computational Transonics, W.G. Habashi Ed., Pineridge Press, 1984.

[7] H.C. Yee, R.F. Warming and A. Harten, "A High-Resolution Numerical
Technique for Inviscid Gas-Dynamic Problems with Weak Solutions," Proc.
Eighth International Conference on Numerical Methods in Fluid Dynamics,
Aachen, West Germany, June 1982, Springer-Verlag.

[8] H.C. Yee, R.F. Warming and A. Harten, "On the Application and
Extension of Harten's High-Resolution Scheme," NASA-TM-84256, June
1982.

[9] H.C. Yee, R.F. Warming and A. Harten, _Implicit Total Variation
Diminishing (TVD) Schemes for Steady-State Calculations," AIAA Paper No.
83-1902, Proc. of the AIAA 6th Computational Fluid Dynamics Conference,
Danvers, Mass., July, 1983.

.[10] P.L. Roe, "Approximate Riemann Solvers, Parameter Vectors and
Difference Schemes, " J. Comp. Phys., Vol. 43, 1081, pp. 357-372.

[11] P. Kutler, and A.R. Fernquist, "Computation of Blast Wave Encounter
with Military Targets," Flow Simulations, Inc. Report No. 80-02, April 1080.

[12] A. Harten, "The Artificial Compression Method for Computation of
Shocks and Contact Discontinuities. i. Single Conservation Laws," Comm.
Pure Appl. Math., Vol. XXX, 1977, pp. 611-638.

[13] A. Harten, "The Artificial Compression Method for Computation of
Shocks and Contact Discontinuities: IlL Self-Adjusting Hybrid Schemes,"
Math. Comp., Vol. 32, No. 142, 1978, pp. 363-389.

n 4] A. Harten, "On a Large Time-Step High Resolution Scheme," ICASE

13 t

...... 1983027439-TSBO3



Report No. 82-34, NASA Langley Research Center, Hampton Virginia, Nov.
15, 1982.

14



OF POORQUt;Li';'_'

tl t2

Ms SLiP

"___ TRIPLE POINT

ACH STEM

REFLECTED
SHOCK i

Fig. 1. Shock structure for shock diffraction
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