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ABSTRACT 
 
A new paradigm for machinery maintenance is emerging as preventive maintenance strategies are being replaced by 
condition-based maintenance.  In condition-based maintenance, machinery is repaired or serviced only when an intelligent 
monitoring system indicates that the system cannot fulfill mission requirements.  The implementation of such systems 
requires a combination of sensor data fusion, feature extraction, classification, and prediction algorithms. In addition, new 
system architectures are being developed to facilitate the reduction of wide bandwidth sensor data to concise predictions of 
ability of the system to complete its current mission or future missions.  This paper describes the system architecture, data 
fusion, and classification algorithms employed in a distributed, wireless bearing and gear health monitoring system.  The role 
and integration of prognostic algorithms – required to predict future system health - are also discussed.  Examples are 
provided which illustrate the application of the system architecture and algorithms to data collected on a machinery 
diagnostics test bed at the Applied Research Laboratory at The Pennsylvania State University.  
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1. INTRODUCTION 
 
Traditional time-based machinery maintenance is being replaced by maintenance based on the condition of the machinery.  
Under condition-based maintenance, parts and components are replaced only when they can no longer operate at the desired 
capacity or load, or when the machine will not be able to operate long enough to complete its current mission.  Mission 
examples include traditional military definitions for aircraft, ships or other vehicles, a shift or product run for factory 
equipment, a family vacation for an automobile, or even an unspecified length of time for other devices such as a pacemaker 
or artificial organ.   
 
Automated machinery diagnostics promises millions of dollars in cost savings per year in the form of decreased machinery 
downtime, unnecessary replacement of “good” parts and components, and maintenance-induced failures.  The key to the 
successful implementation of condition-based maintenance strategies is the accurate diagnosis of existing component faults, 
and the ability to predict when components are going to fail.  The latter is the real the key to successful condition-based 
maintenance, since we need to know that a part is going to fail during the next mission before we put the machine into 
service.  We must be able to reliably predict when components are going to fail, and furthermore, we must develop analysis 
techniques that can be implemented on embedded processing systems to automatically identify the remaining useful life of 
components, without intervention from a human expert. 
 
It is well known that the vibration produced by gearboxes contains important diagnostic and prognostic information about to 
the operating condition of the gears within it.  Over the past two decades, many signal-processing techniques have been 
proposed to extract this information from gearbox vibration signals.  The most popular of these signal-processing techniques 
have included various statistical parameters, time-domain averaging, amplitude and phase demodulation, time-frequency 
techniques and most recently wavelet analysis.  In most cases, however, determining the operating condition and predicting 
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the remaining useful life for a machine requires more than the calculation of a single feature.  The implementation of such 
systems requires a combination of sensor data fusion, feature extraction, classification, and prediction algorithms. 
 

2. SYSTEM ARCHITECTURE 
 
The Applied Research Laboratory has been working with a team of industrial, university and government partners to develop 
and demonstrate the physical devices, system architectures, algorithms, and processing techniques required to implement 
condition based maintenance.  A three-layer, hierarchical architecture has been developed and demonstrated for use in 
machinery health monitoring system.  Figure 1 shows the three primary layers within the architecture.   
 

The lowest level is composed of Integrated Component Health monitors.  These are effectively smart sensors capable of 
acquiring data, extracting features, and performing sensor-level data fusion and pattern recognition.  The integrated 
component health monitors are intended to monitor a single component on a machine such as a bearing, gear or gearbox, 
compressor or electric motor.  By processing the sensor data at the sensor, we can minimize the need to send raw data from 
the sensors to the monitoring station.  In general, the integrated component health monitors are designed to be low power and 
use wireless communications – it would be self-defeating to develop a condition based maintenance system that replaces 
scheduled maintenance of the machine with scheduled battery replacement and unreliable wiring. 
 
At the next layer in the network, System Health Monitors collect information from several component health monitors.  The 
system health monitor has a wider view of the world, which may include mission-oriented information and is in a better 
position to interpret the impact of the information from the sensors than the component health monitors.  While a component 
health monitor could perform both the system and component health monitor roles and vice-versa, dividing the responsibility 
between the two levels may permit a more cost effective implementation.  With wireless connections between the system and 
component health monitors, the system health monitor hardware may not be required to meet the same environmental 
operating specifications as the sensor.  Likewise, we can reduce the cost of the component health monitor by minimizing the 
amount of information about system operating set points and mission requirements that is downloaded to the component 
health monitor.  The system health monitor communicates with the upper levels of the system via the Internet, a local area 
network, or some form of intranet.  The system health monitor may include archival storage or may utilize archival storage 
capability on the Internet or intranet. 
 
The highest level of the network coordinates and fuses the information from different system health monitors and provides a 
connection for human user interfaces to the system.  The platform level monitor has the most global view of the platform or 

Internet/Intranet

Local
Watchstation

Portable 
Watchstation

Remote
Watchstation

System Health Monitor Data
Archives

Machinery
SystemIntelligent  

Component 
Health Monitor

Internet/Intranet

Local
Watchstation

Portable 
Watchstation

Remote
Watchstation

System Health Monitor Data
Archives

Machinery
SystemIntelligent  

Component 
Health Monitor

Figure 1.  Three-layer condition monitoring system architecture. 
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plant and provides the opportunity for user input and mission profile changes.  The functional requirements for the 
architecture are designed to permit drill-down from the platform level as well as changes in the algorithms and methods used 
to analyze data throughout the layers of the architecture. 
  

3. DATA FUSION AND PATTERN RECOGNITION 
 
The primary goal of developing a multi-level architecture is to increase the information content and decrease the required 
communication bandwidth as one moves up in the condition monitoring system away from the sensors and machine toward 
the user.  For systems where the quantities being monitored are slowly changing temperatures, the bandwidth required to 
send raw data to the highest level in the network are small, however, if the quantities being monitored are vibrations, the 
bandwidth of the raw data could be in the 100’s of kHz range.   Figure 2 shows the transformation of raw sensor data from 
sensor-oriented data to condition-oriented information in the condition monitoring system.  At the left in Figure 2 are the 
component health monitors and at the right is the platform-level monitor.  
  

Figure 2 shows the processing flow for a generic machinery condition monitoring system. At the sensor or component 
monitoring level, raw data is processed to enhance signal to noise ratio and remove unwanted signal components.  Two 
common techniques are frequency banding and time -domain averaging.  Bearing defects may excite structural resonance 
frequencies in a mechanical system, which effectively amplifies the impulsive, or random vibration energy.  Frequency 
banding helps to isolate regions of the frequency spectrum where bearing defect vibration energy is “favored”.  Time domain 
averaging over the revolution period of a specific shaft isolates gear mesh effects from that shaft.  Time-synchronous 
averaging is often implemented using triggered data sampling where a tachometer signal is used to align multiple shaft 
periods for averaging. 
 
Data fusion techniques are used at the sensor level to insure data quality and provide for sensor self check [2].  It is very 
important in condition monitoring systems to avoid the introduction of unreliable sensors that would cause false alarms.  
Moreover, sensors are being developed that are capable of measuring multiple physical quantities, such as vibration and 
temperature.  By fusing the information from several measurands or from multiple commensurate sensors we can improve 
sensor and data reliability. 
 
The next step in processing the sensor data is feature extraction.  Features may be statistical characteristics of the electrical 
signal produced by a sensor or may be based on some physical characteristic of the system.  A wide range of feature 

Figure 2.  Data reduction in condition monitoring system. 
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extraction techniques have been developed and applied to the monitoring of vibrations from gears and bearings.  Statistical 
features include RMS level, peak level, skewness, and kurtosis.  Frequency domain features include the frequency and 
magnitude of spectral peaks from frequency band enveloping, characteristic defect frequencies, harmonics, and sidebands, 
modulation frequencies, strength and patterns, and frequency band and broadband energy levels.   
 
Because computational resources are limited at the component monitoring level and we want to minimize the amount of data 
that is sent from the component level to the system health monitor, we must carefully choose the feature extraction 
algorithms that are implemented at the component health monitoring level.  The ideal situation would be to find or develop a 
feature extraction technique that produced a single feature that ranged from 0 to 1 and progressed linearly from “good” to end 
of life.  Since this is the real world, however, such a feature rarely exists and we must use additional data fusion and pattern 
recognition techniques to determine the component health from multiple features.  An addition consideration, however, is our 
ability to track and predict the future values of the features we calculate if we want to perform prognostics instead of just 
diagnostics [3]. 
 
The problem of determining the health of a system from several computed features is essentially a pattern recognition 
problem.  Pattern recognition approaches can be broadly characterized as statistical, syntactic, or neural [4].  We have chosen 
to use a syntactic or rule-based approach in some of the machinery condition monitoring applications.  The rule-based 
classifier uses fuzzy logic to combine features and compute a confidence in the existence of a particular fault condition. 
 
Figure 3 shows a block diagram of a fuzzy-logic classifier for determining the health of a roller bearing.  The inputs to the 
classifier are features computed using multiple analysis tools.  The features are then blended, weighted, and combined using 
logical rules.  The blending process, also referred to as fuzzification, in the fuzzy-logic literature maps numerical outputs of 
the feature extraction techniques to subjective levels of severity [5].   For example, the frequency band RMS level is 
transformed from a number to a confidence in an observation such as “the RMS level is high”.    
 

After blending, the feature confidences are weighted by relative importance and combined using a rule to determine the 
overall state of the component.  For example, the rule for determining whether a bearing has an advanced inner race fault 
condition might take the following form: 
 

Bearing has an advanced inner race fault if  
RPIR modulation frequency energy is present AND 
RPIR modulation harmonic energy is present AND 
Frequency band RMS energy is high AND 
Frequency band kurtosis is high OR 
Frequency band kurtosis was previously high and now decreasing. 
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Figure 3.  Fuzzy-logic classifier for roller bearing fault classification. 
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These types of rules are typically developed based on expert knowledge of the system.  
 

4. TRACKING AND PREDICTION 
 
The goal for condition based maintenance systems is not simply automated diagnosis of machinery fault conditions, but 
determination of the remaining useful life of the system within the context of the current mission.  As such, the system must 
have prognostic as well as diagnostic capability.  Using a model-based approach, the system could simply take the current 
machine state invert the model to compute the effective remaining useful life.  In the absence of a reliable or accurate system 
model, however, another approach is to determine the remaining useful life by monitoring the trajectory of a developing 
fault, and predicting the amount of time until the developing fault reaches a predetermined level requiring action.  This 
problem is analogous to computing time -to-intercept in an object-tracking problem. 
 
Two well-known tracking/prediction techniques have been applied to vibration data from the gearbox: the Alpha-Beta-
Gamma tracking filter and the Kalman filter [3].  The tracking and prediction techniques have been applied to a number of 
traditional vibration-based diagnostic features as well as new features developed under the current research program [6-7].  It 
is assumed that the measurements and system model are noisy.  Both the Alpha-Beta-Gamma and the Kalman tracking filters 
have been investigated for their ability to track and smooth features from gearbox vibration data.  A Kalman tracking filter 
has been used to predict the feature trajectory of feature states as damage progresses in the mechanical system.  The feature 
“state vector” is defined as a vector containing the current feature value, the first derivative of the feature value with respect 
to time, and the second derivative of the feature value with respect to time.  These correspond to the position, velocity, and 
acceleration of the feature.  The estimated position, velocity, and acceleration can then be used to estimate the remaining 
useful life of the system by predicting when the system will reach a damage state that will no longer permit safe operation.   
 
A feature based on the total signal energy was used to predict the remaining useful life for a commercial gearbox during a 
run-to-failure test conducted on a test stand at Penn State.  Around 17 hours into the test, the predicted remaining useful life 
converges to the actual time left in the test.  After converging at 17 hours, the prediction of the remaining useful life remains 
accurate through the end of the test.  Several different methods are still under investigation for improving the calculation of 
the remaining useful life for a component. 
 

 
 

Figure 4.  Time Remaining In Event Estimation. From top to bottom, left to right: 1) The estimation 
results for each of the methods and the actual time remaining ; 2) The estimation during the last  10% of 
the event; 3) Estimation results during the last 14 hours of the test. 
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5. EXPERIMENTAL RESULTS 

 
The Applied Research Laboratory (ARL) at the Pennsylvania State University is leading an extensive research program in 
CBM.  The research involves development of sensors and processing algorithms for diagnostics and prognostics, automated 
reasoning, and data fusion.  The Mechanical Diagnostics Test Bed (MDTB) is one of the facilities ARL uses in its CBM 
research program.  The MDTB was constructed to collect calibrated, transitional data from both gear and bearing failures in 
commercial gearboxes and transmissions.  This is essential for developing prognostic tools and techniques since most data on 
gearboxes do not contain transitional data; the recorded data are from healthy gears or gears with a seeded fault.  Without 
understanding the progression of the system as it fails, the ability to perform prognostics, the capability to predict remaining 
useful life, is nearly impossible.   
 
The figure below shows a photograph of the MDTB facility at Penn State.  The MDTB is instrumented with fifty-two sensors 
including 31 thermocouples, three internal temperature probes, seven single-axis accelerometers, a tri-axial accelerometer, a 
microphone, an acoustic emission sensor, an oil analysis sensor, a tachometer, two sets of torque and speed sensors, an 
infrared (IR) camera, and a boroscope.   Data are sampled using 16-channel, 16-bit DAQ boards.  The sampling rate for the 
accelerometers is 20 kHz.  Ten second snapshots of data are stored in a binary format to disk on a PC. A detailed description 
of the ARL MDTB can be found in [1]. 

 
Figure 6 shows the use of the fuzzy -logic classifier to determine the health of a gear in a commercial gearbox mounted on the 
Penn State MDTB test stand.  The solid lines in the graph show the residual RMS vibration level and kurtosis as a function of 
time.  The horizontal, or time, axis is labled with the time until the end of the test.  The residual signal is calculated by 
removing gear mesh components that would normally be present while preserving components due to damage.  The dashed 
line shows the output of the fuzzy-logic classifier.  In this case, and in many similar problems, the kurtosis of the monitored 
signal actually begins to decrease as the damage progresses, so the fuzzy-logic algorithm has to determine when the feature 
has reached a high level and then has begun to decrease.  Figure 7 shows the blend process for the residual RMS feature.   
The numerical RMS value is compared to three ranges of values to determine if the computed value is low, medium or high.  
Note that the boundary between regions is “fuzzy”  it is possible to have nonzero confidence in the notion that the value is 
both low and medium or medium and high. 

Figure 5.  Instrumented gearbox on the 
ARL/PSU machinery diagnostics testbed. 



 

Aerosense 2000 Conference on Sensor Fusion: Architectures, Algorithms, and Applications IV 7 
 

 

  
CONCLUSIONS 

 
A new condition-based approach to machinery maintenance is emerging in which machinery is repaired or serviced only 
when an intelligent monitoring system indicates that the system cannot fulfill mission requirements.  The implementation of 
such systems requires a combination of sensor data fusion, feature extraction, classification, and prediction algorithms. In 
addition, new system architectures are being developed to facilitate the reduction of wide bandwidth sensor data to concise 
predictions of ability of the system to complete its current mission or future missions.  In this paper we have described a 
three-layer architecture for monitoring mechanical systems with smart sensors at the lowest level, system level monitors at 
the middle level capable of performing data fusion and pattern recognition, and a platform-level monitor at the highest level 
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Figure 6.  Classification results for gear monitoring. 
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to provide a user interface and pass platform and mission requirements down to the system monitoring level.  Machinery 
monitoring requires data fusion, pattern recognition, tracking, and prediction algorithms in order to determine the remaining 
useful life for a piece of machinery.  Example results from a commercial gearbox mounted on an experimental test stand at 
Penn State were presented that demonstrate the use of these techniques to determine the condition of the system.  The 
integration of prediction and tracking with the diagnostic pattern recognition techniques is ongoing. 
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