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ABSTRACT

A new paradigm for machinery maintenance is emerging as preventive maintenance strategies are being replaced by
condition-based maintenance. In condition-based maintenance, machinery is repaired or serviced only when an intelligent
monitoring system indicates that the system cannot fulfill mission requirements. The implementation of such systems
requires a combination of sensor data fusion, feature extraction, classification, and prediction algorithms. In addition, new
system architectures are being developed to facilitate the reduction of wide bandwidth sensor data to concise predictions of
ability of the system to complete its current mission or future missions. This paper describes the system architecture, data
fusion, and classification agorithms employed in a distributed, wireless bearing and gear health monitoring system. The role
and integration of prognostic algorithms — required to predict future system health - are aso discussed. Examples are
provided which illustrate the application of the system architecture and algorithms to data collected on a machinery
diagnosticstest bed at the Applied Research Laboratory at The Pennsylvania State University.
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1. INTRODUCTION

Traditional time-based machinery maintenance is being replaced by maintenance based on the condition of the machinery.
Under condition-based maintenance, parts and components are replaced only when they can no longer operate at the desired
capacity or load, or when the machine will not be able to operate long enough to complete its current mission. Mission
examples include traditional military definitions for aircraft, ships or other vehicles, a shift or product wun for factory
equipment, a family vacation for an automobile, or even an unspecified length of time for other devices such as a pacemaker
or artificial organ.

Automated machinery diagnostics promises millions of dollarsin cost savings per year in the form of decreased machinery
downtime, unnecessary replacement of “good” parts and components, and maintenance-induced failures. The key to the
successful implementation of condition-based maintenance strategies is the accurate diagnosis of existing component faults,
and the ability to predict when components are going to fail. The latter is the real the key to successful condition-based
maintenance, since we need to know that a part is going to fail during the next mission before we put the machine into
service. We must be able to reliably predict when components are going to fail, and furthermore, we must develop analysis
techniques that can be implemented on embedded processing systems to automatically identify the remaining useful life of
components, without intervention from a human expert.

It is well known that the vibration produced by gearboxes contains important diagnostic and prognostic information about to
the operating condition of the gears within it. Over the past two decades, many signal-processing techniques have been
proposed to extract this information from gearbox vibration signals. The most popular of these signal-processing techniques
have included various statistical parameters, time-domain averaging, amplitude and phase demodulation, time-frequency
techniques and most recently wavelet analysis. In most cases, however, determining the operating condition and predicting
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the remaining useful life for a machine requires more than the calculation of a single feature. The implementation of such
systems requires a combination of sensor data fusion, feature extraction, classification, and prediction algorithms.

2. SYSTEM ARCHITECTURE

The Applied Research Laboratory has been working with a team of industrial, university and government partners to develop
and demonstrate the physical devices, system architectures, algorithms, and processing techniques required to implement
condition based maintenance. A three-layer, hierarchical architecture has been developed and demonstrated for use in
machinery health monitoring system. Figure 1 shows the three primary layers within the architecture.
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Figurel. Threelayer condition monitoring system ar chitecture.

The lowest level is composed of Integrated Component Health monitors. These are effectively smart sensors capable of
acquiring data, extracting features, and performing sensor-level data fusion and pattern recognition. The integrated
component health monitors are intended to monitor a single component on a machine such as a bearing, gear or gearbox,
compressor or electric motor. By processing the sensor data at the sensor, we can minimize the need to send raw data from
the sensors to the monitoring station. In general, the integrated component health monitors are designed to be low power and
use wireless communications — it would be self-defeating to develop a condition based maintenance system that replaces
scheduled maintenance of the machine with scheduled battery replacement and unreliable wiring.

At the next layer in the network, System Health Monitors collect information from several component health monitors. The
system health monitor has a wider view of the world, which may include mission-oriented information and is in a better

position to interpret the impact of the information from the sensors than the component health monitors. While a component
health monitor could perform both the system and component health monitor roles and vice-versa, dividing the responsibility
between the two levels may permit a more cost effective implementation. With wireless connections between the system and
component health monitors, the system health monitor hardware may not be required to meet the same environmental

operating specifications as the sensor. Likewise, we can reduce the cost of the component health monitor by minimizing the
amount of information about system operating set points and mission requirements that is downloaded to the component
health monitor. The system health monitor communicates with the upper levels of the system via the Internet, a local area
network, or some form of intranet. The system health monitor may include archival storage or may utilize archival storage
capability on the Internet or intranet.

The highest level of the network coordinates and fuses the information from different system health monitors and provides a
connection for human user interfaces to the system. The platform level monitor has the most global view of the platform or
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plant and provides the opportunity for user input and mission profile changes. The functional requirements for the
architecture are designed to permit drill -down from the platform level as well as changes in the algorithms and methods used
to analyze data throughout the layers of the architecture.

3. DATA FUSION AND PATTERN RECOGNITION

The primary goal of developing a multi-level architecture is to increase the information content and decrease the required
communication bandwidth as one moves up in the condition monitoring system away from the sensors and machine toward
the user. For systems where the quantities being monitored are slowly changing temperatures, the bandwidth required to
send raw data to the highest level in the network are small, however, if the quantities being monitored are vibrations, the
bandwidth of the raw data could be in the 100's of kHz range. Figure 2 shows the transformation of raw sensor data from
sensor-oriented data to condition-oriented information in the condition monitoring system. At the left in Figure 2 are the
component health monitors and at theright is the platform-level monitor.
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Figure2. Datareductionin condition monitoring system.

Figure 2 shows the processing flow for a generic machinery condition monitoring system. At the sensor or component
monitoring level, raw data is processed to enhance signal to noise ratio and remove unwanted signal components. Two
common techniques are frequency banding and time-domain averaging. Bearing defects may excite structural resonance
frequencies in a mechanical system, which effectively amplifies the impulsive, or random vibration energy. Frequency
banding helps to isolate regions of the frequency spectrum where bearing defect vibration energy is “favored”. Time domain
averaging over the revolution period of a specific shaft isolates gear mesh effects from that shaft. Time-synchronous
averaging is often implemented using triggered data sampling where a tachometer signal is used to align multiple shaft
periods for averaging.

Data fusion techniques are used at the sensor level to insure data quality and provide for sensor self check [2]. It is very
important in condition monitoring systems to avoid the introduction of unreliable sensors that would cause false alarms.
Moreover, sensors are being developed that are capable of measuring multiple physical quantities, such as vibration and
temperature. By fusing the information from several measurands or from multiple commensurate sensors we can improve
sensor and data reliability.

The next step in processing the sensor data is feature extraction. Features may be statistical characteristics of the electrical
signal produced by a sensor or may be based on some physical characteristic of the system. A wide range of feature
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extraction techniques have been developed and applied to the monitoring of vibrations from gears and bearings. Statistical
features include RMS level, peak level, skewness, and kurtosis. Fequency domain features include the frequency and
magnitude of spectral peaks from frequency band enveloping, characteristic defect frequencies, harmonics, and sidebands,
modulation frequencies, strength and patterns, and frequency band and broadband energy levels.

Because computational resources are limited at the component monitoring level and we want to minimize the amount of data
that is sent from the component level to the system health monitor, we must carefully choose the feature extraction
algorithms that are implemented at the component health monitoring level. The idea situation would be to find or develop a
feature extraction technique that produced a single feature that ranged from 0 to 1 and progressed linearly from “good” to end
of life. Since thisisthe rea world, however, such afeature rarely exists and we must use additional data fusion and pattern
recognition techniques to determine the component health from multiple features. An addition consideration, however, is our
ability to track and predict the future values of the features we calculate if we want to perform prognostics instead of just
diagnostics[3].

The problem of determining the health of a system from several computed features is essentially a pattern recognition
problem. Pattern recognition approaches can be broadly characterized as statistical, syntactic, or neural [4]. We have chosen
to use a syntactic or rule-based approach in some of the machinery condition monitoring applications. The rule-based
classifier uses fuzzy logic to combine features and compute a confidence in the existence of a particular fault condition.

Figure 3 shows a block diagram of a fuzzy-logic classifier for determining the health of aroller bearing. The inputs to the
classifier are features computed using multiple analysis tools. The features are then blended, weighted, and combined using
logical rules. The blending process, also referred to as fuzzification, in the fuzzy-logic literature maps numerical outputs of
the feature extraction techniques to subjective levels of severity [5]. For example, the frequency band RMS level is
transformed from a number to a confidence in an observation such as “the RMSlevel ishigh”.
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Figure3. Fuzzydogic classifier for roller bearing fault classification.

After blending, the feature confidences are weighted by relative importance and combined using a rule to determine the
overall state of the component. For example, the rule for determining whether a bearing has an advanced inner race fault
condition might take the following form:

Bearing has an advanced inner race fault if
RPIR modulation frequency energy is present AND
RPIR modulation harmonic energy is present AND
Frequency band RMSenergy is high AND
Frequency band kurtosisishigh OR
Frequency band kurtosis was previously high and now decreasing.
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These typesof rules are typically developed based on expert knowledge of the system.

4. TRACKING AND PREDICTION

The goal for condition based maintenance systems is not simply automated diagnosis of machinery fault conditions, but
determination of the remaining useful life of the system within the context of the current mission. As such, the system must
have prognostic as well as diagnostic capability. Using a model-based approach, the system could simply take the current
machine state invert the model to compute the effective remaining useful life. In the absence of areliable or accurate system
model, however, another approach is to determine the remaining useful life by monitoring the trajectory of a developing
fault, and predicting the amount of time until the developing fault reaches a predetermined level requiring action. This
problem is analogous to computing time-to-intercept in an object-tracking problem.

Two well-known tracking/prediction techniques have been applied to vibration data from the gearbox: the Alpha-Beta-
Gamma tracking filter and the Kalman filter [3]. The tracking and prediction techniques have been applied to a number of
traditional vibration-based diagnostic features as well as new features developed under the current research program [6-7]. It
is assumed that the measurements and system model are noisy. Both the Alpha-Beta-Gamma and the Kalman tracking filters
have been investigated for their ability to track and smooth features from gearbox vibration data. A Kalman tracking filter
has been used to predict the feature trgjectory of feature states as damage progresses in the mechanical system. The feature
“state vector” is defined as a vector containing the current feature value, the first derivative of the feature value with respect
to time, and the second derivative of the feature value with respect to time. These correspond to the position, velocity, and
acceleration of the feature. The estimated position, velocity, and acceleration can then be used to estimate the remaining
useful life of the system by predicting when the system will reach a damage state that will no longer permit safe operation.

A feature based on the total signal energy was used to predict the remaining useful life for a commercial gearbox during a
run-to-failure test conducted on a test stand at Penn State. Around 17 hours into the test, the predicted remaining useful life
converges to the actual time left in the test. After converging at 17 hours, the prediction of the remaining useful life remains
accurate through the end of the test. Several different methods are still under investigation for improving the calculation of
the remaining useful life for acomponent.
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CONCLUSIONS

A new condition-based approach to machinery maintenance is emerging in which machinery is repaired or serviced only
when an intelligent monitoring system indicates that the system cannot fulfill mission requirements. The implementation of
such systems requires a combination of sensor data fusion, feature extraction, classification, and prediction algorithms. In
addition, new system architectures are being developed to facilitate the reduction of wide bandwidth sensor data to concise
predictions of ability of the system to complete its current mission or future missions. In this paper we have described a
three-layer architecture for monitoring mechanical systems with smart sensors at the lowest level, system level monitors at
the middle level capable of performing data fusion and pattern recognition, and a platformlevel monitor at the highest level
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to provide a user interface and pass platform and mission requirements down to the system monitoring level. Machinery
monitoring requires data fusion, pattern recognition, tracking, and prediction algorithms in order to determine the remaining
useful life for a piece of machinery. Example results from a commercial gearbox mounted on an experimental test stand at
Penn State were presented that demonstrate the use of these techniques to determine the condition of the system. The
integration of prediction and tracking with the diagnostic pattern recognition techniquesis ongoing.
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