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Abstract	

In sequence-based predictions, conventionally an input sequence is represented by a 
multiple sequence alignment (MSA) or a representation derived from MSA, such as a 
position-specific scoring matrix. Recently, inspired by the development in natural 
language processing, several applications of sequence embedding have been observed. 
Here, we review different approaches of protein sequence embeddings and their 
applications including protein contact prediction, secondary structure, prediction, and 
function prediction. 

1 Introduction	
Proteins are the fundamental building blocks of life, driving the entire network of 
interconnected and intercorrelated functional mechanisms in an organism [1]. Proteins are 
involved in almost every cellular function, including signaling pathway, DNA repair, glucose 
transmembrane transport, catalytic activity, and transporter activity. The tertiary structures of 
proteins and probably also interactions protein interactions are encoded in the sequence of 
amino acids. Thus, protein sequences are often termed as the language of life [2]. 

Analyzing protein sequences and inferring various functional and structural information has 
been one of the major goals and long-standing themes of Bioinformatics. Next-generation 
sequencing technologies have led to an exponential increase in the size of protein databases, 
nearly doubling almost in every two years [3]. However, labeling them with valid and 
meaningful annotations requires an extensive amount of effort, expertise, experiments, and 
expense. As a result, we have new proteins in orders of magnitudes more than it is viable to 
annotate manually. This discrepancy becomes more apparent when we observe that the sparsely 
annotated TrEMBL database contains 219 million sequences, whereas the manually curated 
SwissProt database contains only 565 thousand proteins [3]. Thus, the so-called sequence-
structure gap [4] is increasingly growing. 

Bioinformatics researchers have devoted decades in developing various computational 
prediction methods of protein structures, features, and annotations from amino acid sequence 
information. In conventional prediction methods, typically, sequence information of a target 
protein is provided in forms including a single protein sequence, position-specific scoring 
matrix (PSSM) [5], Hidden Markov Model (HMM) [6], and k-grams. Often, physicochemical 
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properties of amino acids, such as hydrophobicity, charge, and size information are also used, 
instead of, or in addition to, the amino acid sequence itself [7].   

In recent years, the field of Natural Language Processing (NLP) has observed a radical 
paradigm shift, by embracing pre-trained language models [9, 10]. The trend has been to train 
a language model on a large corpus of unlabeled text data in an unsupervised or semi-supervised 
fashion [11], which enables the models to learn patterns and structures of the language. This 
pre-training provides us with a general knowledge of the language in form of embeddings, 
which are found to be effective in solving various downstream tasks, occasionally with the aid 
of some task-specific finetuning. These pre-trained embedding approaches significantly 
improved upon the earlier supervised methods trained on task-specific smaller datasets [9]. 

Deriving motivations from the success of word embeddings and pretrained language models 
in NLP, gradually they are gaining popularity in protein sequence analysis. Several language 
models have been adopted and applied for proteins, for example, ProtVec [12], SeqVec [2], and 
ProtBERT [13].  

In this chapter, we explore the application of sequence embedding in protein sequence-
based predictions. We briefly explain some notable language models and how they are used in 
bioinformatics, facilitated by access to large-scale protein databases. We present the 
effectiveness of learned sequence embeddings in solving various problems on diverse topics. 

2 A	brief	overview	of	language	models	and	embeddings	in	
Natural	Language	Processing	

First, we briefly present a few prominent language models and corresponding embedding 
generation schemes used in Natural Language Processing (NLP). For a more elaborate 
explanation, readers are encouraged to go through broader surveys [9, 10]. 

Distributed representations [14] and Neural Network-based language models [15] have a 
long history of gradual progressive development. The first significant breakthrough came from 
the works of Mikolov et al. [16, 17]. They proposed a novel word embedding named word2vec, 
which represents the words as dense vectors in a relatively low dimensional space. Fig. 1(a) 
presents a simplified representation of word2vec, where we show how the input-output can be 
represented and computed in the skip-gram model. The embeddings are learned from a shallow 
neural network, by analyzing the neighboring words using Log-Linear models such as 
Continuous Bag-of-Words, which tries to predict the word based on the context, or Skip-gram, 
which attempts to predict the context based on the word. Both these two approaches are based 
on the fact that not only the semantic but also the syntactic meaning of a word can be estimated 
by its neighboring words [17]. In this word embedding, similar words are projected nearby in 
the vector space, thus providing a means of comparing the words both syntactically and 
semantically, which turns out valuable in various downstream NLP tasks. 

Despite the effectiveness of mapping similar and dissimilar words, one major problem the 
word2vec model faces is that the generated embeddings are context independent. In natural 
language, the same word can have multiple meanings based on the context it is used. Word2vec 
discards this contextual and positional dependency of words. Various Long-Short Term 
Memory (LSTM) based models, for example, ASGD Weight-Dropped LSTM (AWD-LSTM) 
[18] (Fig. 1b), multiplicative LSTM (mLSTM) [19] (Fig. 1c), and more specifically, ELMo 
(Embeddings from Language Models) [20] (Fig. 1d) targets to solve this issue, by treating the 
word embeddings not merely as a function of the words, rather as a function of the entire 
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sentence. LSTM, being a recurrent neural network, keeps track of the order of the words unlike 
the feed-forward networks used in word2vec.  As a result, it manages to learn sentences not just 
merely a collection of words. AWD-LSTM investigates several strategies for regularizing and 
optimizing LSTM models, incorporating various levels of dropout at inputs, hidden layers, 
weights, embeddings, and outputs. Furthermore, the model was trained with a modified 
averaged stochastic gradient method, and it outperformed other models on word-level 
perplexities, a standard language model task, where a model’s ability to compute the probability 
of unseen test sentences is evaluated. on two datasets, Penn Treebank and WikiText-2. On the 
other hand, mLSTM combines the standard LSTM with multiplicative RNN architecture. This 
provides mLSTM with the ability to have different recurrent transition functions for different 
inputs and this increased expressivity. This enables mLSTM to consistently outperform vanilla 
LSTM on character-level language modeling task. Among the various LSTM based models, 
ELMo produces the most superior contextualized word representation, managing to capture the 
syntax and semantics of the words across various linguistic contexts. ELMo achieves this 
through a semi-supervised setup, by pretraining a Bidirectional Language Model (biLM) on 
large-scale datasets, later incorporating that with diverse NLP architectures. The biLM aims to 
model the probability of a token tk, in a sequence (t1,t2,t3,...,tN) by considering both the history 
and the future contexts. 

 
 
In the process of learning these probabilities, each of the L layers of the BLSTMs outputs 

a context-dependent representation for a token tk in both directions , where j = 1,2,..., 
L. Combining these with a context-independent representation xLM

k , ELMo embeddings are 
computed. By incorporating the context of the words, the issue of homonyms is thus solved by 
ELMo, as well as capturing high-level concepts from context. AWD-LSTM significantly 
improves over the traditional LSTM models. With the efficient utilization of the 
regularizations, it managed to reduce perplexity by 20%, despite requiring 1/3 of the 
parameters. Although mLSTM managed to decrease perplexity by 10% over vanilla LSTM, it 
was outperformed by the AWD-LSTM model, due to it being a character-level architecture. On 
the other hand, as a result of using bidirectional LSTM layers, ELMo appears to be the most 
capable LSTM based model, going beyond the state of the art performance in 6 tasks, including 
question answering, named entity recognition, and sentiment analysis. 

The LSTM based models AWD-LSTM, mLSTM, and ELMo have been illustrated in 
Figures 1b, 1c, and 1d respectively. AWD-LSTM is defined by the repertoire of dropouts it 
employs, as demonstrated in Fig. 1b. mLSTM (Fig. 1c) on the other hand, disregards the typical 
hidden state in LSTM, rather maps the hidden state h(t-1) to an input dependent one m(t) by 
suitable weighted multiplication with the input x(t).  The foundational component of ELMo 
(Fig. 1d) is the BLSTM base, which is accompanied by embeddings generated from character 
convolutions and suitable softmax top layers that address a particular downstream task. 

ELMo improves over word2vec based embedding, but the next breakthrough came from 
Transformer based architectures, most notably BERT (Bidirectional Encoder Representations 
from Transformers) [11]. Transformer is a novel network architecture based on attention [21], 
instead of traditional convolutional or recurrent operations. Discarding recurrent operations 
makes the transformer model parallelizable, which reduces the training time and improves the 
performance simultaneously. Transformer is composed of an encoder and a decoder, which 
themselves contain stacks of layers involving multi-head attention and position-wise 
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feedforward networks, accompanied by residual connections and layer normalizations. A 
simplified schematic diagram of Transformer has been presented in Figure 1(e).   Transformers 
have an encoder and a decoder component, and they comprise generalized stackable blocks, 
making it feasible to experiment with deeper models. Both the inputs and outputs are translated 
to an embedding space, but for the lack of convolutional or recurrent operations, the sequential 
or ordering information gets lost, which is compensated by using positional encoding.  BERT, 
the next frontier in language modeling, outperformed the state-of-the-art models on 11 different 
tasks, including language understanding, question answering, multi-genre natural language 
inference. merely employing fine-tuning, thereby making task-specific architectural 
modifications redundant. Internally, BERT is a multi-layer bidirectional Transformer encoder 
[21], which comprises stacks of transformer blocks as shown in Fig. 1f. Although transformers 
are general sequence transduction models, BERT is more oriented towards being a language 
model. The BERT model is pretrained on 2 different tasks, namely, masked language modeling 
and next sentence prediction. After developing the pretrained BERT model, it can be 
conveniently adapted for most downstream NLP tasks just by finetuning the model using the 
new task-specific input-output pair, without any major modification. Ever since its 
introduction, BERT has become the defacto standard of transfer learning in NLP problems. The 
state-of-the-art performance of BERT is the result of a few contributory factors such as using 
stacks of transformer blocks that too with almost double attention heads, leveraging 
bidirectional information, and the use of segment embeddings. 

 

Figure 1: Popular language models used in natural language processing. (a)word2vec being 
the simplest one, uses a shallow feed forward neural network to compute the word embeddings 
using long-linear models like continuous bag of words or skip-gram. LSTM models consider 
the context and are capable of producing better embeddings. The vanilla LSTM model has been 
augmented with improved regularization and expressivity in the different variants. (b) AWD-
LSTM aims at better regularization by employing different kinds of dropouts in inputs, outputs, 
hidden layers, weights, and embeddings. Furthermore, a modified averaged stochastic gradient 
descent is employed during training. (c) mLSTM on the other hand attempts at increasing the 
expressivity of LSTM, by learning different recurrent transformations for different inputs. (d) 
ELMo improves such models further by leveraging bidirectional LSTM layers which enables 
ELMo to produce context-sensitive embeddings for words, unlike word2vec. (e) Transformers 
dispense recurrent layers and use attention instead. This not only makes the computations faster 
but also makes the process parallelizable, which resulted in a huge leap in NLP over the time-
consuming RNN model training. (f) BERT improves the state of the art even further by 
employing stacks of bidirectional transformers. This deeper architecture accompanied by the 
availability of large-scale text corpora makes BERT the de facto standard in language modeling.  
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3 Protein	databases	facilitating	language	modeling	
The primary goal of language model pretraining is to train it with a huge volume of data so that 
the model can learn diversified and distinct patterns in the language. Although managing such 
a high volume of data apparently seems challenging, the pretraining pipeline is simplified as it 
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doesn’t require any labeling of the data. This makes the task easier for NLP as we have huge 
volumes of unlabeled textual information sources like Wikipedia [22], which can be used for 
language model pretraining. Similarly, the combination of the diligent efforts of biologists over 
many decades with next-generation sequencing technologies has resulted in billions of protein 
sequence data. Thus, this opens up a huge scope for employing language models in protein 
sequence analysis. 

Protein sequence databases, SwissProt [23], Pfam [24], and UniRef [25] are among the most 
notable ones. SwissProt is a manually curated protein sequence database, which provides high-
quality annotations of 565,254 proteins. UniRef (UniProt Reference Clusters) provides 
clustering of sequences from the UniProtKB (UniProt Knowledgebase) and selected UniParc 
(UniProt Archive) records, i.e., a total of 216 million proteins, to obtain complete coverage as 
well as removing redundancy. The Pfam database is one of the most widely used resources to 
analyze protein families and domains, having a huge collection of 47 million proteins in 19,179 
families.  

Metagenome databases turned out to be very useful for training models due to their large 
size. BFD [26, 27] is a metagenome database containing around 2122 million protein 
sequences. BFD is the largest protein database at the time of writing, even eight times larger 
than the previous largest merged database [28].  MGnify is another metagenome resource, 
which contains over 1.1. billion sequences [81]. 

When training deep language models, the volume of the dataset plays an important role. For 
example, Heinzinger et al. [2] found that training an ELMo model with the SwissProt dataset 
resulted in less useful models, compared to training the same model with a larger UniRef50 
dataset. For instance, when training the model on UniRef50 dataset a significant improvement 
was observed in downstream tasks such as secondary structure prediction, Localization 
prediction. Elnaggar et al. [13] similarly investigated the impact of database size on 
performance using three datasets, namely UniRef100, UniRef50, and BFD. It was seen that 
UniRef databases, particularly UniRef50 was sufficient and using BFD, which is 10 times 
larger than UniRef50, resulted in an almost minor improvement in classification accuracy and 
membrane protein prediction. But the outcome of using UniRef50 and BFD seemed to be task-
dependent. For secondary structure prediction, UniRef50 performed on par with an existing 
method, NetSurfP-2.0 [83]. On the other hand, UniRef50 declined the model’s performance by 
about 2% on tasks such as subcellular localization prediction, membrane protein prediction 
when a larger ProtT5-XXL model was trained in comparison with BFD.  

 

4 Adapting	Language	Models	for	protein	sequences	
In this section, we highlight some of the major attempts in adapting language models for protein 
sequences to perform prediction tasks. 
 
4.1 ProtVec	(word2vec)	
Asgari et al. [12], for the first time, applied the concept of word embedding in analyzing protein 
sequences. They used the skip-gram-based word2vec model to generate embeddings from 3-
mers of amino acids. The word2vec model was trained on 546,790 manually annotated 
sequences from SwissProt.  In order to tokenize the sequences, they took 3 shifted versions of 
the sequence and broke them into non-overlapping 3-mers. These 3-mers are thus treated as 
words and the broken sequences are treated as sentences, with which the word2vec model was 
trained with negative sampling. In addition to selecting the suitable contexts for a word, 
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negative sampling randomly picks some contexts which are not related to that word, thus it 
enables the embeddings of similar words proximate and dissimilar words distant. The trained 
model, named as ProtVec, can embed 3-mers in 100-dimensional space. The learned protein 
space is also consistent in terms of the distribution of various biophysical and biochemical 
properties such as volume, polarity, hydrophobicity, etc. 

The model was applied in two tasks, protein family classification, and disordered protein 
region prediction. They used the computed 100 dimensional 3-mer vectors, averaged over the 
entire sequence as the input to an SVM classifier. The family classification, applied on 324,018 
protein sequences from SwissProt, spanning over 7,027 protein families, showed an average 
accuracy of 93%, surpassing existing methods. The accuracy of disordered protein prediction 
were 99.8% and 100% on the two datasets they used. ProtVec was later extended to ProtVecX 
[32], which can operate on variable-length segments of protein sequences. The extension of 
word2vec, doc2vec has also been applied for protein sequence analysis tasks, e.g., protein 
localization prediction [33]. 

Since this foundational work of Asgari et al. [12], word2vec were used in diverse prediction 
tasks , including protein-protein interaction binding sites [34], compound-protein interaction 
[35], protein Glycation sites [36], generalized protein classification [37]. Word2vec 
embeddings were used as input for conventional machine learning models such as SVM, KNN, 
Random Forest [38, 39, 40] and also for deep learning models, e.g. CNN [36], RNN [41], and 
Transformers [35]. 

In some works, FastText skip-gram model [42], which represents each word as a bag of 
character n-gram, was also employed to generate embeddings from protein sequences, which 
was later used for different types of analysis [38, 40, 43]. Islam et al. [37] proposed m-NGSG, 
which modifies the k-skip-bi-gram model by employing a combination of n-grams and skip 
grams and demonstrated consistent improvement on tasks including localization prediction, 
fluorescent protein prediction, antimicrobial peptide prediction. Ideally, the embeddings are 
expected to work well in many prediction tasks, but there is a report that a network specifically 
trained on a particular task (kinase-substrate phosphorylation prediction) showed a better 
performance than ProtVec [44]. Ibtehaz et al. [45] analyzed and found that the ProtVec 
embeddings hardly correspond with similarity scores of the k-mers, i.e. the vector similarity 
(cosine similarity) of the embeddings of the k-mers correlates little with the similarity score 
(alignment score) of the k-mers (Pearson correlation coefficient of 0.226). Ibtehaz et al. 
proposed the Align-gram model, which modified the Skip-gram model to make it more aligned 
with protein analysis, making vector similarity and k-mer similarity equivalent (Pearson 
correlation coefficient of 0.902). 

 
4.2 UDSMProt	(AWD‐LSTM)	
Strodthoff et al. attempted to devise a single, universal model architecture to solve diverse 
problems related to proteins. The proposed architecture UDSMProt [29] was based on the 
AWD-LSTM language model [18], which is internally a 3-layer LSTM network, with different 
dropout regularizations (input, embedding, weight, hidden state, and output layer dropout). The 
model was pretrained on SwissProt. 

UDSMProt operates on protein sequence data tokenized to the amino acid level. The 
pretraining aimed towards predicting the next token for a given sequence of tokens, implicitly 
learning the structure and semantics of the language i.e., protein sequences. During various 
downstream prediction tasks, the embeddings obtained from the model were compiled through 
a Concat-Pooling layer and some dense layers were added on top which is trained in the process 



8 

of finetuning. The UDSMProt pipeline was evaluated on three different tasks, enzyme class 
prediction, gene ontology prediction, and remote homology and fold detection. With mere 
finetuning on the problem datasets, the proposed method performs on par with state-of-the-art 
algorithms that were tailored to those specific tasks, even surpassing them in two tasks.  

UDSMProt was later used in the USMPEP [63] pipeline. State-of-the-art result was 
obtained on MHC class I binding prediction, using just a generic model without any domain-
specific heuristics. 

 
4.3 UniRep	(mLSTM)	
Alley et al. [31] trained an mLSTM model with 1900 hidden units, UniRep, on around 24 million 
protein sequences in UniRef50. Despite being trained in an unsupervised manner, i.e., predicting 
the next amino acid from a sequence of amino acids, UniRep embeddings managed to create 
physicochemically meaningful clusters of amino acids and partition structurally similar protein 
sequences. The learned embeddings were able to predict protein secondary structure, the stability 
of natural and de novo designed proteins, and the quantitative function of molecularly diverse 
mutants. It was also shown that UniRep has the potential to enhance efficiency in protein 
engineering tasks, as demonstrated in predicting fluorescence in engineered proteins. The primary 
contribution of UniRep was extracting the fundamental protein features using unsupervised deep 
learning as fixed-length vectors which are both semantically rich and structurally, evolutionarily, 
and biophysically grounded. 

In addition, UniRep embedding-based feature representation has demonstrated improved 
performance in other tasks, anticancer peptides prediction [64], assessing disease risk of protein 
mutation [65], localizing sub-Golgi proteins [66], and Peroxisomal proteins [52]. UniRep 
embeddings correlated with biological features important for protein expression in B. subtilis [67] 
and can also be used to analyze interaction patterns between virus and human proteins [68]. 

 
4.4 SeqVec	(ELMo)	
As mentioned in earlier sections, word2vec embeddings ignore context, which can be solved 
by using a complex language model like ELMo. Heinzinger et al. [2] proposed SeqVec, which 
is an ELMo model trained on protein sequences. The authors basically used the standard ELMo 
implementation. The two-layer ELMo model applied dropout and shared weights between 
forward and backward LSTMs to reduce overfitting. It was trained on the UniRef50 database. 
The SeqVec model can take a protein sequence and returns 3076 features for each residue in 
the sequence. 

The embeddings generated from SeqVec were evaluated in four different tasks, namely, 
secondary structure prediction, disorder prediction, localization prediction, and membrane 
prediction and showed better performance than other sequence-based representations such as 
one-hot encoding and ProtVec. SeqVec runs much faster than evolutionary methods e.g. 
HHBlits [46] and the speed is not affected by the size of the database, thus is massively scalable. 

With the release of SeqVec [2], ELMo has been promptly received as a welcomed addition 
to the bioinformatics analysis toolbox. Zeng et al. [47] used ELMo to learn a context-dependent 
embedding of amino acids for MHC I class ligand prediction. Litmann et al. [48] demonstrated 
that by simply using ELMo and BERT-based embeddings, it is possible to almost reach the 
state of the art in protein function prediction. Again, Villegas et al. [49] leveraged ELMo 
embedding as features for protein function prediction. SeqVec features was also applied to B-
cell epitope prediction [50], and cross-species protein function prediction [51]. Moreover, Elmo 
embeddings were used as input for SVM [52] and Graph Neural Networks [53]. 
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Apart from the standard ELMo architecture, general BLSTM networks have also been used 
in several other protein language modeling tasks. Bepler et al. [75] trained a multitask neural 
network to solve protein structural tasks, contact prediction and structural similarity prediction 
by training on protein structure information. In another work [76], the authors also 
experimented with introducing a two-stage feedback mechanism where they trained a BLSTM 
on protein sequences and contact map information and a proposed ‘soft symmetric alignment’. 
Primarily, the encoder generates embeddings from the amino acid sequence. Later the 
embeddings are used to predict contact maps and compute L1 distance between pairs of proteins 
by the proposed soft symmetric alignment. These error terms are fed as feedback signals to the 
language model, thus making the embeddings more biologically driven. DeepBLAST [77] on 
the other hand, obtained alignments from embeddings learned from the protein language model 
in [75] and integrates them into an end-to-end differentiable alignment framework. 

 
4.5 ESM‐1b	(Transformer)	
Rives et al. [69] trained transformer models on 250 million protein sequences from UniParc 
[3]. Initially, transformer models with 100M parameters were trained and a systematic 
hyperparameter optimization was performed. After finalizing the suitable hyperparameter set, 
the model was scaled to 33 layers, having around 650M parameters. The trained ESM-1b 
transformer managed to learn the biochemical properties of the amino acids. The output 
embeddings allowed to cluster the residues in several groups which are consistent with the 
hydrophobic, polar, and aromatic nature of amino acids. Furthermore, the molecular weight and 
charge information was also reflected across the amino acids. Moreover, the different biological 
variations are encoded in the representation space. Specifically, the embeddings without any 
explicit information managed to cluster the orthologous genes together. Furthermore, the 
learned embeddings are suitable to be used as feature representations for various downstream 
tasks. The authors demonstrated applications of the trained model in remote homology 
prediction, secondary structure prediction, and contact prediction. ESM-1b embeddings were 
used in protein function prediction [70], effects of mutations on protein function [71], contact 
map prediction [72], protein fitness prediction [73], and Lectin-Glycan Binding Prediction [74]. 

A recent work based on transformer language modeling, MSA transformer [84] used 
multiple sequence alignment as inputs to a transformer and significantly improves the 
performance over ESM-1b in unsupervised contact prediction, increasing top-L long-range 
contact precision by 15 points. MSA transformer also outperforms NetSurfP-2.0 in secondary 
structure prediction by increasing in Q8 accuracy by 2%. 

 
4.6 ProtTrans	(BERT)	
Since its introduction, BERT has become the defacto standard model of solving NLP problems. 
Elnaggar et al. [13] ported BERT for protein sequence analysis. They trained two auto-
regressive models (Transformer-XL, XLNet) and four auto-encoder models (BERT, Albert, 
Electra, T5) on data from UniRef and BFD, using roughly 2,122 million protein sequences. The 
authors followed the standard implementations of the transformer models and trained different 
instances on different datasets. Training such networks on the astounding amount of data 
required the assistance of HPC (High-Performance Computing), using 5616 GPUs and TPU 
Pod up to 1024 cores. 
     The embeddings captured various biophysical properties of the amino acids, structure 
classes of proteins, domains of life and viruses, and protein functions in conserved motifs. The 
embeddings were also evaluated on per-residue (protein secondary structure prediction) and 
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per-protein (cellular localization and membrane protein classification) levels. No task-specific 
modifications were performed, rather, the models were used as static feature extractors, by 
extracting embeddings derived from the hidden state of the last attention layer. From the 
experiments, it was observed that both for localization and secondary structure prediction fine-
tuning improved performance. Impressively, embeddings from their trained ProtT5 model, for 
the first time, surpassed the state-of-the-art methods in the secondary structure prediction task, 
without using any evolutionary information. The authors assessed the impact of database size. 
They observed that models trained on UniRef50 were enough and adding the huge amount of 
data from BFD hardly presented noticeable improvements. 

Despite BERT being just recently adopted for proteins, it has rapidly gained popularity. 
Hiranuma et al. [54] used ProtBERT embeddings along with several structural features to guide 
and improve protein structure refinement. Litmann et al. [48] investigated the effectiveness of 
BERT embeddings in Gene Ontology prediction. Charoenkwan et al. [55] used BERT 
embeddings to predict amino acid sequences of peptides that taste bitter without using any 
structural information and greatly outperformed the existing works. Filipavicius et al. [56] 
pretrained a RoBERTa model on a mixture of binding and random protein pairs and achieved 
enhanced downstream protein classification performance for tasks such as homology 
prediction, localization prediction, protein-protein interaction prediction as compared to the 
ESM-1b[69] transformer. Application of BERT embeddings was able to improve several 
peptide prediction tasks [57, 58, 59]. BERT embeddings were also effective as input 
representations for clustering algorithms [60] and graph neural networks [61, 62] for tasks such 
as clustering protein functional families [60], predicting effects of mutation [61], and protein-
protein interaction site prediction [62]. 

Vig et al. [78] analyzed underlying learned information of protein transformer models, 
utilizing attention mechanisms. They analyzed and experimented with transformer models from 
TAPE [30] and ProtTrans [13], with a specific focus on the attention mechanism. Their analysis 
revealed that attention can capture high-level structured properties of proteins, namely, amino 
acids that were nearby in the 3D structure, despite being further apart in the 1D sequence. 
Furthermore, it was found that attention reflects binding sites, amino acid contact maps, and 
amino acid substitution matrices.  
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Table 1: The list of reviewed methods in this article.  

 
 

Embedding Problem Model Additional Features Dataset Ref Source Code/Server 

ProtVec        
(word2vec)  

Protein-protein 
interaction (PPI) 
binding sites 
prediction  

CNN 
RNN 
fusion  

HSP, PSSM, ECO, RSA, 
RAA, disorder, 
hydropathy, physicochemc
ial properties  

Recent publications  [34] 

https://github.com/lucian-
ilie/DELPHI  
 
Server: https://delphi.csd.uwo.ca  

Compound–
protein interaction 
prediction  

Transform
er  Atomic properties  

Human 
dataset, Caenorhabditis 
elegans dataset, BindingDB d
ataset  

[35] 
https://github.com/lifanchen-
simm/transformerCPI  

Protein glycation 
sites prediction  LSTM  -  3 Surveyed Datasets  [36]

  
 Server: 
http://watson.ecs.baylor.edu/ngsg 

Protein 
classification  LR  -  

Subchlo, osFP, iAMP-
2L, Cypred and PredSTP, Tu
morHPD 1 and 2, HemoPI 1 
and 2, IGPred and PVPred   

[37]
  

https://bitbucket.org/sm_islam/m
ngsg/src/master/  

Transporter 
substrate 
specificities 
identification  

SVM  -  

Proteins involved in trans-
porting ion/molecules, 
collected 
from UniProt (release 
2018_10). Dataset 
available in 
: http://bio216.bioinfo.yzu.ed
u.tw/fasttrans/   

[38]
  

 Server: 
http://bio216.bioinfo.yzu.edu.tw/
fasttrans  

Nuclear 
localization signal 
identification  

Multivaria
te 
Analysis  

physicochemcial properties
, disorder, PSSM  

NLSdb 2003, NLSdb 2017, S
eqNLS  

[39]
  

 Server: 
http://www.csbio.sjtu.edu.cn/bioi
nf/INSP/  

Tumor necrosis 
factors idetifcatio
n  

SVM  -  

106 protein from tumor 
necrosis factor family and 
1023 sequences from other 
major cytokine families were 
collected 
from UniProt (release 
2019_05)  

[40]
  

https://github.com/khucnam/TNF
Pred  

MHC binding 
prediction  GRU  MHC Allele embedding  IEDB 

and receent publications  
[41]
  

https://github.com/cmb-
chula/MHCSeqNet  
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Nucleic acid-
binding protein 
identification  

NN  RNA sequence embedding  
RNAcompete dataset, PBM 
dataset and recent 
publications  

[43]
  

https://github.com/syang11/Prob
eRating  

UDSMProt        
(AWD-LSTM)  

MHC binding 
prediction  

LSTM  -  IEDB, HPV  
[63]
  

https://github.com/nstrodt/USMP
ep  

UniRep. 
(mLSTM)  

Anticancer 
peptide 
prediction  

KNN, 
LDA, 
SVM, RF, 
LGBM, 
NB  

Pretrained SSA 
embedding  

AntiCP 2.0 datasets  
[64]
  

https://github.com/zhibinlv/iACP
-DRLF  

Disease risk 
prediction  

MLP  Hydrophilic properties  BRCA1, PTEN  
[65]
  

https://github.com/xzenglab/Bert
VS  

Sub-Golgi 
localization 
identification  

SVM  -  Recent publications  
[66]
  

https://github.com/zhibinlv/isGP-
DRLF  
 
Server: http://isgp-
drlf.aibiochem.ne 

Peroxisomal 
proteins localisati
on prediction  

SVM  SeqVec embedding  

Protein sequences for 
peroxisomal membrane and 
matrix proteins collected 
from UniprotKB/SwissProt da
tabase. Dataset available in 
: https://github.com/MarcoAn
teghini/In-
Pero/tree/master/Dataset  

[52]
  

https://github.com/MarcoAnteghi
ni/In-Pero  

SeqVec         
(ELMo)  

MHC class I 
ligand prediction  

Residual 
Network  

One hot encoding, 
BLOSUM50  Recent publications  [47]

  
https://github.com/gifford-
lab/DeepLigand  

Protein function 
prediction  

Modified 
KNN  BERT embedding  CAFA3  [48]

  

https://github.com/Rostlab/goPre
dSim  
 
Server: 
https://embed.protein.properties  

Protein function 
prediction  

KNN, LR, 
MLP, 
CNN, 
GCN  

One hot encoding, k-
mer, DeepFold features, 
Contact map  

CAFA3  [49]
  

https://github.com/stamakro/GC
N-for-Structure-and-Function  

linear B-cell 
epitope 
prediction  

NN  Amino acid embedding  IEDB Linear Epitope Dataset  [50]
  

https://github.com/mcollatz/EpiD
ope  

Protein function 
prediction  LR  -  SwissProt, cross-species 

datasets  
[51]
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Peroxisomal 
proteins localisati
on prediction  

SVM  UniRep embedding  

Protein sequences for 
peroxisomal membrane and 
matrix proteins collected 
from UniprotKB/SwissProt da
tabase. Dataset available in 
: https://github.com/MarcoAn
teghini/In-
Pero/tree/master/Dataset  

[52]
  

https://github.com/MarcoAnteghi
ni/In-Pero  

Cofactor 
specificity 
of Rossmann-
fold protien predi
ction  

GCN  -  ECOD and literature datasets  [53]
  

https://github.com/labstructbioinf
/rossmann-toolbox  
 
Server: 
https://lbs.cent.uw.edu.pl/rossma
nn-toolbox  

 ESM-1b 
(Transformer)  

Protein function 
prediction  

GAT  
inter-
residue contact graphs  

PDB-cdhit  
[70]
  

  

Effect of mutation 
prediction  

Transform
er  

-  41 deep mutational scans  
[71]
  

  

Contact map 
prediction  

CNN  
One hot encoding, SS3, 
SS8, ASA< HSE, protein 
backbone torsion angles  

ProteinNet, CASP14-FM, 
SPOT-2018  

[72]
  

https://github.com/jas-
preet/SPOT-Contact-Single  
 
Server: https://sparks-
lab.org/server/spot-contact-
single/  

Protein fitness 
prediction  

Ridge 
Regressio
n  

One hot encoding, 
physicochemical represtent
aion   

19 labelled mutagenesis 
datasets  

[73]
  

  

Lectin-Glycan 
binding 
prediction  

MLP  SweetNet features  

Dataset was curated from 
3,228 glycan arrays from the 
Consortium for 
Functional Glycomics databas
e and 100 glycan arrays from 
the Carbohydrate Microarray 
Facility of Imperial College 
London  

[74]
  

https://github.com/BojarLab/Lect
inOracle  

ProtTrans     
(BERT)  

Protein structure 
refinement  CNN  

distance maps, amino acid 
identities and properties, 
backbone angles, residue 
angular orientations, 
Rosetta energy terms, 
secondary structure 
information, MSA 
information  

PISCES  [54]
  

https://github.com/hiranumn/Dee
pAccNet  
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Protein function 
prediction  

Modified 
KNN  ELMo embedding  CAFA3  [48]

  

https://github.com/Rostlab/goPre
dSim  
 
Server: 
https://embed.protein.properties 

Peptide binding 
site identification  

Transform
er  -  peptide complex dataset  [57]

    

Signal peptide 
prediction  CRF  -  

Extended previously 
published dataset with newly 
available sequences 
from UniProt, Prosite and 
TOPDB  

[58]
  

 Server: 
https://services.healthtech.dtu.dk/
service.php?SignalP-6.0  

MHC-peptide 
class II interaction 
prediction  

Transform
er  -  IEDB 

and receent publications  
[59]
  

https://github.com/s6juncheng/B
ERTMHC  
 
Server: 
https://bertmhc.privacy.nlehd.de  

Functional family 
clustering  DBSCAN  -  CATH  [60]

  
https://github.com/Rostlab/FunF
amsClustering  

Effect of mutation 
prediction  LGBM  ProteiSolver features  ProTherm, SKEMPI  [61]

   Server: http://elaspic.kimlab.org  
Protein-protein 
interaction (PPI) 
binding sites 
prediction  

GCN  -  Recent publications  [62]
  

https://github.com/Sazan-
Mahbub/EGRET  

 
 
 

For each method, we listed the problem solved, machine learning model, additional features, dataset, and software availability.  
Abbreviations : CNN = Convolutional Neural Network, RNN = Recurrent Neural Network, LSTM = Long Short-Term Memory, LR = 
Logistic Regression, SVM = Support Vector Machine, GRU = Gated Recurrent Unit, NN = Neural Network, KNN = K-Nearest Neighbors, 
MLP = Multi-Layer Perceptrons, GCN = Graph Convolutional Network, DBSCAN = Density-Based Spatial Clustering of Applications 
with Noise, CRF = Conditional Random Field, LGBM = Light Gradient Boosting Machine, LDA = Latent Dirichlet Allocation, RF = 
Random Forest, NB = Naive Bayes, GAT = Graph Attention  
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5 Conclusion	
Various successful adaptations of the language models in bioinformatics have greatly benefitted 
the analysis of protein sequences and various kinds of predictions. In addition to using embedding 
learning on specific datasets and tasks [79,80], pretraining language models on millions of protein 
sequences can dramatically improve the performance of downstream tasks. 

We have reviewed a total of 33 methods (as summarized in Table 1) that rely on sequence 
embeddings as input, moving away from the traditional bioinformatics pipeline of computing 
PSSM or HMM profiles. Among the various types of embeddings, ProtVec and ProtTrans have 
been used most frequently (in 9 and 8 methods respectively). For various problems, such as 
secondary structure prediction, protein-protein interaction site prediction, previous state-of-the-
art performance have already been surpassed merely using embeddings learned in an 
unsupervised manner. We expect to observe that embedding techniques and pre-trained 
embeddings will be applied in many other tasks and make substantial improvements in the field. 
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