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ABSTRACT

Assessment of the condition of a structure in operation and subsequently its
remaining maintenance free service time, is of increasing importance for various
fields of engineering. The main drivers for this are cost effectiveness, increased
system reliability, system safety and reduced environmental impact. The current
generation of monitoring systems relies on active, power intensive excitation and
wired communication. Systems based on operational vibrations of the structure and
employing a network of smart, autonomously operating and wireless sensors offer
new possibilities, but also pose new constraints. Damage identification methods
are therefore sought that combine local low power usage and low data transmission
with a high reliability. The focus of this paper is on operational vibrations and
modal based Structural Health Monitoring damage identification methods, applied
in large civil structures such as wind turbine towers and bridge decks and, to a
lower extent, in large composite structures. Three methods are compared, both
experimentally and numerically: Peak Picking (PP), Random Decrement — Frequency
Domain Decomposition (RD-FDD) and Random Decrement — covariance based
Stochastic Subspace Identification (RD-SSIcov). The RD-FDD method is found to
be a suitable method for modal based damage identification, given the restrictions on
smart wireless sensor networks.
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INTRODUCTION

Monitoring the structural integrity of infrastructure assets and offshore wind
turbines receives an increasing amount of interest. The motivation is either the
(safe) extension of the lifetime beyond the estimated lifetime (existing structures)
or lowering the operational costs (new structures). Condition based maintenance
strategies, also referred to as ‘just-in-time’ maintenance, are under development
and rely on Structural Health Monitoring (SHM) techniques to monitor the current
state of the structure. These systems are supposed to function without human
intervention, implying a certain level of autonomy, and typically operate under in-
service conditions.

The development of distributed wireless networks helps achieving the
functionalities required [1-3]. However, they also set limitations in terms of data
transmission, robustness and power consumption. A new strategy for developing
structural health monitoring systems is needed [4]. This does not imply a need for the
development of new methods, but for adaptations and different choices, as research
of the past decades has delivered a significant amount of system identification and
damage monitoring systems [5—7].

The objective of this paper is to investigate three vibration based methods for an
SHM system in terms of their performance in a distributed wireless network. The key
target is the balance between the robustness of the system on the one hand and the
power consumption and data transfer on the other hand.

FREQUENCY DOMAIN SYSTEM IDENTIFICATION

A vibration based damage identification method starts with the identification of
the dynamic characteristics of a system. An extensive list of output-only methods, as
under investigation here, is available to transform the time response to one or multiple
modal parameters such as the natural frequency, damping or mode shape [8]. A
graphical overview of (a selection of) these methods is presented in Figure 1 [9].
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Figure 1: Schematic representation of output-only modal identification methods [9]. The dark gray
blocks refer to time-domain functions and the light gray blocks to frequency domain functions,
whereas the intermediate gray colored blocks refer to the transition from time to frequency domain.
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Figure 2: Flow chart of the PP method.

The choice of methods heavily depends on the application in terms of the structure
and the environmental conditions. In this case, the applicability of the method in a
distributed wireless network is a leading constraint. Therefore, three methods are
investigated in more detail:

1. Peak picking (PP)
2. Random Decrement — Frequency Domain Decomposition (RD-FDD)

3. Random Decrement — Covariance based Stochastic Subspace Identification
(RD-SSIcov)

The first method is a rather basic method, implemented here without time averaging.
It will serve as a reference for the other two methods. The RD-FDD and RD-SSIcov
both rely on the Random Decrement method [10] for the time signal averaging. The
RD method is selected for its noise reduction capabilities.

A rudimentary form of Peak Picking (PP) is implemented here (see Figure
2) for referencing purposes. The main advantage of PP for a distributed sensor
network is that the data can be processed locally, saving data transfer [11], while the
requirements for local processing are limited (only FFT). The downside of the method
is that it is likely to miss natural frequencies or to find spurious natural frequencies.
Generally, the PP method is not suitable for more complex structures with a high
modal density: closely separated peaks cannot be distinguished.

The Random Decrement (RD) method is used to acquire the average of an output-
only time signal. The RD method does not rely on a fixed interval between time
windows, as in [12, 13], but on time windows with a common initial or triggering
condition. The method is based on the concept that the response of a system is
composed of three parts: (1) the response to an initial displacement; (2) the response
to an initial velocity; and (3) the response to an initial random input load during
the time window period. The random part in the signal disappears if the signal is
averaged over sufficient time windows. The resulting response can be considered as
the response of the system to the initial condition, as defined by the trigger and hence
contains information on the dynamic behaviour of the system.

The RD signatures can be employed for both time domain (SSIcov) and frequency
domain (FDD) methods. A direct relation exists between the RD functions and the
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Figure 3: Flow chart of the RD—FDD method.
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Figure 4: Flow chart of the RD—SSIcov method.

correlation functions. The auto—correlation function can be determined directly from
the RD response of a single node, while the cross—correlation functions depend on
the response functions of multiple nodes, triggered at the same time.

The Random Decrement — Frequency Domain Decomposition (RD-FDD) [8]
relies on a Singular Value Decomposition (SVD), see Figure 3, increasing the
separation between signal and noise and allowing for the identification of peaks of
closely spaced natural frequencies. The singular values of the SVD grow significantly
at each natural frequency. A peak identification algorithm is used to extract the natural
frequencies. The mode shapes can be obtained from the corresponding singular
vectors. Narrowly separated peaks can be identified by investigating the second
largest singular value close to a peak in the first singular value. This should be carried
out carefully, to avoid spurious modes being identified as real modes.

The most powerful method investigated here is the Random Decrement —
covariance based Stochastic Subspace Identification (RD-SSIcov) [8, 14]. This
method (Figure 4) relies on the correlation functions and uses a state space
formulation for the dynamic model. The RD-SSIcov method has proven to be
powerful, but it is computationally heavy, has limited possibilities for decentralised
processing (as it relies on cross-correlations) and requires tuning.

DAMAGE IDENTIFICATION - NUMERICAL EXAMPLE

The Modal Strain Energy — Damage Identification method [15] is employed,
as it is proven to be a powerful method for vibration based damage detection and
localisation. The performance of the three methods is assessed with a 10 degree
of freedom mass—spring—damper model. The masses are all set to 1 kg, the spring
constants to 1.0-10° Nm™' and the damping to 20 Nsm™'. The damage is modelled
as a stiffness reduction of the spring between the 6" and the 7" degree of freedom.
Each degree of freedom is loaded with a white Gaussian noise with zero mean. The
resulting normalised damage indices are shown in Figure 5.

The RD-FDD and RD-SSIcov clearly outperform the PP method - according to
the expectations. The difference between the two methods is assessed by varying the
amount of stiffness reduction (1%, 3%, 5% and 10%), see Figure 6. The RD-SSIcov
does perform better, but both methods fail for the lowest stiffness reduction of 1%.
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Figure 5: Normalised damage indices for a 10—dof system with a 5% stiffness reduction of the spring
element between the 6" and 7% degree of freedom.
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Figure 6: Normalised damage indices for: (a) various stiffness reductions using RD-FDD; (b) various
stiffness reductions using RD-SSIcov.

DISTRIBUTED SENSOR SYSTEMS

One of the key issues in the success of wireless autonomous sensor networks
is the level of distribution of tasks. In general, the bottleneck is the local power
supply, combined with the relative high power consumption of data transfer [11].
Local processing reduces the amount of data transferred and therewith lowers the
power requirements. The PP method allows for a high level of local processing:
the time data y(¢) acquired at a node is converted to a frequency response Y (w) by
an FFT (see Figure 2). A peak identification algorithm is then applied, after which
only the frequencies at which a peak is identified are sent to the central unit. The
frequency response Y (w) is only requested by the central unit for those frequencies
that are identified as real (rather than spurious) natural frequencies and are considered
to be relevant for the problem. This information is used to construct (for example)
the mode shapes.

The distribution of tasks is slightly more complex for the RD-FDD method. The
nodes collect time signals y(t) of length At and construct the decrement functions
D, (7) (see Figure 3) both depending on a trigger signal of the nodes itself and on
those of other nodes. The Fourier transformation, the estimation of the power spectral
density G, (w), the SVD and identification of peaks are performed locally. The result
is sent to the central processing unit, after which a similar procedure follows as for
the PP method to acquire the relevant mode shape information. Synchronisation
is important, due to the triggering, but appropriate protocols are available for that
purpose [11,16].



TABLE I: DATA TRANSFER AND DECENTRALISATION OF TASKS FOR THE PP, RD-FDD
AND RD-SSICOV METHODS.

Function Data transfer

Local Central Data Amount Direction

FFT Select w,, Wheak NpNyN/  Node—scentral
& PSD Request Y (w;,) Wn NpNyN, g " Central—nodes

Peak picking Y (wn) NpNyN g " Node—scentral

auto—RD Select wy, Trigger NnN{ Node—nodes
8 FFT Request Y (wy,) Wpeak NpNyN g " Node—scentral
I PSD wn NpNyN/  Central—nodes
& SVD Y (wn) NpNyN/  Node—central

Peak picking

auto—RD Select wy, Trigger Nn N Node—nodes
§ cross—RD Build mode shape D ;(7) 2N, NnyN bf Node—node
g Covariance Wstab NpNyN, bf Node—central
Ql Hankel matrix wapor(wn)  2NpNyN, zf Node—scentral
~ SVD

Stability diagram

The RD-SSIcov relies on cross-correlations, implying a relative large amount
of internodal communication. The random decrement auto- and cross-correlations
Dj;(7) are determined (see figure 4). These can be sent to the neighbouring node,
after which the covariance matrix A,, and the Hankel matrices H, and H, are
determined. The modal parameters are locally extracted by an SVD and a stability
diagram procedure and sent to the central unit. Alternatively, the random decrement
functions can be sent to the central unit, where the subsequent steps of the procedure
are performed for all nodes, requiring a significantly higher amount of data transfer.

An estimate of the data transfer of the three methods is summarised in Table I.
The number of extracted peaks Np is not necessarily equal to the number of natural
frequencies N, especially if only a subset is used for the extraction of other modal
parameters such as the mode shapes. Ny is the number of sensor nodes, /N, the
number of timesteps in an RD time window and le and N} are the number of bytes
required for a floating point number and a trigger signal respectively. The location
(at the node or at a central unit) where the different function in each procedure is
performed is also indicated. The amount of data transfer is higher for the RD—FDD
and RD-SSIcov methods, but it also involves data transfer between nodes, which
is likely to require less power than sending the information directly to the central
unit. Furthermore, the number of decentralised operations to be performed increases,
although it should also be noted that the work required cannot be compared directly,
as the PP takes the FFT from the entire time signal, whereas the RD—FDD and RD-
SSIcov calculate the FFT from multiple significantly shorter time windows. However,
it can still be concluded that the number of decentralised operations is increasing with
the complexity of the method.
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Figure 7: The normalised damage index for the PP, RD-FDD and RD-SSIcov for two different damage
cases: added mass (a) between node 4 and 5 and (b) between node 7 and 8.

EXPERIMENTAL RESULTS

The three methods were also tested in the lab on a small scale wind turbine
tower [7]. The model consists of a 1.8 m high steel tube with a wall thickness of
5 mm and is bolted to a concrete plate. The structure can be modified by adding
steel rings of 2.6 kg (16.25% of the weight of the pole), to mimic a damage, similar
to the procedure followed in [17, 18]. The measurements were performed with wired
sensors and the three methods discussed are applied in centralised form. The objective
of the test is to validate the methods. The normalised damage index is shown in Figure
7. The added mass is placed at two different location (between node 4 and 5 and
between node 7 and 8). Once again, the RD—FDD and RD-SSIcov outperform the PP
method, whereas the difference between the RD—FDD and RD-SSIcov is marginal.

CONCLUSIONS

It is shown in this article that the design of a distributed wireless sensor network
for SHM applications requires the evaluation of the level of decentralisation: which
functions can be performed locally and how can the amount of data transfer be kept
at a minimum, without losing robustness of the system. Two methods, the RD—
FDD and RD-SSIcov were proven to be suitable solutions for an output-only based
application in terms of robustness, but the RD-FDD (1) requires a lower amount of
data transfer, (2) does not rely on cross—correlations and (3) requires significantly
less local operations and is therefore favourable in a wireless network in which power
resources are generally a limiting factor. Current research within TNO is focussed on
implementing the algorithms in wireless sensor nodes and applying and testing them
on a steel bridge deck, together with other SHM techniques [19].
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