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Abstract. It is important to consider the effect of size when estimating the ultimate
strength of a concrete member under various loading conditions. Well known as
the size effect, the strength of a member tends to decrease when its size increases.
Therefore, in view of recent increased interest in the size effect of concrete this
research focuses on the size effect of two main classes of compressive strength of
concrete: pure axial compressive strength and flexural compressive strength.

First, fracture mechanics type size effect on the compressive strength of cylindri-
cal concrete specimens was studied, with the diameter, and the height/diameter ratio
considered as the main parameters. Theoretical and statistical analyses were con-
ducted, and a size effect equation was proposed to predict the compressive strength
specimens. The proposed equation showed good agreement with the existing test
results for concrete cylinders.

Second, the size, length, and depth variations of a flexural compressive member
have been studied experimentally. A series of C-shaped specimens subjected to
axial compressive load and bending moment were tested. The shape of specimens
and the test procedures used were similar to those by Hognestad and others. The
test results are curve-fitted using Levenberg–Marquardt’s least squares method
(LSM) to obtain parameters for the modified size effect law (MSEL) by Kim and
co workers. The results of the analysis show that the effect of specimen size, length,
and depth on ultimate strength is significant. Finally, more general parameters for
MSEL are suggested.

Keywords. Size effect; specimen size; cylindrical specimen; C-shaped
specimen; axial compressive strength; flexural compressive strength.

1. Introduction

It is a well known fact that there is an effect of size differences in nominal strength of specimens
made with quasibrittle materials such as concrete, rock, ice, ceramic, and composite materials
∗For correspondence
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(Baz̆ant 1984; Băzantet al1991; Băzant & Xi 1991). More specifically, the nominal strength
of laboratory size specimens differ from that of larger structural members used in construction
of real structures. The difference in the nominal strength is a direct consequence of energy
release into a finite-size fracture process zone (damaged localized zone). In the early 1980’s,
it became clear that the size effect on the nominal strength of quasibrittle materials failing
after large stable crack growth is caused principally by energy release (Baz̆ant & Xi 1991)
and cannot be explained by Weibull-type statistics of random micro-defects. Ever since, the
problem of size effect has received increasing attention (Baz̆antet al1991; Băzant & Xi 1991;
Baz̆ant & Chen 1997). Description of such a size effect requires energy analysis of fracture
mechanics type.

Most concrete structural members experience combined loading conditions composed of
compression, tension, moment, and shear. Especially, in the case of reinforced concrete mem-
bers, the fundamental idea of concrete resisting compressive stress and steel resisting tensile
stress is the basic foundation of reinforced concrete structural design. Fracture mechanics-
based formulation of size effect theory has not been studied rigorously for compression loaded
members.

Gonnerman (1925) experimentally showed that the ratio of the compressive failure stress
to the compressive strength decreases as the specimen size increases. This phenomenon of
reduction in strength dependent on specimen size is called the “reduction phenomenon”. Due
to the fracture mechanics-based derivation of size effect law, however, earlier researchers have
focused more on pure tension and shear loading conditions rather than compressive loading
condition. Only recently, studies (Cotterell 1972; Baz̆ant & Xiang 1994; Jenq & Shah 1991;
Baz̆ant & Xiang 1997) on compressive loading based size effect became a focus of interest
among researchers.

Currently, researchers in the field accept the conclusion that the failure of concrete loaded
in tension is caused by strain localization resulting in a finite size fracture process zone
(FPZ). In the last few years, many researchers (Hillerborg 1988, Baz̆ant 1989; Rokugo &
Koyanagi 1992; Vonk 1992; Van Mier 1992; Baz̆ant 1993b) have started to realize that the
strain localization also occurs for concrete specimens loaded in compression. Unlike failure
caused by pure tension loading which usually takes place in a relatively narrow localized zone,
compressive loading failure occurs within a larger damage zone. The compressive failure
shows a similar failure mechanism as tensile failure. In both cases, the failure is caused by
the distributed splitting cracks in the direction of member length as the lateral deformation
increases during the failure progression. However, the compressive failure mechanism is more
complex than tensile failure mechanism. Size effect of compressive failure is not as distinct as
in tensile failure, because the formation of microcracks in compressive failure is distributed
in a wider region than in tensile failure.

Presently, most design codes for concrete structures do not consider the effect of size.
Since quasibrittle materials fail by formation of cracks, size effect has to be implemented.
In compressive failure of quasibrittle materials, the size effect is quite apparent. Though the
behaviour of compressive failure has been studied extensively, the failure mechanism and
its size effect have been insufficiently studied when compared to tensile failure mechanism.
However, endeavouring studies by some researchers have continuously expanded knowledge
in the field (Băzant 1987; Băzant 1993a; Băzant & Xiang 1997). Experimental data for proper
analyses of size effect is correctly lacking however. From the few available experimental data,
it is apparent that compressive strength decreases as specimen sizes increase.

The focus of this study is to further develop and clarify compressive size effect in quasibrittle
materials. Compressive strength of concrete can be mainly classified into two main classes:
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Figure 1. Illustration of similar specimen
series (horizontal) and dissimilar specimen
series (diagonal).

pure axial compressive strength and flexural compressive strength. In the case of pure axial
compressive strength of concrete, there are abundant experimental data from past studies to
derive its size effect characteristic. However, for the case of flexural compressive strength of
concrete, experiments must be performed to obtain sufficient data to study its size effect.

2. Theoretical investigation on size effect

In materials such as metals the size effect is not observed in the absence of initial cracks.
The failure of such materials occurs not due to cracking, but due to considerable plastic
deformation. It is well-known, however, that concrete shows size effect even when it has no
initial crack.

Baz̆ant (1984) derived size effect law (SEL) from dimensional analysis and similitude
arguments for geometrically similar structures of different sizes with initial crack considering
the energy balance at crack propagation in concrete.

σN = Pu/bd = Bf ′
t / [1 + (d/λoda)]

1/2 , (1)

where,σN is nominal strength,Pu is maximum load,b is thickness of specimen,d is charac-
teristic dimension,f ′

t is direct tensile strength of concrete cylinder,da is maximum aggregate
size, andB andλo are empirical constants.

In fact, concrete specimens without initial crack are not considered to have the same relative
crack length, but rather the same initial lengths for cracks such as pre-existing interfacial
bond cracks. It is thus necessary to take into account the influence ofa/d on the size effect
for concrete specimens without initial cracks. This can be done by taking the parameterλo

in Baz̆ant’s equation as a function ofa/d, implying a smaller value ofλo as the specimen
size increases. As a consequence, Baz̆ant’s size effect law can be modified in the form of the
following equation by introducing a monotonically decreasing functionf (a/d),

σN = Bf ′
t / [{1 + (d/f (a/d)da}]1/2 . (2)

To explain the concept of (2), specimen series are considered as shown in figure 1. These
are three geometrically similar specimen series denoted by A, B, and C, with different crack
length/specimen depth ratiosa/d. The size effect for each series follows Baz̆ant’s size effect
law, as the functionf (a/d) for each series has some constant value. However, the diagonal
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Figure 2. Trend of modified size
effect in concrete structures of differ-
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specimen series consisting of the specimens denoted byA1, B2, andC3 may show the size
effect in accordance with (2), as these have the same crack length but differenta/d ratios.

The size effect of real concrete specimens without initial cracks can be evaluated from
such diagonal specimen series with initial cracks dissimilar to the specimen sizes. In other
words, if specimensA1, B2, andC3 have the same maximum aggregate size, the same initial
crack length can be assumed, as the crack can be taken as pre-existing, such as an interfacial
bond crack. On the other hand, the initial crack lengthao is clearly distinguished from the
advanced crack length at failurea. However, there seems to be no difficulty in discussing the
geometrical similarity of the specimen series in figure 1, as the two crack lengthsao anda

can both be expressed analogously as a function of the maximum aggregate size.
Figure 2 shows the trend of modified size effect for the diagonal specimen series. Accord-

ing to Băzant’s size effect law, nominal strengths at failure for each row specimen series
should behave as shown by dotted lines in figure 2. The value off (a/d) corresponding to
λo decreases gradually from series A (largea/d) to series C (smalla/d). Thus, the real size
effect for the specimensA1, B2 andC3 can be predicted with the modified size effect curve
of (2), which provides a smooth transition from series A to series C showing a gradual trend
in size effect due to the decreasing value off (a/d). Unfortunately, it is very difficult to
derive the functionf (a/d) exactly. The crack length at failurea is also not easily measured
experimentally. Thus, a new empirical formula is suggested for the purpose of regression
analyses within some practical range of sizes. There is little difference in strength reduction
trends.

Thereafter, introducing the size independent strengthσo(= αf ′
t ), Kim & Eo (1990) and

Kim et al (1989) proposed an MSEL (modified SEL), which was also proposed by Baz̆ant
(1987), Băzant (1993a), and Baz̆ant & Xiang (1997) in a different approach, given by

σN = {
Bf ′

t / [1 + (d/λoda)]
1/2} + αf ′

t , (3)

whereα is an empirical constant less than unity.
The value ofλoda in (3) can be taken as constant, as the existing test data show little effect

on the width of microcrack zone for the aggregate size usually used in construction. Equation
(3) can therefore be expressed as follows:

σN = {
Bf ′

t / [1 + (d/ lo)]
1/2} + αf ′

t . (4)
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Jenq & Shah (1991) explained size-independent strength differently, based on the fracture
behavior of concrete: the nominal strengthσN was considered the sum of the size-independent
and the size-dependent strengths, namely the former for the uncracked state and the latter
for the cracked state,lo being a characteristic length which can also be determined from
regression analyses.

It can be seen from figure 2 that the size effect is insignificant for both very small and very
large specimen sizes with the modified formula, as compared with the pronounced strength
reduction, especially for very large sizes, with Baz̆ant’s formula. Furthermore, the size effect
for transition sizes is apparent, but slightly decreased by the modified formula. This is because
the ratio of the initial bond crack length to the specimen size gradually becomes smaller.

From the above discussion and the fact that cement-aggregate interfacial weakness can
probably cause initial cracks through concrete, it is apparent that the size effect for concrete
specimens with no initial artificially-made cracks occurs as a rather milder strength reduction
than the severe one predicted by the previously derived size effect law. The validity of the
above theoretical investigations was demonstrated by regression analyses on available test
data for splitting tensile strength, shear strength, and uniaxial compressive strength (Kimet al
1989; Kim & Eo 1990).

3. Size effect on axial compressive strength

In the derivation of (1), the hypotheses include that total energy release is proportional to the
area of the fracture process zone,λodaa whereλo is a constant anda is the length of crack
band. However, it seems to be reasonable to assume that the fracture process zone width does
not vary linearly with the maximum aggregate sizeda since cracks occur at a narrow strain-
concentrated region. In other words,λo is a function of the maximum aggregate size rather
than a constant. Therefore, the width of microcrack zoneλoda can be simply expressed as
λ1d

m
a (m = constant, 0< m < 1) even though it needs to be analysed more precisely by

experiments or by theoretical means. Theλ1 may be, of course, a function of the strength of
concrete since the microcrack zone for high-strength concrete is smaller than that of normal-
strength concrete.

For the uniaxial compression strength, substituting forf ′
t in (3) for the compressive strength

of standard cylinderf ′
c , Kim & Eo (1990) and Kimet al (1989) proposed a model equation

for prediction of compressive strength of cylindrical concrete specimens with height/diameter
h/d of 2.0. Since the main crack in uniaxial compression usually occurs at stress of 0.7 ∼
0.85f ′

t , size independent strengthαf ′
c can be taken as 0.7 ∼ 0.85f ′

c . However, tests by Smadi
& Slate (1989) have shown that the value ofα increases with increasing concrete strength.
Thus, size independent strengthαf ′

c can be expressed asα(f ′
c)f

′
c . From the above discussion

and the previous model equation (Kimet al1989; Kim & Eo 1990) the nominal compressive
strength of cylindrical specimens withh/d of 2.0 can be expressed as follows,

fo =
{
Bf ′

c/
[
1 + (d/λ1(f

′
c)d

m
a )

]1/2
}

+ α(f ′
c)f

′
c , (5)

wherefo is compressive strength of a cylindrical concrete specimen with diameterd.

3.1 Derivation of modified size effect law for non-standard cylinder specimen

Equation (5) can be applied to predict uniaxial compressive strength of cylindrical concrete
specimens withh/d of 2.0. In order to apply for cylindrical specimens with differenth/d, the
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Figure 3. Characteristic length of general cylindrical specimens subjected to uniaxial compressive
load.

equation should be modified to reflect the width of the microcrack zone and the characteristic
dimension which provides the main crack zone.

When a cylindrical concrete specimen is subjected to uniaxial compression loads, it tends
to expand in the lateral direction. However, there exists a frictional force between the machine
platens and the specimen. This frictional force creates a lateral compressive force which is
responsible for the formation of a cone at failure. When the lateral constraint is eliminated,
the lateral compressive force disappears and a splitting type rupture is obtained. However, it
seems to be valid to assume that the lateral constraint is produced to some extent since it is
very difficult to eliminate the frictional force in practice.

In figure 3, when the frictional force is produced at failure, the characteristic dimension is
represented by(hi − βdi) . It can be replaced byhi or di especially when the specimens are
geometrically similar since the ratios of the characteristic dimension(h1 −βd1)/(h2 −βd2),
h1/h2 andd1/d2 have the same value. But(h1 − βd1)/(h2 − βd2) is not equal toh1/h2

if the specimens have the same diameter(d1 = d2) as shown in figure 1b. In other words,
the specimen which exhibits the size effect when the size is twice the size of the specimen
denoted ABCD, is not the specimen denoted A′′′B′′′C′′′D′′′ which satisfiesh2 = 2h1, but the
specimen denoted A′B′C′D′ or the specimen denoted A′′B′′C′′D′′, which satisfies(h2−βd2) =
2(h1 − βd1) or (h′

2 − βd1) = 2(h1 − βd1) respectively. This conclusion results from the
condition that only the effects of the microcrack zone width and the characteristic dimension
are considered to be factors influencing the size effect.

On the other hand, the size effect in uniaxial compressive strength is affected by the end
restraints and energy release zone (denoted by dotted area in figure 3b, as well as the micro-
crack zone width and the characteristic dimension. Unless the confinement effect and the
energy release zone are considered, the specimens A′B′C′D′ and A′′B′′C′′D′′ show the same
size effect because this effect is only a function of the microcrack zone width and the charac-
teristic dimension. The areas denoted A′E′D′ and A′′E′D′′ represent the confinement effects
for specimens A′B′C′D′ and A′′B′′C′′D′′ respectively. Thus the specimen A′B′C′D′ has greater
load resistant capacity than the specimen A′′B′′C′′D′′, as the confinement is related to the
volume, i.e.,(d2/d1)

3 while the stress is related to the area, i.e.(d2/d1)
2. But if the energy

release zones are considered for the specimens, the specimen A′B′C′D′ has more energy per
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unit volume, that is, lower load resistant capacity per unit area (i.e. stress), than the specimen
A′′B′′C′′D′′, since the same energy is required for the unit crack to be created. As a result,
the effects of confinement and energy release zone on the size effect of uniaxial compres-
sive strength are considered to be contradictory to each other. Furthermore, it is difficult to
consider them for derivation of a size effect model as they have minor importance within a
practical size range compared with the effects of microcrack zone width and the characteristic
dimension. Consequently, (5) can be written as,

fo = Bf ′
c/

[
1 + (d/λ1(f

′
c)d

m
a )(h/d − β)

]1/2 + α(f ′
c)f

′
c . (6)

It should be noted that the application of (6) is limited for casesh ≥ βd as shown in figure 4(b)
and (c). Ifh < βd as shown in figure 4a, the confinement zone extends through the specimen
to lead failure by crushing, not by cracking. In this study, the value ofθ shown in figure 3
was approximately selected as 45◦.

3.2 Considering the effects of maximum aggregate size and concrete strength

From the statistical analyses of existing experimental data of Gonnerman (1925, 172 spec-
imens), Blanks & McNamara (1935, 26 specimens), Department of the Interior (1965, 20
specimens), Kesler (1959, 337 specimens), and Murdock & Kesler (1957, 123 specimens)
the empirical constants in (6) were determined. In this case, data numbers of specimens with
h/d = 2 andh/d 6= 2 are 222 and 456 respectively, and the range of the maximum aggre-
gate size is between 12.7 and 76.2 mm. From the regression analyses based on (6), it can be
observed that the power ofda is m = 0.00055. This means that since the value ofd0.00055

a

approaches 1.0, the effect of maximum aggregate size can be neglected within the practical
range of size. It was shown that the effect of the concrete strength in (6) is also negligible.

3.3 Without considering the effect of maximum aggregate size and concrete strength

From statistical analyses, the following equation was derived for the same test results in the
above section,

fo = 0.4f ′
c/ [1 + (h − d)/50]1/2 + 0.8f ′

c , (7)

where,fo and f ′
c are in MPa, andh and d are in mm. Figure 5 shows a comparison of

the analytical and experimental values for plain concrete. The comparison indicates that
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the proposed equation gives a good prediction. Figure 6 shows the relationship between
1 + (h − d)/50 andfo/f

′
c . From the same figure, it can be seen that most of the data are

concentrated in a certain particular range since the diameters of most cylinders used in tests
were 76,100, and 150 mm. When the value ofh/d approaches 1.0, it is shown that the scatter
of data is increased due to the effects of the confinement and energy release zone. Figure 6
also shows that the compressive strength of concrete would be 80% of the laboratory test
results, since the confinement effects by frictional force would be negligible if the ratio,h/d,
becomes very large.

4. Size effect on flexural compressive strength

In figure 7a, three different sizes of reinforced concrete beams are shown schematically. Rein-
forced concrete beams having different lengths with equal cross-sectional areas are shown in
figure 7b. Reinforced concrete beams having the same lengths and thicknesses with differ-
ent depths are shown in figure 7c. For over-reinforced concrete beams, the flexural strength
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Figure 7. Reinforced concrete beams. Effect of(a)size,
(b) length, and(c) depth.

is related directly to concrete strength between the two vertical loads and the neutral axis.
However, in the case of under-reinforced beams the flexural strength is controlled mainly by
the amount of tensile reinforcements. Therefore, the size effect of flexural strength for over-
reinforced concrete beam is directly related to that of compressive strength in the compressive
region. Also, the size effect of under-reinforced concrete beam is related to that of com-
pressive strength, because the higher strength directly results in producing a longer moment
arm.

For experiments on concrete beams (figure 7) subjected to flexural loads, the size, length,
or depth effect cannot be evaluated systematically due to change in the location of the neutral
axis of the cross section as member sizes, reinforcement ratios, applied loading increments,
loading point locations etc. vary. To resolve these problems, a series of experiments for
C-shaped concrete specimens (figure 8) subjected to axial load and bending moment are
performed. The position of the neutral axisc is kept fixed by continuously monitoring strains
on one surface of the C-shaped specimen and adjusting the eccentricity of the applied force
so that the strain on the neutral surface remains zero.

4.1 Main test variable

The shape of specimens and the test procedures used are similar to those of Hognestadet al
(1955), Kaaret al (1977), and Swartz (1985). The main test variable is a size ratio of 1:2:4 of
the specimen to study the effect of size, where specimen depths are varied from 5 to 10 to 20
cm (figure 8a). The heighth and widthc are changed proportionally. Specimen length:depth
ratios of 1:1, 2:1, 3:1, and 4:1 are used to study the effect of length, when constant depth
(c = 10 cm) is maintained and specimen lengths are varied from 10 to 20 to 30 to 40 cm
(figure 8b). Specimen length : depth ratios of 1:1, 2:1, and 4:1 are used to study the effect of
depth when constant height (h = 20 cm) is maintained and specimen depths varied from 5
to 10 to 20 cm (figure 8c). The thicknesses of all specimens are kept constant (b= 12.5 cm)
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Table 1. Concrete mix proportions.

Unit weight(kg/m3)

w/c (%) s/a (%) W C S G∗ SP ∗∗ (%)

37 40 178 480 676 1014 1
∗Maximum aggregate size of 13mm;∗∗super-plasticizer (ratio
of cement weight)

to eliminate the out-of-plan size effect. The specimen thicknessb is chosen to allow stable
failure. The average concrete compressive strengths for the size, length and depth effect are
52, 58, and 55 MPa respectively.

4.2 Mix design

The concrete mix proportions selected for the C-shaped and 28-day compressive strength
cylinder specimens are listed in table 1. Type I Portland cement is used. Maximum aggregate
size da is 13 mm and superplasticizer and vibrator are used to improve workability and
consolidation of concrete.

All beam specimens and test cylinders are removed from the mold after 24 h and wet-cured
(specimens for size and length effect) and dry-cured (specimens for depth effect) in a curing
room for 28 days until the testing date. Concrete compressive strengthf ′

c , splitting tensile
strengthfct , and elastic modulusEc are determined based on an averaged result of three
identicalφ10×20 cm cylinders from the same batch. Table 2 tabulates the experimental data
of f ′

c , fct , andEc of the concrete cylinders where concrete from the same batch is used to
cast C-shaped specimens for size, length, and depth effect tests. It is important to note that the
tests on cylinder and C-shaped specimens for size, length, and depth effects are performed
approximately 28 days after casting.

4.3 Details of test specimens

The dimensions, shape, and loading point locations of C-shaped specimens used in the exper-
iments are shown in figure 8. The inner vertical thick solid lines of the hollow circle in figure 8
represent the locations where strain gauges are attached to the sides of specimens. More than
three specimens per specimen size are prepared, because they are the minimum data points
required for data curve fitting. The mid-height of C-shaped specimens which is the critical
section under compression is not reinforced. Flexural and shear reinforcements are inserted
at both ends of the specimen to eliminate undesired premature shear failure at the two end
sections and ensure failure in the mid-height of the specimen. During testing, strains are mea-
sured up to failure at mid-height of specimen by twelve strain gauges. Two LVDTs are used
to monitor the horizontal displacement at mid-height. This information is used to adjust the
load lever arm distancesa1 anda2 for calculation of bending moments.

Table 2. Physical properties of concrete.

f ′
c (MPa) fct (MPa) Ec(×104) (MPa)

Size effect 52.0 5.0 3.10
Length effect 58.0 6.0 3.04
Depth effect 55.0 5.0 3.10



478 Jin-Keun Kim and Seong-Tae Yi

4.4 Test procedure

Displacement-controlled load application is used. Strain increments measured on the mid-
height of specimen are 50× 10−6 mm/mm for all sizes in the elastic region. However, near
the peak stress and post-peak regions, strain increments are gradually reduced to ensure
consistent failure in specimens of equal size. The major axial compressive loadP1, shown
in figure 8, is applied using a universal testing machine (UTM) with a capacity of 2500 kN
using a displacement control method. The minor loadP2, also shown in figure 8, is applied
using a hand-operated hydraulic jack of 200 kN capacity.

The testing procedure is as follows:

(1) An increment of loadP1 is applied.
(2) P1 is maintained while incrementally applying loadP2 and monitoring the strain value

from the attached strain gauges on the tension face.
(3) On reaching zero strain value (on the average), the loadP2 is maintained whileP1 is

further increased.
(4) This procedure is repeated until the specimen fails.

4.5 Size effect of flexural compressive strength

In order to obtain an analytical equation which can predict the flexural compressive strength
of C-shaped specimens at failure, MSEL is used, and least squares method (LSM) regression
analyses (IMSL Library; Benjamin & Cornell 1970) are carried out with 20 test data points.
The width of the crack bandlo is empirically known to be related to maximum aggregate
size, e.g.,lo = λoda in whichλo is approximately constant (2.0–3.0) (Baz̆ant 1984; Kimet al
1999). In the regression analyses this constant was chosen as 2.0 × da(= 2.6 cm). Equation
(8) is obtained from the analyses. The results are given in figure 9.

σN = [
0.70f ′

c/ (1 + (c/2.60))1/2] + 0.47f ′
c , (8)

where nominal flexural compressive strengthσN and uniaxial compressive strengthf ′
c are in

MPa, and depth of C-shaped specimenc is in cm.
From the size effect law of Baz̆ant and nonlinear regression analyses with the same data,

(9) below is obtained,

σN = 0.96f ′
c/ (1 + (c/22.27))1/2 . (9)
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Figure 9. Comparisons of experiments with various
equations.
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Earlier (Kim et al 1999), proposed (7) to obtain the compressive strength of cylindrical
concrete specimens with various diameters andh/d. For this purpose, the effects of the
maximum aggregate size on the fracture process zone (FPZ) were considered and the concept
of characteristic length was newly introduced.

Figure 9 shows the valueσN/f ′
c as a function of the depthc which is measured from the

neutral axis to the compressive edge of the member. In this figure, the hollow circular data
points, the thick solid line, the thin solid line, and the dashed line represent experimental data,
and the results from (8), (9), and (7) respectively, as illustrated.

From figure 9, the results indicate a strong size effect condition. Especially, the new equation
equation (8) shows best agreement with the experimental results. The reduction of flexural
compressive strength at failure as the specimen size increases is stronger than that for uniaxial
compressive strength. This is due to an FPZ for uniaxial compressive strength of cylinders
is larger than that for flexural compressive strength of C-shaped specimens. Comparing (8)
and (9), it can be seen that the size effect obtained from (8) is in better agreement with the
experimental result than that from (9).

It is observed that for specimens having no initial crack or notch, use of the MSEL to
predict their behaviour is appropriate.

4.6 Size effect on ultimate strain (εcu) for flexural compression

Since ultimate strain on the compressive outer layer of concrete beams subjected to flexural
load is also affected by cracking, the size effect model for the ultimate strain can also be
applied to the size effect law similar to that for stress (strength). In order to obtain a size effect
equation that predicts the ultimate strain of C-shaped specimens at failure, LSM regression
analyses are carried out, and (10) below is obtained. The relationship betweenεcu/εco and
c/20 is given in figure 10.

εcu = [
1.70εco/ (1 + 17(c/20))1/2] + 0.60εco, (10)

whereεco is the average ultimate strain for specimens withc = 20.0 cm.
In figure 10, the hollow circular data points, the thin solid line, and the thick dashed

line represent experimental data and results from (8) and (10), respectively. This shows that
ultimate strain decreases as the specimen size increases. The pattern is similar with flexural
compressive strength. MSEL can be also used for the size effect of ultimate strain of C-shaped
specimens.
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Figure 10. Comparison of ultimate strain with depth.
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4.7 Length and depth effect of flexural compressive strength

Markeset (1995) and Markeset & Hillerborg (1995) experimentally showed that the post-
peak energy per unit area is independent of the specimen length when the slenderness
ratio is greater than approximately 2.50 for concrete cylinders. Jansen & Shah (1997) also
experimentally showed that pre-peak energy per unit cross-sectional area increases propor-
tionally with specimen length and post-peak energy per unit cross-sectional area does not
change with specimen length for lengths greater than 20.0 cm in concrete cylinders. In this
study, we conclude that flexural compressive strength does not change for specimens hav-
ing a length greater than 30.0 cm for C-shaped reinforced concrete specimens as shown in
figure 11.

The modified size effect equation proposed by Kim & Eo (1990) and Kimet al (1989)
is used as the basic equation for the regression analyses of the experimental results of both
length and depth size effect. The predicted depth size effect equation is given as

σN(c) = [
Bf ′

c/ (1 + (c/ lo)λ(c))1/2] + αf ′
c , (11)

where the functionλ(c) represents the size of fracture process zone with a strain gradient
andB andα are empirical constants of MSEL calculated as 0.70 and 0.47 (Kimet al 2000)
respectively. In the regression analyses,lo is chosen as 2.6 cm.

Due to the microcrack concentration at the failure zone which intensifies the strain gradient,
the size effect becomes distinct. More specifically, if the value ofc increases, then the strain
gradient and size effect decrease. Therefore, it is assumed that the size ofc is inversely
proportional to the value ofλ(c) . For the case of length-dependent size effect, the MSEL
equation is similar to (11) except that the depth variablec is replaced by the length variable
h whereλ(c) is then substituted withλ′(h) .

In order to obtain an analytical equation which predicts the flexural compressive strength
of C-shaped specimens for length effect at failure, MSEL is used. LSM regression analyses
are then performed on the results of 11 test data for length effect. Equation (12) is obtained
as below from the analyses and the results are plotted as shown in figure 11.

σN(h) = 0.70f ′
c{

1 + (h/2.6)
(
1.59(1/h)0.37

)}1/2 + 0.47f ′
c , (h/c ≤ 3.0), (12a)

σN(h) = 0.75f ′
c , h/c ≥ 3.0 (12b)
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Figure 11. Normalized nominal strength with compres-
sive strength versus ratio of length to depth.
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Figure 12. Normalized nominal strength with com-
pressive strength versus depth.

where the length of the C-shaped specimenh is in centimetres. If the ratio of length to depth
h/c is greater than or equal to 3.0, this ratioh/c is 3.0.

To develop an equation for depth effect, LSM regression analyses are also performed on
the 8 results from the depth effect series. All techniques and notations are same as for length
effect. Equation (13) is obtained from the analyses and the results are graphically shown in
figure 12.

σN(c) = 0.70f ′
c{

1 + (c/2.6)
(
4.17(1/c)0.53

)}1/2 + 0.47f ′
c , (13)

where depth of C-shaped specimenc is in centimetres. Figure 11 shows the valueσN(h)/f ′
c as a

function of theh/c, while figure 12 shows the valueσN(c)/f ′
c as a function of the depthc . The

hollow circular data points and the thick solid line in figures 11 and 12 represent experimental
data and analytical results from (12) and (13) respectively. Figure 11 indicates strong length-
dependent size effect. Equation (12) shows good agreement with the experimental results.
For h/c greater than 3.0, the failure strength approaches a constant value of 0.75. Figure 12
shows a distinct depth dependent size effect when normalized with the compressive strength
f ′

c . Equation (13) shows reasonable agreement with the experimental results.

4.8 Generalization of size effect law for C-shaped specimens

Equation (14) below is obtained from LSM regression analyses of 39 experimental data,

σN(c, h) = 0.70f ′
c{

1 + (c/2.6)
(
0.77(h/c)0.56 − 0.13

)}1/2 + 0.47f ′
c (14)

where ifh/c ≥ 3.0,h/c is 3.0, and notations are same as in (12) and (13). If the ratioh/c

is 2.0, then the value ofλ(h/c) is 1.0 and (14) is the same as (8).
In figure 13, the thick solid line represents the analytical results obtained using (14) and

the hollow circular data points represent the experimental data. The figure shows that (14)
agrees quite well with the experimental results. Thus, flexural compressive strength of a beam
specimen for various lengths and depths can be calculated by inputtingc, h, andf ′

c into (14).
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Figure 13. Normalized nominal strength with com-
pressive strength as a function of 1+ {c/2.6[0.77
(h/c)0.56 − 0.13]}.

5. Conclusions

From studies for size effect on compressive strength of concrete, the following conclusions
are drawn.

(1) Model equations for predicting the compressive strength of concrete cylinders are sug-
gested based on nonlinear fracture mechanics. The effect of maximum aggregate size on
the size effect of the compressive strength is negligible within the practical size range. This
means that the effect of maximum aggregate size on the width of microcrack zone can be
ignored compared with the effect of the characteristic dimension defined ashi − βdi .

(2) Size effect on flexural compressive strength is apparent, i.e., the flexural compressive
strength at failure decreases as the specimen size increases. New parameter values of
MSEL are suggested which better predict the “reduction phenomena” of the strength. Size
effect for flexural compressive strength in C-shaped specimens is more distinct than that
for uniaxial compressive strength of cylinders, and it can be expressed by the modified
size effect law as well as that for ultimate flexural compressive strain.

(3) Length effect is apparent (i.e., the flexural compressive strength at failure decreases as
the specimen length increases). Depth effect is also distinct. New parameter values of
MSEL are suggested which better predict the “reduction phenomena” of the strength.
More general parameter values are also suggested.

(4) The results suggest that the current strength criteria based design practice should be
reviewed.

The authors would like to thank the Korea Institute of Science and Technology Evalu-
ation and Planning (KISTEP) for financial support of the National Research Laboratory
(NRL).

List of symbols

a length of crack band, crack length at failure;
ao initial crack length;
b thickness of specimen;
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B, α, β empirical constants;
c depth of C-shaped specimen;
d characteristic dimension, diameter of cylinder;
d1, d2 diameters of cylinder;
da maximum aggregate size;
Ec elastic modulus of concrete;
f ′

c uniaxial compressive strength of standard concrete cylinder;
fct splitting tensile strength of concrete cylinder;
f ′

t direct tensile strength of concrete cylinder;
fo compressive strength of general cylinder;
h height of cylinder, length of C-shaped specimen;
h1, h2, h

′
2 heights of cylinder;

lo width of crack band (=λoda);
m constant, 0< m < 1;
P1 major load;
P2 minor load;
Pu maximum load, or ultimate axial load= P1 + P2;
εco average ultimate strain for specimen ofd = 20.0 cm;
εcu ultimate strain in concrete;
λo, λ1 approximate constant (=2.0);
λ(c), λ′(h), λ(h/c) size of fracture process zone with a strain gradient;
θ angle between surface of confined zone and plane perpendicular to

cylinder axis;
σo size independent stress (=αf ′

t );
σN nominal flexural compressive strength at failure (=Pu/bc).
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