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(e new generation of smartphones, equipped with various sensors, such as a three-axis accelerometer, has shown potential as an
intelligent, low-cost monitoring platform over the past few years. (is paper reports the results of an analytical and experimental
study on a proposed SDOFmodel-based noisy deconvolution (SMND) coupled with a deechoing technique to estimate pavement
profiles and to modify their geometry using a smartphone inside a vehicle. In the analytical study, the acceleration response of the
car was obtained, where the input was a road profile with an arbitrary pattern. Two different methods, classical band-pass filter and
wavelet-denoising technique, were used for denoising the acceleration response. In a 2-step deconvolution process coupled with a
deechoing technique, the pavement profile was extracted and compared with the original pavement profile, demonstrating good
agreement. In the next step, a parametric study was performed to evaluate the effect of vehicle characteristics and speeds. (en, a
case study was conducted in Blacksburg, VA, to evaluate the capability of the proposed method in identifying profile types such as
potholes and speed bumps. (e acceleration-versus-time responses in vertical direction were recorded using smartphone ac-
celerometers located in a moving vehicle. (en, the proposed approach was applied to remove the echo and vehicle dynamics
effects to obtain the pavement profiles and to modify their geometry. (e results showed that the proposed approach can remove
the echo and vehicle dynamics effect from the response to obtain the pavement profile even if the vehicle characteristics and speed
are changed.

1. Introduction

In general, pavement conditions affect the safety of
drivers and passengers, ride comfort, handling stability,
fuel consumption, vehicle maintenance costs, etc. (e
degraded road surface can cause traffic safety concerns
and even pose accidents and loud noise emissions [1].
Road surface monitoring helps to maintain the road
operations [2], and one way of road surface evaluation is
pavement profile estimation. Pavement profile estimation
can be used to compute the International Roughness
Index (IRI) [3–6] to quantify road surface roughness or
Pavement Serviceability Index (PSI) [7–9] to quantify the
pavement quality and ride comfort. It can also be used to
classify pavement deterioration types [10–12]. Laser
profilers equipped with inertia sensors and cameras

provide a high-accuracy, high-resolution option for
pavement profile estimation [13, 14]. However, because
of their high operation costs, they cannot be used for
regular road network monitoring. With the development
of smartphone technology with built-in accelerometers,
global positioning system (GPS), magnetometer, and
gyroscopes, a new opportunity is provided for road
surface integrity evaluation [15]. Compared to high-
resolution, costly devices, smartphones have shown po-
tential as an intelligent, low-cost, crowd-based infra-
structure alternative monitoring platform over the past
few years. (e smartphone’s accessibility and afford-
ability provide the crowdsourcing potentiality for data
collection to cover the rapidly expanding road networks,
and with more road users’ participations, road integrity
monitoring can become more efficient [15].
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In general, existing methods for pavement profile esti-
mation can be classified into four categories: noncontact
measurement, direct measurement, neural-network-based
estimation, and system dynamic response-based estimation
[1]. (e first two methods are more instrument-based, while
the third and the last methods are computer-based and
model-based, respectively. (e noncontact measurement
method uses lidar, laser profilers equipped with inertia
sensors mounted on the vehicle to scan the pavement surface
[16–19]. (e advantage of this method is better transfer-
ability to regular vehicles that makes it suitable for real-time
detection using regular vehicles. (e drawbacks of the
noncontact measurement method are their expensive in-
stallation and operational prices as well as their sensitivity to
different weather conditions such that the results are not
reliable in snowy and rainy weathers [1, 20, 21].

(e direct measurement method obtains the longitu-
dinal profile of the road and measures other indicators such
as International Roughness Index (IRI) along with the
difference in elevation points using special vehicles equipped
with road roughness meters such as longitudinal profile
analyzer, profilometer, and so forth [22–25]. However, this
method is usually used for road transportation maintenance
and cannot be used for real-time measurements because of
its inability to transfer to conventional vehicles.(is restricts
the number of potential users and data acquisition using
smartphones such that it cannot be used to cover vast road
networks.

(e next class of methods is to use artificial neural
network which is widely used in many different areas related
to Intelligent Transportation Systems (ITS), Internet of
Vehicles (IoV) [26], and traffic flow detection [27]. (is is
also used in pavement profile estimation and pavement
deterioration classification [28–31], in which accelerometers
are usually the key sensors used. It should be noted that
although this method addresses some of the problems as-
sociated with the previous two methods (nontransferability
and cost), there are some disadvantages associated with it as
well. For instance, for machine training and network cre-
ation, a large number of datasets need to be collected in
advance and over different roads. Also, besides a long
computation process, this method needs many computing
resources as well [1].

(e last category is system dynamic response-based
estimation [32–36]. In this method, besides the advantages
of being low cost and transferable to regular vehicles, the
problem associated with the neural network methods is also
addressed such that there is no need to have a large number
of data sets and a time-consuming computation process. A
limited number of papers in this category (system dynamic
response-based estimation) specifically propose pavement
profile methods in which smartphones are used for data
collection. In 2014, the acceleration data of a vehicle sim-
ulated as a quarter car was recorded using Android
smartphones [6]. (en, the displacement response (vehicle
dynamics and echo effects included) was obtained by
double-integrating the acceleration response. (e dis-
placement response was input into the software program
ProVAL for IRI estimation. In two similar studies conducted

in 2019 and 2020, a smartphone measuring multiple outputs
was used in which the vehicle was considered as a half-car
model [2, 14]. To identify the vehicle characteristics, in the
first study [2], the response of the vehicle passing through a
bump with known geometry was extracted, and genetic
algorithm (GA) was then employed to determine the vehicle
parameters. In the second study [14], the vehicle parameters
were optimized by comparing the estimated profiles at the
front and rear tires locations using GA. (en, augmented
Kalman filter (AKF) was used for both studies for pavement
profile estimation along with Rauch–Tung–Striebel
smoothing (RTS) to improve the road profile estimation
accuracy.

While the studies above demonstrate the potential of
pavement estimation via a smartphone’s dynamic response,
however, some limitations still exist. System parameters such
as passengers’ mass, vehicle damping ratio, vehicle natural
frequency, and so forth may change over time, causing the
vehicle acceleration response variation with respect to time.
(us, the estimated pavement profile will be a function of the
vehicle characteristics and the vehicle dynamics effects that
should be properly removed. Also, in one of the studies
discussed above [6], the vehicle was considered as a SDOF
quarter-car model while a real vehicle has two sets of wheels,
and as a result, when a vehicle moves through a speedbump,
for instance, the estimated pavement profile will be a double
speedbump (echo effect), one repeated with a delay after the
first one. However, later, it will be shown that it is acceptable
to consider the vehicle as a SDOF model to make the
computation process simple, but some modifications will be
needed. Also, while MDOF methods have demonstrated
good performance in pavement profile estimation, they
require extensive determination or calibration of various
vehicle characteristics [14].

(is paper presents a SDOF model-based noisy
deconvolution (SMND) to provide a simple but robust
pavement profile estimation approach which addresses the
shortcomings discussed above. A key innovation of SMND
approach is a two-step deconvolution process which
removes vehicle dynamics effects from accelerometer
measurements from a single smartphone inside a vehicle.
(e method avoids any pretests or training by extracting the
deconvolution parameters (damping ratio and fundamental
frequency) directly from operational vehicle vibration via
Operational Modal Analysis (OMA)method. In this study, it
was aimed to propose a simplified approach; thus, a SDOF
quarter-car model was used to simplify the computational
requirements. In order to deal with the limitations of this
assumption introduced by two sets of wheels, another key
feature of the proposed technique is to use a robust tech-
nique, “deechoing,” to remove the undesirable effects while
it still keeps the computation process simple.

In this paper, Section 2 introduces the OMA technique
used to compute the vehicle characteristics, the SMND
approach to remove the vehicle dynamic effects, and the
deechoing technique to remove the echo from the estimated
profile. Section 3 reports the results of a numerical study to
show the significance of removing the vehicle dynamics
effects and echo from the estimated pavement profile. (en,
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it is numerically shown that the proposed approach is ca-
pable of estimating the pavement profile, in a situation with
and without noise, using the vehicle acceleration–time re-
sponse passing through a pavement deterioration with an
arbitrary pattern. Section 4 provides the results of a para-
metric study to evaluate the sensitivity of the results when
vehicle characteristics and the vehicle speed change. Lastly,
in Section 5, the results of the experimental study are
presented to show the capability of the method in a real
situation to obtain the pavement profile.

2. Methodology

In this section, the OMA technique, Covariance-Driven
Stochastic Subspace Identification (SSI-Cov), is first intro-
duced that was applied on the collected acceleration–time
response of the vehicle to extract vehicle characteristics, i.e.,
damping ratio and fundamental frequency. (en, the
methodology for pavement profile estimation is explained
consisting of two steps: SDOF model-based noisy decon-
volution (SMND) and deechoing. SMND was used to
remove the vehicle dynamics effects from the displacement
response. Deechoing was applied to the estimated pavement
profile to remove the echo introduced by two sets of wheels.

2.1. Covariance-Driven Stochastic Subspace Identification
(SSI-Cov). In the experimental study described later in
Section 5, the vehicle characteristics (fundamental frequency
and damping ratio) were obtained via SSI-Cov, which is a
time-domain, Operational Modal Analysis (OMA) tech-
nique. (is technique is described by Peeters and De Roeck
[37], based on the original formulation by Van Overschee
and De Moor [38]. A custom MATLAB code developed by
Sarlo et al. [39] and available at a custom MATLAB library,
https://code.vt.edu/vibes-lab/modal-analysis, was used to
implement the technique.

In SSI-Cov technique, the user needs to choose the
number of samples (n), Hankel matrix block rows (s), and a
range of singular values (r). In the experimental study, s was
chosen to be 20 and n was 750 samples (7.5 s). (ese values
need to be large enough to average out the noise such that
SSI-Cov produces visually observable results. Also, r is twice
the number of modes in the physical system.

(e MATLAB code provides stabilization diagrams
resulted from singular value decomposition (SVD) of the
spectral density (SD) matrix. (is is a plot of the number of
modes (m� r/2) versus modal frequencies (f ).(e tolerances
used to define the stable/unstable natural frequencies and
damping ratios were Δf< 0.07Hz and Δζ < 0.11. (e results
are provided in Section 5.

2.2. SDOF Model-Based Noisy Deconvolution (SMND).
(is subsection explains how the proposed SMND approach
removes the vehicle dynamics effects from the dis-
placement–time response of the vehicle to obtain the
pavement profile. Figure 1 depicts an example of the sim-
ulated vehicle model moving on pavement with an arbitrary
profile pattern.

Because the acceleration recorded by the accelerometers
is the absolute acceleration response, the equation of motion
of the vehicle is written as

m€x + c( _x − _y) + k(x − y) � 0, (1)

in terms of absolute displacement x and ground displace-
ment y. Equation (1) can be manipulated to be written in the
simplified form

m€x + c _x + kx � f(t) � ky + c _y, (2)

where y and _y are the pavement height and the pavement
height change with respect to the time, respectively.

Also, considering the impulse response of the vehicle,
equation (2) can be written in a convolution form,

x(t)∗ h1(t) � f(t) � ky + c _y, (3)

where

h1(t) �
1

mωd
e−ςωnt sin ωdt (4)

is the impulse response function. (is is only a function of
the vehicle dynamic characteristics. Additionally, ς, ωn, and
ωd in equation (4) are the vehicle damping ratio, natural
frequency, and the damped natural frequency, respectively.
Knowing that the initial vertical displacement and velocity of
the vehicle before going through the pavement deterioration
are zero, the Laplace transform of the force equation, f(t) �
ky + c _y, will be

kY(s) + csY(s) � F(s), (5)

where Y(s) is the Laplace transform of y(t) and F(s) is the
Laplace transform of f(t) computed in the previous step.
(en, from equation (5), Y(s) can be calculated as

Y(s) � H2(s). F(s), (6)

where H2(s) � 1/(cs + k) is the Laplace transform of the
impulse function, h2(t). Taking the inverse Laplace trans-
form of H2(s), h2(t) will be obtained; that is,

h2(t) �
1

c
e−kt/c. (7)

In the final step, from equation (6), y(t) can be extracted
using the convolution property, saying that the convolution
of two functions in the time-domain is equal to the

x (t)

m

ck

y (t)

Figure 1: SDOF model of the vehicle.
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multiplication of them in the frequency-domain and vice
versa. (us,

y(t) � f(t)∗ h2(t). (8)

(e absolute displacement x(t) can be computed by double
integration of the denoised acceleration-time response recorded
by the smartphone accelerometer.(en, the force applied to the
vehicle, f(t) � ky + c _y, can be computed by convolving the
absolute displacement,x(t), with the impulse response function
h1(t) defined in equation (4). Once the forcef(t) is computed,
the ground displacement, y(t), can be obtained by convolving
the force with h2(t) defined in equation (7). (e term y(t),
once corrected for vehicle velocity, represents the pavement
profile with vehicle dynamics effects removed. Figure 2 provides
a diagram summarizing the proposed SMND approach.

2.3. Deechoing Technique. In the proposed method, the
vehicle was considered as a SDOF model (quarter-car
model) to make the computation process simple. (e
proposed deechoing technique solves some of the limitations
of this model but still keeps the computation process simple.
A real vehicle has two sets of wheels, front row and rear one.
Hence, when a vehicle moves through a speedbump, for
instance, the estimated pavement profile will be a double
speedbump, with spacing corresponding to the axle spacing
of the vehicle. In the time-dependent version of the pave-
ment profile (before correcting for speed), this spacing may
be treated as a delay or an “echo.” One of the applications of
convolution is removing the echo (repetition with a delay)
from a signal by deconvolving it with an echo impulse
function; a sequence of numbers is defined as

h3(t) � 1, M, zeros,
Peak2
Peak1

,[ ] (9)

where M is the delay (the number of samples) between the
starting point of the main signal and the echo in the
pavement profile in which dynamics effects are removed.
Peak1 and Peak2 are the absolute positive or negative peak
values of the main signal and the echo, respectively. (is
accounts for any differences in amplitude in the response
between the front and rear wheels. To this end, the response
segment with echo should be manually selected and
deconvolved with the impulse function to remove the echo
effect. (en, the rest of the response (before and after the
selected response segment) will be attached to the deechoed
segment with zeros substituted for the removed subsegment.

3. Numerical Study

3.1. No Noise Added. In the first step, the approach was
numerically simulated to assess the validity of the ap-
proach. All the computation process was done in MAT-
LAB [40]. (is first simulation ignores the effects of noise.
(is is done to show that the proposed method concept
works properly. Before going through more complex
pavement profiles, it is important to illustrate how the
vehicle dynamics included in the response can distort the
estimated pavement profile using a simple example with

the pavement geometry shown in Figure 3(a). Also, it
should be noted that the acceleration-time response of the
vehicle moving through a double speedbump
(Figure 3(b)) is obtained to simulate the effect of two sets
of vehicle wheels (front and rear). (e Newmark linear
acceleration method [41] was used to obtain the vehicle
responses using a code developed by Moghadam et al.
[42]. Figure 3(c) illustrates the result of double integration
of the acceleration-time response of a vehicle with the
fundamental frequency of 1.18 Hz and damping ratio of
0.5 and moving with a constant speed of 2.24 m/s. Other
speeds are discussed in Section 4.2. In this response, the
vehicle dynamics effects as well as echo are still included.
According to Figure 3(c), the displacement response
contains two speedbumps (echo effect) and negative
displacements right after them caused by vehicle dy-
namics effects. Furthermore, the heights of the speed-
bumps were also overestimated, which is another
undesirable effect of the vehicle dynamics. However,
applying SMND and deechoing, Figure 3(d) was resulted,
where the negative displacement and the echo have
completely disappeared, and the geometry of the speed-
bump was also modified. As a result, it is beneficial to
remove the echo and vehicle dynamics effects from the
displacement response obtained by double integration
before using it for any purpose, including pavement de-
terioration classification, IRI computation, and PSI
computation.

In the next step, it is required to numerically evaluate the
proposed method on a more complex example to see if it is
capable of estimating the pavement profile with any arbitrary
pattern. Echo effect is ignored in this example. Figure 4
shows that the estimated pavement profile matches very
closely with the exact profile. It should be noted that the
negligible difference which is less than 0.3 cm between the
estimated pavement profile and the exact pavement profile
shown in Figure 4 is because of the Newmark method
approximation.

3.2. Noise Added. So far, it is shown that the proposed
method works well when there is no noise in the acceler-
ation-time measurement. However, there is no doubt that
noise is always involved in the measurement, and it usually
influences the results’ accuracy.(e purpose of this section is
to show that the proposed SMND approach works properly
to estimate the pavement profile even for a high-noise case.
(us, as shown in Figure 5, the acceleration-time response
using Newmark method was contaminated with a consid-
erable level of white noise using random numbers generated
in MATLAB.

In this study, two noise removal techniques were used
to be coupled with the proposed SMND approach for
pavement profile estimation, and the results were com-
pared: wavelet-denoising technique and band-pass filter.
For wavelet-denoising technique, a function in MATLAB,
“wnoise,” was used. For noise removal using a band-pass
filter, Fast Fourier Transform (FFT) of the noisy accel-
eration–time response was taken to distinguish between
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Figure 3: Numerical pavement profile estimation (no noise included). (a) (e speedbump geometry. (b) (e input pavement profile. (c)
Displacement response (echo and vehicle dynamics effects included). (d) Pavement profile estimation (deechoed and vehicle dynamics
removed).
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Figure 2: Flowchart of the proposed SMND approach for pavement profile estimation.

Advances in Civil Engineering 5



the frequency range corresponded to the vehicle response
and the frequency range of the noise. (e frequency range
associated with the vehicle response (1 to 3.3 Hz) was
extracted using a band-pass filter. Once the denoised
acceleration–time responses were obtained, double in-
tegration method was then employed to find the vehicle
displacement. To remove the inconvenient effects of the
remaining noise in the acceleration–time response ob-
tained using wavelet-denoising technique, a high-order
polynomial curve (order of 14 in this study) was fitted to
the displacement response. (en, in the last step, the
proposed SMND approach was applied to the denoised
displacement response to remove the vehicle dynamics
effects and to find the pavement profile.

Figures 6(a) and 6(b) compare the exact pavement
profile and the estimated ones using wavelet-denoising
technique and band-pass filter, respectively. Although there
was a considerable level of noise in the acceleration–time
response, the proposed SMND approach still works well for
pavement profile estimation. According to Figures 6(a) and
6(b), the maximum errors in pavement profile height esti-
mation were approximately 1.3 and 2.3 cm for wavelet-
denoising technique and band-pass filter, respectively, which
can be considered acceptable for the matter of pavement
profile estimation. A greater error for the band-pass filter
occurred because the cutoff band was selected manually to
reduce the overall estimation error, and this involved cutting
off some of the vehicle dynamics. (is can be considered a
drawback for the band-pass technique. In fact, for using
band-pass filter, for each single recorded response, one
needs to put a lot of effort to manually remove the fre-
quencies associated with the noise through a trial-and-error
process to ensure that the vital frequencies corresponded to
the vehicle response are not removed. However, unlike the
band-pass technique, using wavelet-denoising technique, a
MATLAB code can be implemented to automatically
remove the noise from many recorded responses. (us, for
the rest of this study, wavelet-denoising technique is used.

4. Parametric Study

So far, it is demonstrated that the proposed SMND approach
works properly. However, there are other factors that may
affect the results, such as the vehicle characteristics and
speed. (ese are addressed here.

4.1. Vehicle Characteristics Effect. To consider the vehicle
characteristics effects, twenty different simulated vehicles
with different characteristics were considered. In the first ten
cases, damping ratios were constant (ζ � 0.5) while the
fundamental frequencies were varied between 7.32 to
10.67 rad/s to consider the effect of fundamental frequency
on the pavement profile estimation results. In the second ten
cases, fundamental frequencies were constant (ωn �9.68 rad/
s) and the damping ratios were changed between 0.3 and
0.65 to consider the effect of damping ratios on the results.
For each case, the pavement profile was estimated using the
acceleration–time response of the vehicle passing through
the pavement profile shown in Figure 4. No noise was added
to the responses to only consider the vehicle characteristics
effects on the pavement profile estimation. Figures 7(a) and
7(b) show the mean-squared-error (MSE) of the estimated
pavement profiles with respect to the exact pavement profile
for different values of fundamental frequencies and damping
ratios, respectively. According to Figure 7(a), the greater the
fundamental frequency is, the greater MSE is, while
Figure 7(b) shows that increasing the damping ratio reduces
the error.

To visually observe how the errors may distort the re-
sults, the estimated pavement profiles for ωn �10.67 rad/s as
well as ζ � 0.3, which are the worst cases with maximum
MSEs, are plotted in Figures 8(a) and 8(b), respectively.
According to Figures 8(a) and 8(b), both cases are in great
agreement with the exact pavement profile. (e maximum
error forωn � 10.67 rad/s was about 0.5 cmwhile it was about
0.8 cm for ζ � 0.3, where the maximum error is defined as the
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maximum distance between the estimated pavement profile
with the exact one. So, it can be claimed that even if one uses
a different vehicle with different characteristics, the pro-
posed method will still be capable of vehicle dynamics effects
removal and pavement profile estimation. (is claim is
assuming low noise, but even in a noisy condition, it was
already shown that the maximum error is 1.3 cm when
wavelet denoising is used.

4.2. Vehicle Speed Effect. (e next factor that needs to be
considered is vehicle speed. (ere are many ways to nu-
merically simulate the vehicle speed variation on the
pavement profile estimation. To numerically increase and
decrease the vehicle speed, the input pavement profile shown
in Figure 4 (amplitudes multiplied by 2) with a total length of

10.2m was compressed and stretched, respectively. (e
vehicle speeds considered in this study were 2.6, 5.1, 6.0, 7.8,
9.4, 11.1, and 13.6m/s. No noise was added to the responses
for a better observation of the vehicle speeds’ effects on the
results. Figure 9 shows the mean-squared-error (MSE) of the
estimated pavement profiles with respect to the exact
pavement profile for different vehicle speeds. According to
Figure 9, the higher the vehicle speed, the greater MSE.

To visually observe how different speeds may distort the
results, the estimated pavement profiles for four different
speeds are demonstrated in Figures 10(a) through 10(d).
According to these figures, the speed is a relatively effective
factor such that themaximum error is 5.5 cm for the speed of
13.6m/s, where the maximum error is defined as the
maximum distance between the estimated pavement profile
with the exact one. However, according to Figures 10(a)
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Figure 6: Pavement profile estimation (noisy response). (a) Wavelet-denoising technique. (b) Band-pass filter.
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through 10(d), the estimated pavement profiles are in good
agreement for the speeds of less than 7.8m/s with a max-
imum error of 2.4 cm and more sensitive to speeds greater
than 7.8m/s with a maximum error of 5.5 cm. Yet, no one
chooses a vehicle speed of 7.8m/s or more to drive through
the unusual pavement profile specified in Figure 4. In fact,
the higher speeds were only chosen for a research purpose.
As a result, although the vehicle speed can be influential on
the results, for reasonable operational speed which is less
than 7.8m/s in this pavement profile case, the results are
reliable. (e estimated pavement profile becomes more
distorted at high vehicle speeds (greater than 7.8m/s) due to
the high frequency of the pavement profile compared to the
vehicle’s natural frequency. (us, the pavement displace-
ment is absorbed primarily in the suspension spring and
very little is transferred to the vehicle body and the accel-
erometer. As observed in Figure 10(d), this results in an

underestimated pavement profile, particularly for high-
frequency displacements.

5. Experimental Study

In order to test the methodology in a real situation, an ex-
perimental study was conducted in Blacksburg, VA. A
smartphone, iPhone XR, was fixed on the vehicle armrest box
(between the two front seats) in a Hyundai Elantra 2011. First,
SSI-Cov was used to determine the vehicle characteristics.
Figure 11 shows the stabilization diagram resulted from the
MATLAB code described in Section 2.1. According to Figure 11,
only one stable mode was detected with a fundamental fre-
quency of 1.5Hz and damping ratio of about 0.33.

Two different pavement types, such as a speedbump and
a pothole, were considered. Figure 12 shows the pictures of
the speedbump and pothole used in this study. (e
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Figure 8: (e estimated pavement profile for two cases with maximum MSEs shown in Figure 7. (a) ωn � 10.67 rad/s and ζ � 0.5.
(b) ωn � 9.68 rad/s and ζ � 0.3.
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acceleration–time responses of different cases in the vertical
direction were recorded with a sampling rate of 100 samples
per second, which is the maximum possible sampling rate of
iPhone XR.(e vehicle speed for all cases was about 2.24m/s
because it was not practical to run the vehicle with higher
speeds over a speedbump or a pothole. Higher speeds were
already considered in the numerical study discussed in
Section 4.2. In this study, smartphone version of MATLAB
was used to store the responses in the cloud. (en, after the
noise of each response was removed using the wavelet-
denoising technique, the proposed SMND approach was
applied to remove the vehicle dynamics effects, to modify the
pavement geometry, and to estimate the pavement profile.

Furthermore, the speedbump has a height and a hori-
zontal length of, in average, 7.5 and 104 cm, respectively,
determined by site measurement. Figure 13(a) (black profile)

shows the estimated pavement profile with echo and vehicle
dynamics effects removed versus the displacement response
when echo and vehicle dynamics effects are still included
(red profile). (is is to show how vehicle dynamics effects
can distort the estimated pavement profile. According to
Figure 13(a), when the echo and vehicle dynamics effects are
removed, the estimated geometry shown in Figure 13(b) has
been closer to the real geometry with a maximum error of
about 2.2 cm and 9 cm in height and horizontal length es-
timations, respectively. (is shows that the proposed SMND
method coupled with the deechoing technique is capable of
removing echo and vehicle dynamics effects and modifying
the geometry and finally estimating the pavement profile
even in a real situation.

(e proposed method was then applied to the pothole as
well. Based on site measurement, the height and horizontal
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Figure 10: (e estimated pavement profile for four different vehicle speeds. (a) Vehicle speed of 2.6m/s. (b) Vehicle speed of 5.1m/s.
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length of the pothole sample were in average about 4 cm and
94 cm, respectively. Figures 14(a) and 14(b) show the estimated
pavement profile with echo and vehicle dynamics effects re-
moved (black profile) versus the displacement response when
echo and vehicle dynamics effects are still included (red
profile). According to Figure 14(b), the estimated pavement
profile is in good agreement with the exact profile with a
maximum error of about 1.4 and 11.4 cm in height and
horizontal length estimations, respectively. (is shows that
removing the echo and vehicle dynamics effects from the
displacement response will modify the geometry of the esti-
mated pavement profile. It should be noted that one issue in the
pavement profile estimation shown in Figure 14(a) is the
positive displacement right after the pothole caused by the
pitching mode of the vehicle. (is is not accounted for by the
SDOFmodel, but could be removed by considering the vehicle
as a half-car model in future studies.

Also, it should be noted that the reason why the results
are only compared with double integration is because it was
aimed still to take advantage of simple methods such as
double integration, but it was also aimed to solve their
current problems such as echo and dynamic effects. Other
complex methods in the literature are ignored because they
were against the simplicity purpose.

6. Conclusions and Future Study

In this study, SDOFmodel-based noisy deconvolution (SMND)
approach coupled with a deechoing technique was proposed to
remove vehicle dynamics effects for pavement profile estima-
tion and to modify the estimated geometry. According to the
numerical study, the SMND approach was capable of removing
the vehicle dynamics effects from response recorded via
smartphone accelerometers even in a pretty noisy environment
in both numerical and experimental cases. (e SMND

approach was also able to specify if there was a pothole or
speedbump on the pavement and to estimate its geometry
properly. Furthermore, when there was a pothole/speedbump
on the pavement, as a result of having two sets of wheels, two
potholes/speedbumps appeared in the estimated profile (called
“echo” in this study). However, the deechoing technique
properly removed the echo effects from response and still kept
the computation process simple so that only a single pothole/
speedbump appeared in the final estimation. According to the
parametric study, vehicle characteristics, i.e., damping ratio,
weight, and suspension system stiffness, did not significantly
impact the estimated pavement profile, and using the proposed
SMND approach, vehicle dynamics effects removal and pave-
ment profile estimation were successfully done regardless of the
vehicle type. On the other hand, the vehicle speed could sig-
nificantly affect the pavement estimation results, with a max-
imumerror of 5.5 cm for the speed of 13.6m/s. However, within
reasonable vehicle operational speeds to move through a
speedbump and a pothole which is less than 7.8m/s in this
study, the results were reliable with a maximum estimation
error of about 2.4 cm.

In this paper, as a proof-of-concept study, the examples
considered in the experimental section were intentionally
chosen to be simple because complex pavement profiles, due
to their shape complexity, are not able to show how dy-
namics effects and echo can change the estimated profile and
why echo and dynamic effects removal is so important.
However, as a future experimental study, more complex
pavement profiles should also be considered to evaluate the
proposed method further.

Data Availability

(e custom MATLAB code used for obtaining modal pa-
rameters, i.e., damping ratios and frequencies, is available at
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Figure 14: Pavement profile estimation for the pothole. (a) (e estimated pavement profile versus double integration (pothole). (b) (e
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a custom MATLAB library, https://code.vt.edu/vibes-lab/
modal-analysis.
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